
In Proc. of the 19th Symposium on Applied Computing (SAC’04), pages 1462–1467.c© ACM.

Controlling Data Movement in Global Computing Applications ∗

Daniele Gorla1,2 Rosario Pugliese2

1Dipartimento di Informatica, Università di Roma “La Sapienza”
2Dipartimento di Sistemi e Informatica, Università di Firenze

e-mail: gorla@dsi.uniroma1.it , pugliese@dsi.unifi.it

Abstract
We present a programming notation aiming at protecting the se-

crecy of both host and agent data in global computing applications.
The approach exploits annotations with sets of node addresses,
called regions. A datum can be annotated with a region that speci-
fies the network nodes that are allowed to interact with it. Network
nodes come equipped with two region annotations specifying the
nodes that can send data and spawn processes over them. The lan-
guage semantics guarantees that computation proceeds according
to these region constraints. To minimize the overhead of runtime
checks, a static compilation phase is exploited. The proposed ap-
proach is largely independent of a specific programming language;
however, to put it in concrete form, here we focus on its integration
within the process languageµKLAIM . We prove that in compiled
µKLAIM nets, data can be manipulated only by authorized users.
We also give a more local formulation of this property, where only
a subnet is compiled. Finally, we use our theory to model the secure
behaviour of a UNIX-like multiuser system.

1 Introduction
In the design of programming languages for global computing

applications, the integration of security mechanisms is a major chal-
lenge and a great effort has been recently devoted to embed such
mechanisms within standard programming features. Several sensi-
ble language-based security techniques have been proposed in the
literature, including type systems [12, 3, 5, 10], control and data
flow analysis [11, 15, 6, 2], in-lined reference monitoring [8] and
proof-carrying code [14]; some of these techniques are analyzed
and compared in [19]. One major goal is to develop a language that
is both flexible, expressive and safe; unfortunately, these require-
ments are often in contrast. For example, the possibility of exploit-
ing mobile code deeply increased the flexibility of programming
languages, but introduced new problems concerning the security
of classified data. Indeed, since global computing has to take into
accountopennetworks, existence in the environment of malicious
principals must be considered that can put security of data at risk.
For instance, one can easily imagine malicious mobile processes at-
tempting to access private data of the network node hosting them.
Similarly, a malicious node can threaten a mobile process by trying

∗Work partially supported by EU FET - Global Computing ini-
tiative, project MIKADO IST-2001-32222, and by MIUR project
NAPOLI.

to compromise its integrity through code modification or its secrecy
through leak of sensitive data.

Therefore, to enhance its appropriateness for global computing
applications, a programming language should come equipped with
a solid foundational model that also encompasses security features.
The proof that an application is ‘safe’ could then be done by relying
on formal methods. To be realistic and useful for global computing,
the language security model should(a) consider existence of mis-
behaving entities in the execution environment of applications, and
(b) rely only on a local knowledge of such environment. Condition
(b) is necessary because it is impossible in practice to collect global
information in a network of millions of users (like the Internet), that
are under the control of different administration authorities and can
be malicious.

The major contribution of this paper is the definition of an ap-
proach that permits protecting the secrecy of both host and agent
data in global computing applications by relying on additional pro-
gramming notation. The approach we propose, that is inspired by
Confined-λ [13], exploits program annotations withregions, i.e.
sets of node addresses, as follows. A datum can be annotated with
a region that specifies the network nodes that are allowed to interact
with it. This mechanism allows programmers to control the nodes
that can share specific data, and to avoid them to be visible to other
nodes. Moreover, nodes come equipped with two region annota-
tions specifying the nodes that can send data and spawn processes
over them. This mechanism allows the administrator of a node to
control the data/processes the node can host, and to refuse malicious
agents and undesired data. The language semantics guarantees that
computation proceeds according to these region constraints. For
example, a processP can access a datumt only if P’s execution
does not exportt outside its region (namely, ifP does not writet
in a network node not included int ’s region or, similarly, ifP does
not bringt with itself while migrating to a node not included int ’s
region). Enforcing similar requirements implies some form of code
inspection, that would be too expensive to be entirely performed
at runtime. Therefore, to minimize the runtime checks thus mak-
ing the operational semantics as efficient as possible, a preliminary
static compilation phase is exploited.

Our approach is largely independent of a specific programming
language; however, to put it in concrete form, in this paper we fo-
cus on its integration within the process languageµKLAIM [10].
µKLAIM is at the core ofKLAIM (Kernel Language for Agents In-
teraction and Mobility, [5]), an experimental language specifically
designed to program distributed systems made up of several mobile
components interacting through multiple distributed tuple spaces.
The tuple space paradigm, that was firstly introduced by the coordi-
nation languageL INDA [9], defines atuple spaceto be a multiset of
tuples, that are sequences of information items. Tuples areanony-
mousandassociativelyselected from tuple spaces by means of a

N ::= l rd:: rp C | N1 ‖ N2 NETS

C ::= 〈et〉 | P | C1 |C2 COMPONENTS

P ::= nil | a.P | P1 | P2 | X | recX.P PROCESSES

a ::= ACTIONS

out(t)@` (output)

| in(T)@` (input)

| eval(P)@` (spawning)

| newloc(u) (creation)

t ::= [e]r | [`]r | t1, t2 TUPLES

et ::= [V]r | [l]r | et1,et2 EVALUATED TUPLES

T ::= e | ` | ! x | T1,T2 TEMPLATES

e ::= V | z | . . . EXPRESSIONS

Table 1. Syntax

pattern-matchingmechanism.KLAIM handles multiple distributed
tuple spaces by placing a tuple space on eachnodeof anet. Differ-
ently from other programming notations enabling process distribu-
tion and mobility, inKLAIM the network infrastructure (set up by
someadministrators) is clearly distinguishable from user processes
(written byprogrammers) and is explicitly modelled, which we be-
lieve gives a more accurate description of the computer systems we
are interested to. Moreover, in [7] several messaging models for
mobile processes are examined and it is shown that theblackboard
approach, that encompasses the one based on tuple spaces, is one
of the most suitable, also because of its flexibility. General evi-
dence of the success gained by the multiple tuple spaces paradigm
is given by the many run-time systems that implement it, both from
industries (e.g. SUN JavaSpaces [1] and IBM T Spaces [20]) and
from universities (e.g. PageSpace [4], WCL [18], Lime [17] and
TuCSoN [16]).

The results we prove ensure that execution of nets resulting from
the compilation phase always respects the data annotations therein,
thus data can be seen only by authorized users. However, we cannot
assume knowledge of the whole net, thus we also prove a more
general result stating that if only a subnet is compiled, then, during
the evolution of the whole net, no violations of data annotations will
ever occur in that subnet. The paper ends with an application of our
approach to model the secure behaviour of a UNIX-like multiuser
system and with comparisons to related work.

2 The Syntax of the Language
The language we use in this paper is a minor variation ofµKLAIM

[10] and its syntax is reported in Table 1. We assume the following,
pairwise disjoint, countable sets:X , process variables, ranged over
by X,X′,X1, . . .; L , localities, ranged over byl , l ′, l1, . . .; U, locality
variables, ranged over byu,u′,u1, . . .; V , basic values, ranged over
by V,V ′,V1, . . .; Z, value variables, ranged over byz,z′,z1, We
let ` to range overL ∪U andx to range overU∪Z.

The syntax ofexpressions, ranged over bye, is deliberately not
specified; we just assume that expressions contain, at least, basic
values and variables.Localitiesl are the addresses of nodes.Tuples
t are sequences of annotated actual fields, that contain information
items (expressions, localities or locality variables).TemplatesT
are used to select data in a tuple space (TS, for short); they are
sequences of actual and formal fields. The latter ones are used to
bind variables to values and are written! zor ! u. Data areevaluated
tuples, 〈et〉, i.e. sequences of annotated values and localities.

Each actual field in a tuple is annotated with adata region, r,
expressing the subnet where the field will be allowed to occur. A
region can be either a finite subset ofL ∪U or a distinct element

∀ used to refer to the whole setL ∪U. The set of all regionsR
together with the relation⊆ forms a poset whose top element is∀.
Thus, e.g.,r1∪ r2 is ∀ if and only if r1 or r2 is ∀. Similarly, ` ∈ ∀
holds always true. For the sake of readability, we shall omit the
region annotation whenever it is∀.

Processesare built up from the inactive processnil and from
the basic operations by using prefixing, parallel composition and
recursion. µKLAIM supplies four different basic operations, also
calledactions, to put/remove tuples from TSs, to spawn processes
in execution and to create new nodes. The last operation is not
indexed with an address because it always acts locally; all the other
operations explicitly indicate the (possibly remote) address where
they will take place.

Variables occurring in process terms can bebound; more pre-
cisely, prefixin(T)@`.P binds the variables in the formal fields of
T, prefix newloc(u).P bindsu and recX.P bindsX. In all these
cases,P is the scope of the bindings. A variable that is not bound is
calledfree. The setsBV(P) and FV(P) (of bound and free variables,
resp., ofP) are defined accordingly, and so isα-conversion. In the
sequel, we shall assume that bound variables in processes are all
distinct and different from the free variables (this is always possi-
ble by usingα-conversion). Moreover, we extend functionsFV(·)
and BV(·) to templates in the obvious way.

Netsare finite collections of nodes where processes and data can
be allocated. Anodeis a quadruplel rd:: rp C, where localityl is
the address (i.e. network reference) of the node,C is the (parallel)
component located atl and rd/rp is thedata/process trust region
of the node (i.e. the set of localities of nodes that can respectively
write data atl ’s TS and spawn processes tol) as established by the
node administrator. In general,rp ⊆ rd since accepting processes
is, in general, more dangerous than accepting data; however, we do
not impose any restriction on this. In the sequel, we only take into
accountclosednets, i.e. nets only containing processes without free
variables and whose node regions only contains localities (similarly
to many real compilers, we consider terms containing free variables
as programming errors).

The original presentation ofµKLAIM [10] mainly differs from
the present one in two aspects. Firstly, the typing annotations in
the language are different (because the types in [10] were designed
to control process actions). Secondly, to save space, we omitted
theL INDA primitive read (to access data in TSs without removing
them) because theread actions behave similarly toin actions.

3 A Preliminary Compilation
The language presented in the previous section is a mean to pro-

gram applications where, during the computation, a datum can only
appear in localities contained in its region annotation. The main
goal of the runtime semantics is to enforce this requirement. How-
ever, in order to make the semantics as efficient as possible, a pre-
liminary compilation phase is introduced. The activities of the static
compilation deal with the following requirements:

1. a datum can be seen at (i.e. can pass through)` if ` is con-
tained in the region annotation of the datum;

2. a process retrieving a datum cannot send the datum outside its
region.

These activities require some form of code inspection that is too
expensive to be performed when the action is executed. The compi-
lation phase relieves the runtime from such inspection by perform-
ing check1. statically and by annotating template formal fields with
regions to dynamically perform check2. more efficiently. Hence,
the syntax of templates becomes

T ::= e | ` | [! x]r | T1,T2
To better distinguish the annotations put by the program-
mers/administrators from those put by the compiler, we shall write

N1 ‖ N2 Â N′1 ‖ N′2 if Ni Â N′i for i = 1,2
l rd:: rp C Â l rd:: rp C′ if CÂl C′ ∧ (rd = ∀ ∨ rd ⊂ L) ∧ (rp = ∀ ∨ rp ⊂ L)

C1|C2 Âl C′1|C′2 if Ci Âl C′i for i = 1,2
〈et〉 Âl 〈et〉 if l ∈ reg(et)

P Âl P′ if /0# P Âl /0# P′

Γ# P Â` Γ# P if P = nil ∨ P = X
Γ# recX.P Â` Γ′ # recX.P′ if Γ]{X : /0}# P Â` Γ′]{X : /0}# P′

Γ1 # P1|P2 Â` Γ3 # P′1|P′2 if Γi # Pi Â` Γi+1 # P′i for i = 1,2
Γ# newloc(u).P Â` Γ′ # newloc(u).P′ if Γ]{u : /0}# P Â` Γ′]{u : r ′}# P′

Γ# out(t)@`′.P Â` Γ′+{x : r}x∈FV(t) # out(t)@`′.P′ if {`,`′} ⊆ reg(t) = r ∧ Γ# P Â` Γ′ # P′

Γ1 # eval(P1)@`′.P2 Â` Γ3 +{x : {̀ }}x∈FV(P1) # eval(P′1)@`′.P′2 if ` ∈ reg(P1) ∧ Γ1 # P1 Â`′ Γ2 # P′1 ∧ Γ2 # P2 Â` Γ3 # P′2
Γ# in(T)@`′.P Â` Γ′↗BV(T) # in(T ′)@`′.P′ if Γ]{x : {`}}x∈BV(T) # P Â` Γ′]{x : rx}x∈BV(T) # P′

∧ {x : r ′x}x∈BV(T) = ({x : (rx−{x})}x∈BV(T))↗BV(T)

∧ T ′ = T[[! x]r
′
x/! x]x∈BV(T)

where
reg([e]r) = reg([`]r) , r reg(t1, t2) , reg(t1)∩ reg(t2)

reg(nil) = reg(X) , ∀ reg(P1|P2) , reg(P1)∩ reg(P2)

reg(out(t)@`.P) , reg(t)∩ reg(P) reg(eval(P1)@`.P2) , reg(P1)∩ reg(P2)

reg(newloc(u).P) = reg(in(T)@`.P) = reg(recX.P) , reg(P)

Table 2. The Compilation Procedure

the latter ones as superscripts and the former ones as subscripts. In-
tuitively, [! x]r states that the datum replacingx will pass through
the localities inr.

The compilation procedure is given in Table 2 and is writtenNÂ
N′; intuitively, this judgement means that the procedure takes a net
N (written according to the syntax in Table 1) and returns a netN′
obtained fromN by annotating all the template formal fields with
a region containing the nodes where the values received will pass
through. E.g., in processin(!z)@l .out([z]r)@l ′ the declaration!zof
variablez must be associated to regionr. Moreover, the compiler
verifies that each component located in a nodel contains only data
that can be seen byl (this is done by the judgementÂl). Finally, it
also verifies that actionsout andevalsend data/code to nodes where
the data/code can appear without violating the region annotations.
Of course, if any of the performed checks fails, the compilation fails
too (namely, not all syntactically legal nets are compilable).

The auxiliary functionreg() returns the intersection of the data
regions occurring as its arguments. Moreover,Â andÂl rely on an
auxiliary procedureΓ# P Â` Γ′# P′ whereΓ, calledenvironment,
is a finite mapping(Z ∪U ∪X)→ R such thatFV(P) ⊆ dom(Γ).
Thus, the procedure/0# P Â` /0# P′ is defined only ifP is closed;
in that case, for each template formal field inP, a region annota-
tion describing the use of that field in the continuation process (i.e.
where it will be sent) is determined and used to decorateP (thus
obtainingP′). Such regions are calculated by the compiler by con-
sidering the locality where the process runs (the` decoratingÂ`)
and examining the localities where the variables can appear upon
execution of actionsout and/oreval. Notice, however, that some
care must be taken when annotating fields because otherwise closed
nets can become open upon compilation. As an example, consider
the nodes (that we both consider legal)

l :: in(!z)@l ′.in(!u)@l ′′.out([z]{l ,u})@l (?)
l :: in(!u)@l ′.out([u]{l ,u})@u (??)

Blindly annotating these processes would result in

l :: in([!z]{l ,u})@l ′.in([!u]{l})@l ′′.out([z]{l ,u})@l

l :: in([!u]{l ,u})@l ′.out([u]{l ,u})@u

that are open because of the occurrence ofu in the regions of!z
and!u, resp.. The solution we designed to accept(?) is to assign
!z the region annotation∀. This is reasonable sincein([!z]{l ,u})@l ′

means ‘retrieve a datum froml ′ and share it witha genericlocality
of the net’ (becauseu can be dynamically replaced with any locality
name). The solution we designed to accept(??) is to removeu from
!u region annotation and assume that a locality can always occur in
the node having that locality as address.

In Table 2, we write{. . .}i∈I to mean
S

i∈I{. . .}. Function] de-
notes union between environments with disjoint domains. Function
Γ↗S, whereS⊂fin U, is inductively defined as

/0↗S , /0

(Γ]{x : r})↗S ,
{

Γ↗S] {x : r} if r ∩S= /0
Γ↗S] {x : ∀} otherwise

(Γ]{X : /0})↗S , Γ↗S] {X : /0}
and is used to eliminate anomalies like the annotation forz in (?).
Function+ extends the information of an environment; formally

Γ+ /0 , Γ
Γ+{x : r} , Γ′]{x : r ∪ r ′} if Γ = Γ′]{x : r ′}

Γ+({x : r}]Γ′) , (Γ+{x : r})+Γ′

Before concluding this section, we briefly comment on some
compilation rules. The compilation ofN also verifies thatN is
closed. The regions associated to process variables and to local-
ity variables bound by actionnewlocare useless: they are just put
to give the environment a uniform structure. When dealing with
processout(t)@`′.P at `, the procedure firstly calculates the inter-
section of the regions occurring int; let us callr the resulting re-
gion. Then, it verifies that both the hosting locality` and the target
locality `′ can seet. Finally, the continuation processP is compiled
in the environmentΓ, thus obtaining the annotated processP′ and
the environmentΓ′. Hence, the result of the compilation will be
out(t)@`′.P′ together withΓ′ extended with the information that
the variables occurring int could be seen atr. Similar observa-
tions also hold when compiling processeval(P1)@`′.P2; addition-
ally, notice that the target localitỳ′ is ensured to occur inP1’s re-
gion by the judgementÂ`′ (that also calculates further annotations
for FV(P1)). Finally, when dealing with processin(T)@`′.P at `,
the procedure should compileP in the environmentΓ extended by
associating the variables bound byT to region{`}. At the end of
this compilation, the region annotations calculated for such vari-
ables are put inT, obtaining the (annotated) templateT ′. Notice
that, since some of these variables can occur inΓ′ region anno-
tations (because of anomalies like(?)), the environment resulting

from this compilation must beΓ′↗BV(T). Similarly, since some
locality variableu bound byT can occur inu’s region or in the re-
gion of some other variable inBV(T) (thus generating anomalies
like (??) and(?)), the annotated templateT ′ is obtained fromT by
usingr ′x instead ofrx, wherer ′x is obtained fromrx by ruling out all
potential anomalies.

DEFINITION 3.1 (COMPILED NETS). A netN is deemedcom-
piled if there exists a netN′ (written according to the syntax of
Table 1) such thatN′ Â N.

4 The Operational Semantics
Nets are executed according to the reduction relationÂ−→ de-

fined in Table 3. Â−→ relates configurations of the formL . N,
whereL is such thatloc(N) ⊆ L ⊂ f in L and functionloc(N) re-
turns the set of localities occurring inN. In a configurationL . N,
L is needed to ensure global freshness of new addresses. For the
sake of readability, when a reduction does not generate any fresh
addresses, we writeN Â−→ N′ instead ofL . N Â−→ L . N′. The
semantics exploits the following auxiliary functions and relations:

• a structural congruencerelation,≡, equatingα-convertible
processes, equating processes obtained by folding/unfolding
recursive definitions, stating that “‖” is commutative and as-
sociative, and thatnil acts as the identity for “|”;

• a tuple/template evaluation functionE [[·]] that turns basic ex-
pressions into basic values (whenever possible);

• substitutionsare functions from value and locality variables to
values and localities. We use ‘ε’ and ‘◦’ to denote the empty
substitution and substitutions composition. We want to re-
mark that, when applied to a processP, a substitution also
acts on the region annotations inP.

• a function match that verifies whether a (evaluated) tuple
matches against a (evaluated) template; this happens when-
ever they both have the same number of fields and correspond-
ing fields match. Two actual fields match if they are identical,
while a formal field matches any actual of the same sort pro-
vided that the use of the formal (i.e. the region put by the
compiler) respects the specifications of the actual (i.e. its data
region). When matching succeeds,matchreturns a substitu-
tion associating the variables in the formals to the correspond-
ing actuals. Formally, functionmatchis defined as:

match(V, [V]r) = ε

match(l , [l]r) = ε

r ⊆ r ′

match([!z]r , [V]r ′) = [V/z]
match([!u]r , [l]r ′) = [l/u]

match(T1, t1) = σ1 match(T2, t2) = σ2

match((T1,T2),(t1, t2)) = σ1 ◦σ2

Some comments on the operational semantics are now in order.
We put the dynamic checksl ∈ r ′d and l ∈ r ′p as premises of rules
for actionsout/eval to prevent an untrusted nodel to send data/code
overl ′. Notice that no static check could enforce this property with-
out loss of expressivity: e.g., inin(!u)@l .eval(. . .)@u, it is stati-
cally impossible to know which locality will replaceu and, thus, it
is impossible to determine whether the locality executing theeval
is trusted by the target locality or not. Moreover, we assume that
a nodel trusts every nodel ′ it creates. This seems us reasonable
since, once created,l ′ is not known to any other node in the net;
thus, l can use it as a sort ofprivate resource and can decide the
nodes of the net that can know it (by also exploiting region annota-

l ∈ r ′d et = E [[t]]

l rd:: rp out(t)@l ′.P ‖ l r ′d
:: r ′p C′ Â−→ l rd:: rp P ‖ l ′ r ′d

:: r ′p C′ | 〈et〉

l ∈ r ′p

l rd:: rp eval(Q)@l ′.P ‖ l ′ r ′d
:: r ′p C′ Â−→ l rd:: rp P ‖ l ′ r ′d

:: r ′p C′ |Q

match(E [[T]],et) = σ

l rd:: rp in(T)@l ′.P ‖ l ′ r ′d
:: r ′p 〈et〉 Â−→ l rd:: rp Pσ ‖ l ′ r ′d

:: r ′p nil

l ′ 6∈ L

L . l rd:: rp newloc(u).P Â−→
L∪{l ′} . l rd∪{l ′}:: rp∪{l ′}P[l ′/u] ‖ l ′ rd∪{l ′}:: rp∪{l ′} nil

L. l rd:: rp C1 ‖ l rd:: rp C2 ‖ N Â−→ L′ . l r ′d
:: r ′p C′1 ‖ l rd:: rp C′2 ‖ N′

L. l rd:: rp C1 |C2 ‖ N Â−→ L′ . l r ′d
:: r ′p C′1 |C′2 ‖ N′

L.N1 Â−→ L′ .N′1

L.N1 ‖ N2 Â−→ L′ .N′1 ‖ N2

N1 ≡ N′1 L.N′1 Â−→ L′ .N′2 N′
2 ≡ N2

L.N1 Â−→ L′ .N′2
Table 3. Operational Semantics

tions).1 Finally, the fifth rule turns a parallel between components
into a parallel between nodes; this is necessary to present the se-
mantics in a simpler form.

A straightforward property of the operational semantics ensures
integrityof the components located at a node.

PROPOSITION 4.1. Let loc(N) . N Â−→ L′ . N′, l 6∈ L′− loc(N)
and l rd:: rp C be a node ofN′. Then, for any parallel component
C′ in C it holds that: (i) either C′ was located atl in the initial
configurationN, or (ii) C′ is a datum written atl by a node inrd,
or (iii) C′ is a process spawned tol by a node inrp.

Our main results state that compiled nets always reduce to com-
piled nets and that compiled nets do respect region annotations. The
former result can be viewed as a form of subject reduction where
the property that remains invariant during reduction is the fact that
a net is compiled, while the latter result can be viewed as a form
of safety where the property guaranteed by the fact that a net is
compiled is that there are no immediate violations of data regions.
Together, these results imply soundness of our theory, i.e. no viola-
tion of data regions will ever occur during the evolution of compiled
nets.

THEOREM 4.1 (SUBJECTREDUCTION). If N is compiled and
loc(N).N Â−→ L′ .N′ thenN′ is compiled.

DEFINITION 4.1. A netN is safeif for any l rd:: rp C in N, it holds
that l occurs in the region of each datum inC.

THEOREM 4.2 (SAFETY). If N is compiled thenN is safe.

The results given above can be generalized by requiring only a
subnet of the whole net to be compiled2. We callr-subnetof N the
net formed by all the nodesl rd:: rp C in N such that{l}∪ rd∪ rp⊆ r.

1For the sake of simplicity, we assignedl ′ the trust regions ofl . It is easy
to extend the language for allowing the programmer to explicitly specify the
trust regions of a newly created node.

2Indeed, by using the convention that absence of a region annotation
means∀, a not compiled net can be executed according to the rules in Table 3
by (safely) considering all its template annotations as∀.

Notice that such a net is not necessarily defined for allr; of course
it is always defined forr = ∀ and coincides withN. By denoting
with Â−→∗ the reflexive and transitive closure ofÂ−→ , we obtain

THEOREM 4.3 (SOUNDNESS). Let ther-subnet ofN be defined
and compiled. If loc(N).N Â−→∗ L′ .N′ then ther ′-subnet ofN′
is defined and safe, wherer ′ = r ∪ (L′− loc(N)).

Dynamic trust. We can handle trust regions more dynamically by
extending the language with two actionstrust(l) andwarn(l) to,
respectively, add/removel from the trust region of the node execut-
ing the action (in this way, e.g., a node can choose whether trusting
or not a newly created node). However, more runtime checks are
needed in this more expressive framework. In particular, none of the
two requirements given at the beginning of Section 3 can be stat-
ically enforced. Thus, the compiler can only attach regions to the
arguments of actionsin, out andeval to make the dynamic checks
more efficient. We omit the details from this extended abstract.

5 An Example: a Multiuser System
In this section we use the framework presented so far to program

a simple but meaningful example. For the sake of readability, in the
rest of this section we will omit trailing occurrences of processnil ,
and use parameterized process definitions and strings. Moreover,
we borrow from [10] the primitiveread that behaves similarly toin
but, after its execution, it leaves the accessed datum in the TS.

We present the behaviour of a simple UNIX-like multiuser sys-
tem, where users can login (exploiting a password-based approach)
and use the system functionalities, which consist in reading/writing
files or executing programs. For the sake of clarity, we shall present
the system in three steps and, finally, we shall merge them together.
Let lS be the address of the server,∀ be its data trust region and/0
be its starting trust region (thus no user can spawn code onlS).

User Identification. We start with programming the identification
of different users via passwords. Letlp be a private repository used
by lS to record the users known and their passwords. Thus,lp hosts
the component

〈l1, [pwd1]{l1,lp,lS}〉 | . . . | 〈ln, [pwdn]{ln,lp,lS}〉
Let l be a user wanting to log inlS. If l is already known tolS

(i.e. it is one of thel is), thenl can use a process like

out(“ login” , l , [pwd]{l ,lS})@lS.in(“ logged”)@lS. . . .

communicating with the server process

Login(lp) , recX. in(“ login” , !u, !z)@lS.(X |
read(u,z)@lp.out([“ logged”]{lS,u})@lS)

Intuitively, l requires a connection by sending its user ID (its local-
ity) and its password; the server checks whether this information is
correct and sends back an ack, activating the remainder ofl compu-
tation. Notice that the region annotations topwdand “logged” rule
out denial of service attacks of a nasty intruder (aimed at cancelling
the request of login or the corresponding ack).

If the user is not registered inlS yet, he can send an “hello” re-
quest to the server containing its address and wait for a password

out([“hello”]{l ,lS}, l)@lS.in(“ registered” , !pwd)@lS. . . .

The server then handles this request with the process

NewUser(lp) , recX. in(“hello” , !u)@lS.(X |
create a f resh pwd. out(u, [pwd]{u,lS,lp})@lp.

out(“ registered” , [pwd]{lS,u})@lS)
Notice that a localityl ′ different from l can sendlS a request

for a new password pretending to bel : the only difference with
the “hello” message given above is that the message now should
contain alsol ′ in the data region. However, the server will report

the new password tol and the region put on the password will en-
sure thatpwd will not leavel . Thus,l ′ can withdrawpwd only by
sending a process tol and then acting inl with the new password.
This can be possible only ifl trustsl ′, implying thatl accepts this
‘suspicious’ activity ofl ′.
The File System.We now consider a server handling a file system
where different users can write/read data. Letl f be a private repos-
itory used bylS to store the files. A file namedN, whose content is
the stringS, readable by users inr and writtable by users inr ′, is
stored inl f as the component

CN , 〈N , [“ read”]r∪{lS,l f} , [“written”]r ′∪{lS,l f}〉 | 〈N,S〉
Intuitively, “read” and “written” are just dummy data used to

properly store the regionsr andr ′. Then, the server handles requests
for reading and writing files with the following processes

Read(l f) , recX. in(“ read” , !u, !n)@lS.(X |
read(n, !zr , !zw)@l f .read(n, !z)@l f .

out([zr]{l f ,u},n,z)@u)
Write(l f) , recX. in(“write” , !u, !n, !z)@lS.(X |

read(n, !zr , !zw)@l f .in(n, !z′)@l f .

out(n,z)@l f .out([zw]{u},n)@u)
Intuitively, the first in action collects the request for read-

ing/writing the file namedn performed by localityu; then the fol-
lowing read action, once compiled3, verifies whether the locality
replacingu has the read/write privilege over filen. Finally, the re-
quired operation is performed (the content of the file is read or the
old content is replaced with the new one) and an acknowledgement
(containing the kind of operation performed, the name of the file
and, in the “read” case, also its content) is reported tou.
Executing Code-on-Demand.In this last scenario, a user can dy-
namically download some code from the server to perform a given
task. The server stores all the downloadable processes in a private
locality lc. For each process namedN, whose code isP and that is
downloadable by nodes inr, the server stores inlc the component

CN , 〈N, [“downloaded”]r∪{lS,lc}〉 |
recX. in(N, !u)@lc.(X | read(N, !ze)@lc.

eval(eval(out([ze]{lc,lS,u},N)@u.P)@u)@lS)
Then, when a user wants to download some code, the server han-

dles his request with the process

Execute(lc) , recX. in(“execute” , !u, !n)@lS.out(n,u)@lc.X
Notice thatlc cannot directly sendP for execution tou because

(the locality associated to)u cannot havelc in its trust region (since
lc is fresh). Thus,P must firstly pass throughlS and then, iflS is
in the trust region ofu (which we assume it is the case), the code-
on-demand procedure successfully terminates, by also reporting an
ack to the user.

The System.Finally, we can put together the activities shown so far
to obtain the implementation of the complete activity of the server.
Thus, the (not yet compiled) initial configuration oflS should be

lS ∀ :: /0 newloc(u1).newloc(u2).newloc(u3) .
set up u1 with the identites and passwords o f the users.
set up u2 with the data o f the f ile system.
set up u3 with the processes f or the downloads.(

NewUser(u1) | Login(u1) | Read(u2) |
Write(u2) | Execute(u3))

3Indeed, the compilation annotates these actions as
read(n, [!zr]{lS,l f ,u}, [!zw]{lS,l f})@l f

read(n, [!zr]{lS,l f}, [!zw]{lS,l f ,u})@l f
and, thus, they will be successfully executed at runtime only if the local-
ity replacingu is in the region annotating the dummy items “read” and
“written” respectively.

Notice that our example simplifies UNIX behaviour in two ma-
jor aspects. Firstly, we did not require that a user must login be-
fore using the functionalities offered by the system; secondly, the
files/programs are put by the system and not by the users. Both
these choices were driven by the aim of simplifying the presenta-
tion; however, our simplified setting could be easily enriched with
more refined and realistic features.

Finally, we want to remark that, by exploiting the dummy data
“ read”, “ written” and “downloaded”, we have enforced an access
control policy by only using region annotations. This confirms that,
in spite of its simplicity, the approach we presented in this paper is
very powerful.

6 Related Work
In the last years, a lot of work has been devoted to design

languages for mobile processes that come equipped with secu-
rity mechanisms (at compile-time and/or at run-time) based on,
e.g., type systems [12, 3, 5, 10], control and data flow analysis
[11, 15, 6, 2] and proof carrying code [14]. The approach we pre-
sented in this paper is related to all these techniques. It strongly
follows the idea of a dynamic type system, where the program-
mer specifies an annotation (i.e. a “type”) for some elements of
the calculus, and the semantics, by relying on a static compilation
phase, respects the annotations in the net4. Our compilation phase
keeps track of where the process data will appear during the execu-
tion of the process itself; this is very similar to control flow anal-
ysis. However, differently from e.g. [6, 11], we do not use over-
approximations of regions that will access data: the annotation of
our template fields is precise. Finally, outputs and migrations are
allowed only from trusted nodes; thus, we assume that the sender
of a datum/process can be reliably determined. This assumes an
authentication mechanism (e.g., the agent travels with a certificate
giving evidence of its origin): this is a form of proof carrying code.

We deeply drew inspiration from Confined-λ [13], a higher-order
functional language that supports distributed computing by allow-
ing expressions at different localities to communicate via channels.
Authors of code can assign regions (i.e. subsystems) to values in
order to limit the part of a system where a value can freely move;
a type system is defined that guarantees that each value can roam
only within the corresponding region. This is very similar to our ap-
proach; there are however some differences. First of all, exploiting
channels greatly simplifies the static semantics because, as usual,
channels are assumed to transmit values of a certain type (i.e. val-
ues visible within a certain region). This is not the case in the ap-
proach we presented, because a TS can host every possible kind of
datum; thus, no static information about the types of the data ap-
pearing in the TS can be assumed. Moreover, our annotations are
only associated to the relevant data. In [13], a programmer must
declare a type (i.e. a region) for any constant, function and chan-
nel; this is clearly heavier. Finally, when compiling a net, we do
not rely on any form of global knowledge of the system; only the
annotations in the process are considered. On the contrary, the type
system in [13] assumes a global typing environment for handling
shared channels; this somehow contrasts with the features a global
computing scenario.

We want to conclude by saying that the group types for the Am-
bient calculus [3] aim at purposes very similar to ours. A group
can be seen as a set of ambients (i.e. localities names) and is used

4However, our approach is simpler than most of the typed process cal-
culi proposed in literature since our annotations are very intuitive: a pro-
grammer wanting a certain datum to be restricted to a certain region has
only to annotate the datum with the localities in that region. This is sim-
pler than, e.g., the channel types of Dπ [12], the Ambient types [3] or the
recursive process types ofKLAIM [5].

to express properties of ambient movement (like, e.g., “an ambient
whose name is in groupG can enter an ambient whose name is in
group H”). This can be used to control ambient movement and,
thus, the visibility of ambients (i.e. data) in different regions of a
net. However, also this approach uses global knowledge about the
execution environment and, moreover, it also relies on typing the
whole net.

Acknowledgments We are grateful to Rocco De Nicola and the
anonymous referees for helpful comments.

7 References
[1] K. Arnold, E. Freeman, and S. Hupfer.JavaSpaces Principles, Pat-

terns and Practice. Addison-Wesley, 1999.

[2] C. Braghin, A. Cortesi, and R. Focardi. Security Boundaries in Mobile
Ambients.Computer Languages, 28(1):101–127, Nov 2002.

[3] L. Cardelli, G. Ghelli, and A. D. Gordon. Types for the ambient calcu-
lus. Journal of Information and Computation, 177(2):160–194, 2002.

[4] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Coor-
dinating multiagent applications on the WWW: A reference architec-
ture. IEEE Trans. on Software Engineering, 24(5):362–366, 1998.

[5] R. De Nicola, G. Ferrari, and R. Pugliese.KLAIM : a Kernel Language
for Agents Interaction and Mobility.IEEE Transactions on Software
Engineering, 24(5):315–330, 1998.

[6] P. Degano, F. Levi, and C. Bodei. Safe ambients: Control flow anal-
ysis and security. InProc. of ASIAN’00, LNCS 1961, pp. 199–214.
Springer, 2000.

[7] D. Deugo. Choosing a Mobile Agent Messaging Model. InProc. of
ISADS 2001, pages 278–286. IEEE, 2001.

[8] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security poli-
cies: A retrospective. InNew Security Paradigms Workshop, pp. 87–
95, Caledon Hills, Ontario, Canada, Sept. 1999. ACM SIGSAC.

[9] D. Gelernter. Generative Communication in Linda.ACM Transactions
on Programming Languages and Systems, 7(1):80–112, 1985.

[10] D. Gorla and R. Pugliese. Resource Acces and Mobility Control
with Dynamic Privileges Acquisition. In J. Parrow, editor,Proc. of
ICALP’03, LNCS 2719, pp. 119–132. Springer, 2003.

[11] R. R. Hansen, J. G. Jensen, F. Nielson, and H. R. Nielson. Abstract
interpretation of mobile ambients. InProc of SAS’99, LNCS 1694, pp.
134–148. Springer, 1999.

[12] M. Hennessy and J. Riely. Resource Access Control in Systems of
Mobile Agents.Information and Computation, 173:82–120, 2002.

[13] Z. D. Kirli. Confined mobile functions. InProc. of the 14th CSFW,
pp. 283–294. IEEE, 2001.

[14] G. Necula. Proof-Carrying Code. InProceedings of POPL ’97, pages
106–119. ACM, 1997.

[15] F. Nielson, H. R. Nielson, R. R. Hansen, and J. G. Jensen. Validating
firewalls in mobile ambients. In J. C. Baeten and S. Mauw, editors,
Proc. of CONCUR’99, LNCS 1664, pp. 463–477. Springer, 1999.

[16] A. Omicini and F. Zambonelli. Coordination for internet application
development.Autonomous Agents and Multi-agent Systems, 2(3):251–
269, 1999.

[17] G. Picco, A. Murphy, and G.-C. Roman.L IME: Linda Meets Mobility.
In D. Garlan, editor,Proc. of the 21st ICSE’99, pp. 368–377. ACM
Press, 1999.

[18] A. Rowstron. WCL: A web co-ordination language.World Wide Web
Journal, 1(3):167–179, 1998.

[19] F. B. Schneider, G. Morrisett, and R. Harper. A language-based ap-
proach to security. InInformatics: 10 Years Ahead, 10 Years Back,
LNCS 2000, pp. 86–101. Springer, 2000.

[20] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. TSpaces.IBM
Systems Journal, 37(3):454–474, 1998.

