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Abstract. Security is a key issue for distributed systems/applications
with code mobility, like, e.g., e-commerce and on-line bank transactions.
In a scenario with code mobility, traditional solutions based on cryp-
tography cannot deal with all security issues and additional mechanisms
are necessary. In this paper, we present a flexible and expressive type
system for security for a calculus of distributed and mobile processes.
The type system has been designed to supply real systems security fea-
tures, like the assignment of different privileges to users over different
data/resources. Type soundness is guaranteed by using a combination of
static and dynamic checks, thus enforcing specific security policies on the
use of resources. The usefulness of our approach is shown by modeling
the simplified behaviour of a bank account management system.

1 Introduction

Code mobility is a fundamental aspect of global computing; however it gives
rise to a lot of relevant security problems like, e.g., secrecy and integrity of data
and program code. Indeed, in mobile distributed systems/applications, other
than attacks to inter-process communication over the communication channels
(e.g. traffic analysis, message modifications/forging), several other kinds of at-
tacks could take place. For instance, malicious mobile processes can attempt to
access private information, or modify private data of the nodes hosting them.
Hence, a server receiving a mobile process for execution needs to impose strong
requirements to ensure that the incoming process does not violate the secrecy
and jeopardize the integrity of the information. Similarly, mobile processes need
tools to ensure that their execution at the server node does not compromise
their integrity (e.g. modification of process code) or secrecy (e.g. leak of sen-
sible data). Such problems have increasingly importance due to the spreading
of security critical applications, like, e.g., electronic commerce and on-line bank
transactions. Moreover, global computing environments, like e.g. the Internet,
are highly dynamic and open systems. In these environments static information
could be partial, inaccurate or missing, therefore for ensuring security proper-
ties a certain amount of dynamic checks is needed (e.g. mobile agents should be
dynamically checked at run-time when they migrate).
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Code mobility strongly restricts a safe use of cryptography, that is one of
the most used techniques for ensuring security in distributed systems. In fact,
because of attacks like those mentioned before, we can hardly imagine to use
mobile processes carrying confidential data (e.g. private keys) with them, or host
nodes with classified information accessible to all incoming processes (whatever
their source node be). Hence, the use of security mechanisms that back up and
supplement cryptographic mechanisms becomes a major issue when developing
systems of distributed and mobile processes where the compliance with some
security policies must be guaranteed.

Several alternative approaches have been exploited to enforce security policies
in distributed computing systems. The approaches may differ in the level of trust
required, the flexibility of the enforced security policy and their costs to com-
ponents producers and users. A comprehensive security framework could result
from the combination of complementary features. Approaches like code signing
and sand-boxing (for instance, consider the Java implementation of these con-
cepts [23, 20]) have low costs but cannot enforce flexible security policies (signed
components may behave in arbitrary ways and the user must trust the compo-
nent producer, while sand-boxed components are isolated and cannot interact
with each other).

Type systems can be sensible and flexible language-based security techniques,
like [32] shows. Recently, a number of process/programming languages support-
ing process distribution and mobility have been designed that come equipped
with type systems that guarantee some kind of security properties, see, e.g., [24,
15, 16, 25, 8]. However, to the best of our knowledge, the type system we present
in this paper is the first that exploits the source of mobile processes for grant-
ing them different privileges over different kinds of data (thus, e.g., preventing
dangerous operations over specific sensible data). These desirable features can
be found in real systems like, e.g., UNIX, where different users can have dif-
ferent privileges and different files can be manipulated with different allowed
operations.

Our type system permits expressing and enforcing security policies for con-
trolling the access of host resources by possibly malicious mobile processes. It is
expressly designed for the process calculus µKlaim [21] that puts forward a pro-
gramming paradigm where there is a clear separation between the programmer
level and the net coordinator/administrator level. Programmers write processes,
while coordinators write nets, hence manage the initial distribution of processes
and set the security policies for accessing the resources. The policies are speci-
fied by assigning each node of a net a type expressing the operations a process
is allowed to perform once spawned at it. Hence types are part of the language
for configuring the underlying net architecture and must be taken into account
in the language operational semantics. Other than to express security policies,
types are used to record processes intended operations, but programmers are
relieved from typing processes because this task is carried on by a static type
inference system. By using a combination of static and dynamic type checking,
our system guarantees the absence of run-time errors due to lack of privileges.
As an application of our approach we model the simplified behaviour of a bank



N ::= 0 (empty net)�� l ::∆ P (single node)�� N1 ‖ N2 (net composition)

P ::= nil (null process)�� a.P (action prefixing)�� P1 | P2 (parallel composition)�� A (process invocation)

e ::= V
�� x

�� . . . (expressions)

a ::= read(T )@` (process actions)�� in(T )@`�� out(t)@`�� eval(P )@`�� newloc(u : ∆)

T ::= F
�� F, T (templates)

F ::= f
�� ! x

�� ! u : π (template fields)

t ::= f
�� f, t (tuples)

f ::= e
�� ` (tuple fields)

Table 1. µKlaim Syntax

account management system where the compliance with the bank security policy
must be enforced.

The rest of the paper is organized as follows. We present the syntax of
µKlaim in Section 2, its type system in Section 3, and its operational seman-
tics in Section 4, that also contains the type soundness results. In Section 5, we
illustrate an application of our approach to model a bank account management
system. Finally, in Section 6 we point out a few concluding remarks and com-
ment on related work. Due to lack of space, in this extended abstract we omit
some technical details and all proofs; they can be found in the full paper [22].

2 The Process Language µKlaim

In this section we briefly present the syntax and informally describe the semantics
of µKlaim [21], a calculus to program distributed and mobile processes com-
municating asynchronously via shared data. Due to lack of space, some formal
aspects (akin to those presented in [21]) are omitted.

The syntax of µKlaim is reported in Table 1. We assume the existence of
the following countable sets: A, process identifiers, ranged over by A,B, . . .; L,
localities, ranged over by l; U , locality variables, ranged over by u; V, basic values,
ranged over by V . We let ` to range over L ∪ U , x over value variables, π over
sets of capabilities and ∆ over types (capabilities and types are formally defined
in Section 3).

The syntax of expressions, ranged over by e, is deliberately not specified;
we just assume that expressions contain, at least, basic values and variables.
Localities l are the addresses of nodes. Tuples t are sequences of actual fields
f , that contain information items (expressions, localities or locality variables).
Tuples are collected into multisets called tuple spaces (TSs, for short). Templates
T are used to select tuples in a TS; they are sequences of actual and formal fields
F . The latters are used to bind variables to values and are written !x or ! u : π
(the set of capabilities π constraints the use of the address dynamically bound
to u and is crucial for the type checking).

Processes are built up from the inactive process nil and from the basic oper-
ations by using prefixing, parallel composition and process invocation. For the



sake of simplicity, we assume that each process identifier A has a single defining
equation A

4
= P and all these equations are available at any locality of a net.

Recursive behaviours can be modelled via process definitions.
µKlaim supplies five different basic operations, also called actions. out(t)@`

adds the tuple et resulting from the evaluation1 of t to the TS located at `. The
presence of the evaluated tuple et in the TS at ` is represented by putting in
parallel with the process located at ` the auxiliary process out(et). Operation
eval(Q)@` sends process Q for execution to `, where a run-time typechecking
of the incoming code will take place: if Q does not comply with `’s security
policy the operation is blocked. Operation in(T )@` evaluates T and looks for a
matching2 tuple et in the TS located at `; if et is found, it is withdrawn and the
values it contains are used to replace the corresponding variables of T within
the continuation process, otherwise the operation is suspended until a matching
et is available. Operation read behaves similarly but leaves the accessed tuple
et in the tuple space. Operation newloc(u : ∆) dynamically creates a new net
node with a fresh address whose security policy is specified by type ∆. The last
operation is not indexed with an address because it always acts locally; all the
other operations explicitly indicate the (possibly remote) address where they
will take place.

Nets are finite collections of nodes where processes and tuple spaces can be
allocated. A node is a triple l ::∆ P , where locality l is the address (i.e. network
reference) of the node, P is the (parallel) process located at l and ∆ is the type
of the node, i.e. the specification of its access control policy. The nodes of a
net can be thought of both as physically distributed machines and as logical
partitions of the same machine. As we already said, the TS located at l is part
of P because evaluated tuples are semantically represented as special processes.

3 A Capability-Based Type System

In this section we introduce a type system for µKlaim that permits granting
different privileges to processes coming from different nodes and constraining the
operations allowed over different kinds of data. Thus, for example, if l trusts l′,
then l security policy could accept processes coming from l′ (that will be called l′-
processes) and let them accessing any tuple in l’s TS. If l′ is not totally trusted,
then l’s security policy could grant l′-processes the capabilities for executing
in/read only over tuples that do not contain classified data.

3.1 Capabilities

Capabilities are used to specify the allowed process operations and are formally
defined as
1 Tuple/template evaluation consists in replacing each expression with the value re-

sulting from its evaluation.
2 An evaluated tuple matches against an evaluated template if both have the same

number of fields and corresponding fields match; formal fields of a given type match
values of the same type and two values match only if identical.



{〈i, p〉} vΠ {〈r, p〉}
T (p′) ⊆ T (p)

{〈c, p〉} vΠ {〈c, p′〉}
π1 ⊆ π2

π2 vΠ π1

π1 vΠ π′1 π2 vΠ π′2

π1 ∪ π2 vΠ π′1 ∪ π′2

Table 2. Capability Ordering Rules

C 4
= {e, n} ∪ { 〈c, p〉 : c ∈ {i, r, o} ∧ p ⊆fin P }

where P 4
= (L ∪ V ∪ {from,−})+ is the set of all patterns. Capabilities e and n

enable process migration and node creation (i.e. operations eval and newloc,
resp.). A capability of the form 〈c, p〉 enables the operation whose name’s first
character is c (i.e. in if c is i, and so on); operation arguments must comply
with the finite set of patterns p if p 6= ∅, and are not restricted otherwise (in
this case, we write c instead of 〈c, ∅〉). Like tuples and templates, patterns are
finite, not empty sequences of fields; pattern fields may be localities, basic val-
ues, the reserved word from (denoting the last locality visited by a mobile
process) and the ‘don’t care’ symbol − (denoting any template field). Thus, for
instance, the capability 〈 i , {(“public”,−), (3,−, from)} 〉 enables the opera-
tions in(“public”, !x)@... and in(3, !u : π, l)@... for an l-process, while disables
operation in(“private”, !x)@... .

We use π to denote a non-empty subset of C such that, if 〈c, p〉 ∈ π and
〈c′, p′〉 ∈ π, then c 6= c′. Π will denote the set of all these π.

We say that a template complies with a pattern if the template is obtained by
replacing in the pattern all occurrences of from with a locality, and any occur-
rence of ‘−’ with any template field allowed by the syntax. Given a non-empty
set of patterns p, we write T (p) to denote the set of all templates complying with
patterns in p. By definition, T (∅) denotes the set of all templates. Since tuples
are also templates (see Table 1), the previous definitions also apply to tuples.

Notice that the definition of pattern fields affects, via the relation ‘complies
with’, the ability of our types to control the tuples accessed by process opera-
tions. However, our framework is largely independent of the choice of a specific
set of fields. For instance, we could also permit fields of the form −δ, for any
type δ of legal values, with the idea that, when defining the relation ‘complies
with’, an occurrence of −δ could be replaced by any value/variable of type δ.
In µKlaim, this corresponds to adding only fields −L and −V ; in this way, a
finer control could be exercised on the tuples accessed by processes because we
could distinguish between a tuple field containing a locality from one containing
a basic value.

We now introduce an ordering between capabilities, v
Π

; formally, it is the
least reflexive and transitive relation induced by the rules in Table 2. The chosen
ordering relies on the following assumptions: (i) if a process is allowed to perform
an in then it is also allowed to perform a read over the same arguments, (ii) if
a process is allowed to perform a read/in/out over arguments complying with
patterns in p then it is allowed to perform the same operation over arguments
complying with any set of patterns p′ that has at most the same ‘complying
templates’ as p, and (iii) if a process owns a set of capabilities π2 then it also
owns any subset π1.



3.2 Types

Types, ranged over by ∆, are functions of the form

∆ : L ∪ U ∪ {any} →fin ( (L ∪ U ∪ {any, from} →fin Π ∪ {∅}) ∪ ⊥ )

where →fin means that the function maps only a finite subset of its domain to
meaningful values (i.e. values different from ⊥ and ∅). With abuse of notation,
we use ⊥ to also denote the empty type, i.e. the function mapping all its domain
to ⊥. Moreover, by letting λ to range over L ∪ U ∪ {any, from}, we shall write
a ∆ different from ⊥ as a non-empty list [λi 7→ [λi,j 7→ πi,j ]j=1,...,ki

]i=1,...,n.
Types are used to express the security policies of nodes. Intuitively, if the type
∆ of a node with address l contains the element [l′ 7→ l′′ 7→ π], then l′-processes
located at l are allowed to perform over l′′ only the operations enabled by π.
The reserved word any is used to refer any node of the net. If it occurs in the
domain of ∆ then it collects the privileges granted to processes coming from
any node of the net (i.e. [any 7→ l′′ 7→ π] grants all processes the privileges π
over l′′). If any is contained in the domain of ∆(l′), for some l′, then it is used
for denoting the operations that l′-processes located at l are allowed to perform
over any node of the net (i.e. [l′ 7→ any 7→ π] grants l′-processes the privileges
π over all net nodes). The reserved word from stands for the last node visited
by a process and is used to grant privileges over this node whatever it is; thus,
for instance, [any 7→ from 7→ π] grants l′-process spawned at l the privileges π
over l′. The type ⊥ expresses total absence of privileges.

For the type ∆ of a locality l to be l–well-formed the following conditions
must hold:

1. The keyword from can occur only in the function ∆(any).
2. For each ` ∈ dom(∆), it holds that ∆(`) ¹ ∆(l), where relation ¹ holds true

if and only if for all λ ∈ dom(∆(`)) it holds that ∆(l)(λ) ∪ ∆(l)(any) v
Π

∆(`)(λ).
3. For each λ ∈ dom(∆(any))-{from}, it holds that ∆(l)(λ) vΠ ∆(any)(λ),

and that ∆(l)(any) v
Π

∆(any)(from).

The first condition is not too restrictive, because the use of from is really
necessary only when no knowledge of the last node visited by processes is avail-
able (i.e. when using any). The second condition says that l grants to `-processes
(for ` ∈ dom(∆)) no more privileges than those granted to its local processes,
i.e. those processes statically allocated at l. Finally, the last condition is similar
to the previous one, but applies to processes coming from any node; in this case,
it is also required that processes coming from any node own over the source node
no more privileges than those owned by local processes over any node.

Notice that the syntax of types allows locality variables to occur within types.
Basically, they are used when specifying the type of a node dynamically created
for referring localities that will be dynamically determined. By exploiting this
feature, we can write processes like the following: in(!u : ...)@... .newloc(v :
[u 7→ v 7→ {r}]).



Γ |
l

nil

Γ (`) ∪ Γ (any) vΠ 〈o, p〉 t ∈ T (p) Γ |
l

P

Γ |
l

out(t)@`.P

Γ (`) ∪ Γ (any) vΠ 〈i, p〉 T ∈ T (p) upd(Γ, T )|
l

P

Γ |
l

in(T )@`.P

Γ (`) ∪ Γ (any) vΠ 〈r, p〉 T ∈ T (p) upd(Γ, T )|
l

P

Γ |
l

read(T )@`.P

Γ (`) ∪ Γ (any) vΠ {e} Γ |
l

P

Γ |
l

eval(Q)@`.P

Γ (l) vΠ {n} ∆ is u–well-formed Γ d [u 7→ (Γ (l)− {n})] |
l

P

Γ |
l

newloc(u : ∆).P

Γ |
l

P Γ |
l

Q

Γ |
l

P | Q
Γ |

l
P

Γ |
l

A
if A

4
= P

Table 3. Type Inference Rules

3.3 Static Type Checking

For each node of a net, say l ::∆ P , the static type checker analyzes the operations
that P intends to perform when running at l and determines whether they are
enabled by the access policy ∆ or not (in fact, it is enough to consider ∆(l)). To
this aim, a type context Γ is a function of the form L ∪ U ∪ {any} →fin (Π∪∅).
To update a type context with the type annotations specified within a template,
we use the auxiliary function upd that behaves like the identity function for all
fields but for formal fields binding locality variables. Formally, it is defined by:

upd(Γ, T ) =





upd(upd(Γ, F ), T ′) if T = F, T ′

Γ d [u 7→ π] if T = ! u : π,
Γ otherwise

where d denotes the pointwise union of functions.
The type judgments for processes take the form Γ | l P , where the domain

of Γ includes all the localities and all the free locality variables in P . The set of
bindings for the localities in Γ implements the access policy of l for the processes
statically located at l, while the remaining bindings record the type annotations
for the locality variables that are free in P . Intuitively, the judgment Γ | l P
states that, within the context Γ , P can be safely executed once located at l.

Type judgments are inferred by using the rules in Table 3 that should be quite
explicative. For operations out, in, read and eval, the inference requires the
capability associated to the operation to be enabled by the capabilities owned
over the target ` or over all the net sites. Instead, for operation newloc, the



capability n must be owned by the site l executing the operation. Moreover, in
this case, it is assumed that the creating node owns over the created one all the
privileges it owns on itself (except, obviously, for the n capability).

We conclude this section by introducing the notion of well-typed net.

Definition 1. A net N is well-typed if for each node l ::∆ P in N it holds that
∆ is l–well-formed and ∆(l) | l P .

4 Operational Semantics and Type Soundness

The operational behaviour of µKlaim nets can be formalized via a structural
congruence and a reduction relation, see [22] for details. Here we just point out
some crucial points.

The structural congruence gives a convenient way of rearranging the nodes
of a net without affecting the behaviour of the net. It says that ‘‖’ is commu-
tative and associative, that nil and 0 are the identities for ‘|’ and ‘‖’ resp., and
that process identifiers can be replaced by the processes in the body of their
definitions.

The reduction relation, Â−→ , specifies the basic computational steps and
formalizes the informal behaviours sketched in Section 2. Because of the highly
dynamic nature of our calculus, the operational semantics uses types to perform
some dynamic checks, e.g., when processes migrate (to block migration of pro-
cesses that do not comply with the security policy of the target node) and when
node addresses are retrieved from the TS (to ensure that the local security policy
enables correct usability of these addresses). In both cases, the check occurs in
the premises of an inference rule thus, if it fails, the rule cannot be used in the
inference (i.e. the corresponding net reduction step is blocked). In the rest of
this section, we present details on these two specific points.

As regards the first check, the rule for process migration takes the form

∆′(l) d (∆′(any)[l/from]) | l′ Q

l ::∆ eval(Q)@l′.P ‖ l′ ::∆
′
P ′ Â−→ l ::∆ P ‖ l′ ::∆

′
P ′|Q

where ∆′(any)[l/from] denotes syntactic substitution of from with l in function
∆′(any). Hence, the premise of the rule says that the migrating process Q must
be checked against the union of the privileges that the security policy ∆′ of the
target node l′ assignes to processes coming from l and to processes coming from
any node (in this last case, occurrences of from must be interpreted as l).

The second run-time check is invoked for establishing matching of a formal
field !u : π against a locality l′ when performing read/in operations. The reduc-
tion rule for in is

match∆(l)(E [[ T ]], et)

l ::∆ in(T )@l′.P ‖ l′ ::∆
′
out(et) Â−→ l ::∆ P [et/T ] ‖ l′ ::∆

′
nil

where E [[ · ]] evaluates the actual fields of T by replacing each expression with
the value corresponding to its evaluation (the rule for read is similar but leaves



the tuple et in the TS of l′). If the match between the evaluation of the template
and the chosen tuple succeeds, all the formal fields of T are replaced with the
corresponding values of et in the continuation process P (written P [et/T ]). In
particular, the matching succeeds if for each formal field !u : π the corresponding
value l′′ that will replace u is such that the security policy ∆ of the node l where
the in/read operation is performed allows local processes to perform all the
operations enabled by π over l′′, using if needed also the capabilities owned by
l’s static code over all the net. This control is implemented by the following
matching rule (the remaining matching rules are standard and are omitted)

∆(l)(l′′) ∪∆(l)(any) v
Π

π

match∆(l)(!u : π, l′′)

Other than for these two checks, the operational semantics must take types
into account for updating the security policy ∆ of a node l when it creates a new
(fresh) node l′. The semantics prescribes that l-processes can perform over l′ all
the operations that they can perform locally, eccept for newloc, and hence ∆
is extended with [l 7→ l′ 7→ (∆(l)(l)− {n})].
Type Soundness. We can now state two standard results for type systems,
namely, subject reduction and type safety. The former means that well-typedness
is an invariant of the operational semantics; the latter means that well-typed
nets are free from immediate run-time errors. In our framework, such errors
would arise when processes attempt to execute operations that are disabled by
the security policy of the node where they are running. We use predicate N ↑ l
to express the presence in N of a node l with an illegal behaviour. The two
properties together amount to saying that well-typed nets never give rise to run-
time errors due to misuse of access privileges. Function loc(N) returns the set
of localities occurring in N and can be easily defined inductively on the syntax
of terms, while Â−→? denotes the reflexive and transitive closure of Â−→ .

Theorem 1 (Subject Reduction). If N is well-typed and N Â−→ N ′ then N ′

is well-typed.

Theorem 2 (Type Safety). If N is well-typed then N ↑ l for no l ∈ loc(N).

Corollary 1 (Global Type Soundness). If N is well-typed and N Â−→? N ′

then N ↑ l for no l ∈ loc(N).

Type soundness is one of the main goal of a type system. However, in our
framework it is formulated in terms of a property requiring the typing of whole
nets. When dealing with larger nets, it is certainly more realistic to reason in
terms of parts of the whole net. Hence, we put forward a more local formulation
of our properties and results. To this aim, we define the restriction of a net N
to a set of localities D, written ND, as the subnet obtained from N by deleting
all nodes whose addresses are not in D. The wanted local type soundness result
can be formulated as follows.

Theorem 3 (Local Type Soundness). Let N be a net and D ⊆ loc(N). If
ND is well-typed and N Â−→? N ′ then for no l ∈ D it holds that N ′ ↑ l .



5 A Bank Account Management System

In this section, we use our approach to model the simplified behaviour of a bank
account management system. For ensuring compliance with the security policy of
the bank some aspects of our setting, such as the possibility of granting different
privileges to processes coming from different source nodes and the dynamic type
checking of mobile processes when they migrate, have proved to be crucial.

We suppose that a bank is located at a node with address lB and can receive
and manage requests coming from many users located at nodes with addresses
lU , lU ′ , . . .. The bank must provide the users with typical account managing
operations: opening/closing accounts, putting/getting money in/from accounts,
and making statements of accounts. For simplicity, we shall omit some details
and technical operations that in reality take place, like, e.g., the charge of taxes,
dealing with improper operations like the attempt of getting more money than
that really available, . . . .

For the sake of readability, in the rest of this section we will omit trailing
occurrences of process nil, and use parameterized process definitions (that can
be easily implemented in our setting using out/in operations to pass/recover
the parameters), integer values (to denote, e.g., amounts of money) and strings
(to identify the various operations).

For permitting the bank to check the operations that users intend to per-
form, we assume that users cannot perform remote operations over lB except for
sending processes. Hence, if a user U wants to require an operation to the bank,
it has to send a process to lB (thus virtually moving to the bank) which will
interact locally with the proper operation handler. The user process, once it has
been accepted (i.e. after its compliance with the bank security policy has been
checked), can require the operation by locally producing a tuple whose first field
contains the name of the operation and whose second field contains the address
of the user node (used to identify the user that made the request). Depending on
the operation, the tuple could have other fields containing the amount of money
involved in the operation and the account receiving the money.

The node implementing the bank is illustrated in Table 4. First, the bank
creates a new node that will contain its clients accounts, stored as tuples of
the form (userAddress, amount). This node acts just as a repository for tuples
and will not be used for spawning processes, thus it has assigned the empty
type ⊥. Then, five different handler processes, one for each kind of operation,
are concurrently spawned. Each handler continuously waits for a request. When
such a request arrives, the proper handler executes its task by remotely accessing
the reserved locality and then reports locally a confirmation of action completion.
The client process performing the request waits for such a confirmation and then
brings it back to its original locality. This last operation is performed by means
of a migration thus providing the user node with the chance of controlling the
operation.

Notice that, by taking advantage of the semantics of µKlaim operations, the
simple handlers of Table 4 implement the mutual exclusion needed to ensure the
correctness of concurrent operations over shared data. Indeed, once a handler



lB ::∆B newloc(u : ⊥).(OpenH(u) | PutH(u) | GetH(u) | ReadH(u) | CloseH(u))

where:

OpenH(u)
4
= in(“open”, !x, !y)@lB .

(OpenH(u) | out(x, y)@u.out(“OKopen”, x, y)@lB)

PutH(u)
4
= in(“put”, !x, !y, !w)@lB .

(PutH(u) |in(w, !z)@u.out(w, z + y)@u.out(“OKput”, x, y, w)@lB)

GetH(u)
4
= in(“get”, !x, !y)@lB .

(GetH(u) |in(x, !z)@u.out(x, z − y)@u.out(“OKget”, x, y)@lB)

ReadH(u)
4
= in(“read”, !x)@lB .

(ReadH(u) | read(x, !y)@u.out(“OKread”, x, y)@lB)

CloseH(u)
4
= in(“close”, !x)@lB .

(CloseH(u) | in(x, !y)@u.out(“OKclose”, x, y)@lB)

∆B
4
= [lB 7→ [lB 7→ {i, o, r, n},

any 7→ {e} ] ,
any 7→ [from 7→ {e},

lB 7→ { 〈 o , { (“open”, from,−),
(“put”, from,−,−),
(“get”, from,−),
(“read”, from),
(“close”, from)
} 〉,

〈 i , { (“OKopen”, from,−),
(“OKput”, from,−,−),
(“OKget”, from,−),
(“OKread”, from,−),
(“OKclose”, from,−)
} 〉

]
]

Table 4. The node implementing the bank

H has withdrawn the tuple representing an account (i.e. once H has locked the
account), in order to proceed in their tasks, all the other handlers have to wait
for H to write the updated tuple (i.e. for H to release the lock).

The security policy ∆B is so defined that ‘sensible’ operations over the ac-
counts of a user U (like getting some money and reading/closing the account)
can only be requested by lU -processes, while operations like putting some money
can be requested by processes coming from any node. Moreover, the only remote
operation processes are allowed to perform is to came back to their source site.
Therefore, a lU -process can request to the bank sensible operations only over U ’s
accounts and can deliver the confirmations only to lU . Typical processes acting
on behalf of a user U are illustrated in Table 5, where the parameter s denotes
an amount of money and the parameter lU ′ denotes an account.



OpenR(s)
4
= eval(out(“open”, lU , s)@lB .in(“OKopen”, lU , s)@lB .

eval(out(“OKopen”, s)@lU )@lU )@lB

PutR(s, lU′)
4
= eval(out(“put”, lU , s, lU′)@lB .in(“OKput”, lU , s, lU′)@lB .

eval(out(“OKput”, s, lU′)@lU )@lU )@lB

GetR(s)
4
= eval(out(“get”, lU , s)@lB .in(“OKget”, lU , s)@lB .

eval(out(“OKget”, s)@lU )@lU )@lB

ReadR
4
= eval(out(“read”, lU )@lB .in(“OKread”, lU , !x)@lB .

eval(out(“OKread”, x)@lU )@lU )@lB

CloseR
4
= eval(out(“close”, lU )@lB .in(“OKclose”, lU , !x)@lB .

eval(out(“OKclose”, x)@lU )@lU )@lB

Table 5. Processes of a user U requesting bank operations

The only possibility for a malicious node to illegally access U ’s accounts is to
pass through lU , using a process like eval(eval(MaliciousReq)@lB)@lU . Hence,
U has to protect itself from these attacks by granting an e capability over lB
only to processes coming from totally trusted nodes: the security policy of lU
must contain the element [l 7→ lB 7→ {e}] only if U trusts the user located at
l. However, U can trust l only if U trusts all l′ trusted by l (in fact, a node
trusted by l can send to l a process that is then allowed to spawn a process at
U containing requests on U ’s accounts).

Finally, notice that only the handler processes can access the node dynam-
ically created whose address, say lS , is bound to u. Indeed, when such node is
created, the operational semantics dynamically extends ∆B with [lB 7→ lS 7→
{i, r, o}] thus enabling all the processes initially allocated at lB to perform
in/read/out operations over lS .

6 Concluding Remarks

We presented a new capability based type system for the calculus µKlaim [21]
which controls data/resource access and process mobility in a flexible and ex-
pressive way. It has been designed to supply real systems security features, e.g.
granting different privileges to processes coming from different nodes and con-
straining the operations allowed over different kinds of data/resources. Due to
the highly dynamic nature of distributed and mobile systems/applications, our
framework uses a combination of static and dynamic type checking to guaran-
tee compliance with net security policies. As a future work we plan to integrate
in µKlaim other security mechanisms, like e.g. those based on cryptographic
techniques, both for the establishment of secure channels, and for process code
security and authentication.

The choice of the process calculus µKlaim [21], that is at the core of the
programming language Klaim [14] and hence is based on the Linda [19, 11] co-
ordination model, is motivated by the fact that µKlaim has a number of features
that make it appealing also for network computing environments where, in gen-
eral, connections are not stable and host machines are heterogenous. Indeed, it



permits time uncoupling (tuples life time is independent of the producer process
life time), destination uncoupling (the producer of a tuple does not need to know
the future use or the destination of that tuple) and space uncoupling (communi-
cating processes need to know a single interface, i.e. the operations over the tuple
space). As shown in [17], where several messaging models for mobile processes
are examined, the blackboard approach, of which tuple space based models are
variants, is one of the most appreciated, also because of its flexibility. Evidence
of the success gained by the tuple space paradigm is given by the many tuple
space based run-time systems, both from industries, e.g. JavaSpaces [33, 2] and
TSpaces [36], and from universities, e.g. PageSpace [13], WCL [31], Lime [29]
and TuCSoN [28].

Many type systems for guaranteeing security properties have been proposed
for process calculi with distribution and mobility, but, as far as we know, ours
is the first one implementing such fine grained policies. Among those type sys-
tems more strictly related to security, we mention those disciplining the types
of the values exchanged in communications [9, 3, 25], those for controlling Am-
bients [10] mobility and ability to be opened [6, 7, 27, 18, 12], that for controlling
resource access via policies for mandatory access control [4], that for checking
that all processes that intend to perform inputs at a given channel are co-located
[37], that for controlling the effect of transmitted process abstractions over lo-
cal channels [38], and that for restricting the mobility of values/processes only
to some part of a distributed system [26]. We also applied the latter approach
to µKlaim, defining a type system that enforces security policies by confining
mobility of processes/values; we left its presentation and the comparisons with
the present setting for a full paper.

The research line closest to ours is that on the Dπ-calculus [25], a distributed
version of the π-calculus equipped with a type system to control access rights
of mobile processes over located resources (i.e. communication channels). Like
µKlaim, the Dπ-calculus relies on a flat net architecture; however, differently
from µKlaim, communication is local and channel-based, types describe permis-
sions to use channels, and the net architecture is not independent from the pro-
cesses involved. [24, 30] present two improved type systems for the Dπ-calculus
that permit establishing well-typedness of part of a net. This is similar to our
local type soundness result that, however, has been obtained by using only local
type information.

[37] presents Dπλ, a process calculus that results from the integration of
the call-by-value λ-calculus and the π-calculus, together with primitives for pro-
cess distribution and remote process creation. Apart from the higher order and
channel-based communication, the main difference with µKlaim is that Dπλ
localities are anonymous (i.e. not explicitly referrable by processes) and simply
used to express process distribution. In [38], a fine-grained type system for Dπλ
is defined that permits controlling the effect of transmitted process abstractions
(parameterized with respect to channel names) over local channels. Processes
are assigned fine-grained types that, like interfaces, record the channels to which
processes have access together with the corresponding capabilities, and process



abstractions are assigned dependent functional types that abstract from channel
names and types. This use of types is similar to that of µKlaim.

Finally, a number of process calculi base their security policies on transmis-
sion of encrypted data over communication channels so that only those processes
knowing the proper keys can access these information. [1, 34, 5] present this ap-
proach in various settings, but none of them consider process distribution and
mobility.
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