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1 Introduction

Code mobility is a fundamental aspect of global computing; however it gives rise to a lot of rele-
vant security problems like, e.g., secrecy and integrity of data and program code. Indeed, in mobile
distributed systems/applications, other than attacks to inter-process communication over the com-
munication channels (e.g. traffic analysis, message modifications/forging), several other kinds of
attacks could take place. For instance, malicious mobile processes can attempt to access private
information, or modify private data of the nodes hosting them. Hence, a server receiving a mobile
process for execution needs to impose strong requirements to ensure that the incoming process does
not violate the secrecy and jeopardize the integrity of the information. Similarly, mobile processes
need tools to ensure that their execution at the server node does not compromise their integrity
(e.g. modification of process code) or secrecy (e.g. leak of sensible data). Such problems have in-
creasingly importance due to the spreading of security critical applications, like, e.g., electronic
commerce and on-line bank transactions. Moreover, global computing environments, like e.g. the
Internet, are highly dynamic and open systems. In these environments static information could be
partial, inaccurate or missing, therefore for ensuring security properties a certain amount of dy-
namic checks is needed (e.g. mobile agents should be dynamically checked at run-time when they
migrate).

Code mobility strongly restricts a safe use of cryptography, that is one of the most used tech-
niques for ensuring security in distributed systems. In fact, because of attacks like those mentioned
before, we can hardly imagine to use mobile processes carrying confidential data (e.g. private keys)
with them, or host nodes with classified information accessible to all incoming processes (whatever
their source node be). Hence, the use of security mechanisms that back up and supplement cryp-
tographic mechanisms becomes a major issue when developing systems of distributed and mobile

processes where the compliance with some security policies must be guaranteed.

Several alternative approaches have been exploited to enforce security policies in distributed
computing systems. The approaches may differ in the level of trust required, the flexibility of
the enforced security policy and their costs to components producers and users. A comprehensive
security framework could result from the combination of complementary features. Approaches like
code signing and sand-bozing (for instance, consider the Java implementation of these concepts [22,
20]) have low costs but cannot enforce flexible security policies (signed components may behave in
arbitrary ways and the user must trust the component producer, while sand-boxed components are
isolated and cannot interact with each other).

Type systems can be sensible and flexible language-based security techniques, like [31] shows.
Recently, a number of process/programming languages supporting process distribution and mobility
have been designed that come equipped with type systems that guarantee some kind of security
properties, see, e.g., [23,15,16, 24, 8]. However, to the best of our knowledge, the type system we
present in this paper is the first that exploits the source of mobile processes for granting them
different privileges over different kinds of data (thus, e.g., preventing dangerous operations over
specific sensible data). These desirable features can be found in real systems like, e.g., UNIX, where
different users can have different privileges and different files can be manipulated with different

allowed operations.



Our type system permits expressing and enforcing security policies for controlling the access
of host resources by possibly malicious mobile processes. It is expressly designed for the process
calculus pKramm [21] that puts forward a programming paradigm where there is a clear separation
between the programmer level and the net coordinator/administrator level. Programmers write
processes, while coordinators write nets, hence manage the initial distribution of processes and
set the security policies for accessing the resources. The policies are specified by assigning each
node of a net a type expressing the operations a process is allowed to perform once spawned at it.
Hence types are part of the language for configuring the underlying net architecture and must be
taken into account in the language operational semantics. Other than to express security policies,
types are used to record processes intended operations, but programmers are relieved from typing
processes because this task is carried on by a static type inference system. By using a combination
of static and dynamic type checking, our system guarantees the absence of run-time errors due to
lack of privileges. As an application of our approach we model the simplified behaviour of a bank
account management system where the compliance with the bank security policy must be enforced.

The rest of the paper is organized as follows. We present the syntax of uKKLAIM in Section 2, its
type system in Section 3, and its operational semantics in Section 4. Section 5 contains the main
theoretical results of the paper, i.e. the subject reduction and type safety theorems. In Section 6, we
illustrate an application of our approach to model a bank account management system. Finally, in

Section 7 we point out a few concluding remarks and comment on related work.

2 The Process Language uKLAIM

In this section we briefly present the syntax and informally describe the semantics of pKLAIM [21],
a calculus to program distributed and mobile processes communicating asynchronously via shared
data.

The syntax of pKLAIM is reported in Table 1. We assume the existence of the following countable
sets: A, process identifiers, ranged over by A, B,...; L, localities, ranged over by I; U, locality
variables, ranged over by u; V, basic values, ranged over by V. We let ¢ to range over LUU, = over
value variables, m over sets of capabilities and A over types (capabilities and types are formally
defined in Section 3).

The syntax of expressions, ranged over by e, is deliberately not specified; we just assume that
expressions contain, at least, basic values and variables. Localities | are the addresses of nodes.
Tuples t are sequences of actual fields f, that contain information items (expressions, localities or
locality variables). Tuples are collected into multisets called tuple spaces (TSs, for short). Templates
T are used to select tuples in a T'S; they are sequences of actual and formal fields F'. The latters are
used to bind variables to values and are written !z or !w : 7 (the set of capabilities 7 constraints
the use of the address dynamically bound to u and is crucial for the type checking).

Processes are built up from the inactive process nil and from the basic operations by using
prefixing, parallel composition and process invocation. For the sake of simplicity, we assume that
each process identifier A has a single defining equation A 2 P and all these equations are available
at any locality of a net. Recursive behaviours can be modelled via process definitions.



N:=0 (empty net) a = read(T)Q¢ (process actions)

12 P (single node) in(T)Q¢

Ni || N2 (net composition) out(t)@/
P ::=nil (null process) eval(P)@¢

a.P (action prefixing) newloc(u : A)

P | P (parallel composition) T =:=F F,T (templates)

A (process invocation)  F == f !z lu:« (template fields)
e ==V 1z ... (expressions) ba=f St (tuples)

fuo=e ¢ (tuple fields)

Table 1. pKLAIM Syntax

pKLAIM supplies five different basic operations, also called actions. out(t)@¢ adds the tuple et
resulting from the evaluation! of ¢ to the TS located at £. Operation eval(Q)@{ sends process @
for execution to ¢, where a run-time typechecking of the incoming code will take place: if @) does
not comply with ¢’s security policy the operation is blocked. Operation in(T)@¢ evaluates T and
looks for a matching? tuple et in the TS located at ¢; if et is found, it is withdrawn and the values
it contains are used to replace the corresponding variables of T' within the continuation process,
otherwise the operation is suspended until a matching et is available. Operation read behaves
similarly but leaves the accessed tuple et in the tuple space. Operation newloc(u : A) dynamically
creates a new net node with a fresh address whose security policy is specified by type A. The last
operation is not indexed with an address because it always acts locally; all the other operations

explicitly indicate the (possibly remote) address where they will take place.

Variables occurring in process terms can be bound by action prefixes. More precisely, prefixes
in(T)@/¢._ and read(7T)@¢._ bind the variables in the formal fields of T, and prefix newloc(u :
0).- binds u. In process a.P, P is the scope of the bindings made by a. A variable that is not
bound is called free. The sets BV(P) and FV(P) (of bound and free variables, resp., of P) are
defined accordingly, and so is a-conversion, denoted =, . In the sequel, we shall assume that bound
variables in processes are all distinct and different from the free variables (by possibly applying
alpha-conversion, this requirement can always be satisfied). Moreover, we shall consider only closed

processes, i.e. processes without free variables.

Nets are finite collections of nodes where processes and tuple spaces can be allocated. A node
is a triple [ :2 P, where locality [ is the address (i.e. network reference) of the node, P is the
(parallel) process located at [ and A is the type of the node, i.e. the specification of its access

control policy. The nodes of a net can be thought of both as physically distributed machines and

! Tuple/template evaluation consists in replacing each expression with the value resulting from its evalu-

ation.
2 An evaluated tuple matches against an evaluated template if both have the same number of fields and

corresponding fields match; formal fields of a given type match values of the same type and two values

match only if identical.



N=, N
(ALPHA) R (Io) N|0=N
N=N

(Com) Ni|[N2=Na2| My (Ass)  Ni || (N2 || N3) = (N1 || N2) || N3

(ABS) 1A P =1:2 (Pnil) (CaLL) 12 A=1:4P ifA2P

Table 2. Nets Structural Congruence

as logical partitions of the same machine. As we shall see in Section 4, the TS located at [ is part
of P because evaluated tuples are semantically represented as special processes.

We will identify nets which intuitively represent the same net. We therefore define structural
congruence = to be the smallest congruence relation over nets that satisfies the laws in Table 2.
Notice that = identifies only nets whose equality is immediately obvious from their syntactical
structure and has nothing to do with the semantics of nets (which has still to be introduced and
shall rely on structural congruence). If not differently specified, in the sequel we shall only consider
well-formed nets, i.e. nets where pairwise distinct nodes have different addresses. This request is a
simple way to guarantee that each network node has one security policy. However, our main results

(see Section 5) do not rely on this hypothesis and still hold for generic nets.

3 A Capability-Based Type System

In this section we introduce a type system for uKLAIM that permits granting different privileges to
processes coming from different nodes and constraining the operations allowed over different kinds
of data. Thus, for example, if [ trusts I’, then [ security policy could accept processes coming from
" (that will be called I’-processes) and let them accessing any tuple in I’s TS. If I’ is not totally
trusted, then I’s security policy could grant {’-processes the capabilities for executing in/read only

over tuples that do not contain classified data.

3.1 Capabilities
Capabilities are used to specify the allowed process operations and are formally defined as
C={ent U {(ep) s cefiro} Ap Can P}

where P 2 (LUV U {from, —})* is the set of all patterns. Capabilities e and n enable process
migration and node creation (i.e. operations eval and newloc, resp.). A capability of the form
(¢, p) enables the operation whose name’s first character is ¢ (i.e. in if ¢ is ¢, and so on); operation
arguments must comply with the finite set of patterns p if p # ), and are not restricted other-
wise (in this case, we write c instead of {c,))). Like tuples and templates, patterns are finite, not
empty sequences of fields; pattern fields may be localities, basic values, the reserved word from
(denoting the last locality visited by a mobile process) and the ‘don’t care’ symbol — (denoting
any template field). Thus, for instance, the capability (i , {(“public’,—),(3,—,from)} ) enables
the operations in(“public”,!z)@Q... and in(3,!u : m,1)Q... for an l-process, while disables operation

in(“private”, lz)Q... .



T() CT(p) m C 2 mC, ™ mC,

{(i,p} En {(r:p)}

{{, )} Cp {(e,p)}  mExm mUm E; mUm
Table 3. Capability Ordering Rules

We use 7 to denote a non-empty subset of C such that, if (¢,p) € 7 and (¢, p’) € 7, then ¢ # ¢'.
IT will denote the set of all these .

We say that a template complies with a pattern if the template is obtained by replacing in the
pattern all occurrences of from with a locality, and any occurrence of ‘—’ with any template field
allowed by the syntax. Given a non-empty set of patterns p, we write 7 (p) to denote the set of all
templates complying with patterns in p. By definition, 7 () denotes the set of all templates. Since
tuples are also templates (see Table 1), the previous definitions also apply to tuples.

Notice that the definition of pattern fields affects, via the relation ‘complies with’, the ability of
our types to control the tuples accessed by process operations. However, our framework is largely
independent of the choice of a specific set of fields. For instance, we could also permit fields of the
form —g, for any type  of legal values, with the idea that, when defining the relation ‘complies
with’, an occurrence of —s could be replaced by any value/variable of type ¢. In pKrLAIM, this
corresponds to adding only fields —, and —y; in this way, a finer control could be exercised on
the tuples accessed by processes because we could distinguish between a tuple field containing a
locality from one containing a basic value.

We now introduce an ordering between capabilities, C ,; formally, it is the least reflexive and
transitive relation induced by the rules in Table 3. The chosen ordering relies on the following
assumptions: (i) if a process is allowed to perform an in then it is also allowed to perform a read
over the same arguments, (ii) if a process is allowed to perform a read/in/out over arguments
complying with patterns in p then it is allowed to perform the same operation over arguments
complying with any set of patterns p’ that has at most the same ‘complying templates’ as p, and

(#it) if a process owns a set of capabilities 7o then it also owns any subset 7.

3.2 Types
Types, ranged over by A, are functions of the form
A:LUUU {any} —4qy ((£ U U U {any,from} —g, HU@)UL)

where —g, means that the function maps only a finite subset of its domain to significant values (i.e.
values different from | and §)). With abuse of notation, we use L to also denote the empty type, i.e.
the function mapping all its domain to L. Moreover, by letting A to range over LUU U{any, from},
we shall write a A different from L as a non-empty list [A; — [X; j — 7 j]j=1,.. & ]i=1,...n- Types
are used to express the security policies of nodes. Intuitively, if the type A of a node with address
I contains the element [I' — [ — =], then I’-processes located at [ are allowed to perform over
" only the operations enabled by 7. The reserved word any is used to refer any node of the net.
If it occurs in the domain of A then it collects the privileges granted to processes coming from
any node of the net (i.e. [any — [” — 7] grants all processes the privileges 7 over ["”). If any
is contained in the domain of A(l’), for some I, then it is used for denoting the operations that

'-processes located at [ are allowed to perform over any node of the net (i.e. [I' — any +— 7] grants



'-processes the privileges 7 over all net nodes). The reserved word from stands for the last node
visited by a process and is used to grant privileges over this node whatever it is; thus, for instance,
[any — from — 7] grants I’-process spawned at [ the privileges 7 over I’. The type L expresses
total absence of privileges.

We now introduce the notion of sub-typing. Since types are functions, the notion of subtyping is
derived from the standard preorder over functions, by also using the pointwise union of functions,
denoted by U.

Definition 1. The subtyping relation, <, is the least reflexive and transitive relation closed under

the rule
Ve dOTTL(Al) : A1(>\) j AQ()\) Y Ag(any)

Ay < Ay

where =< is the least reflexive and transitive relation closed under the rule

VN € dom(A1 (X)) : As(N)(N) U As(A)(any) T, Ay (A)(N)
Ar(N) = Ag(N)

Thus, if Ay < Ag, then A; is less permissive than Ag; moreover, L < A for any A, since dom(L) =
(). We finally introduce the notion of well-formed types, that will be useful when proving soundness

of our system.

Definition 2. The type A is [-well-formed whenever the following conditions hold:

1. If from € dom(A(X)) then A = any

2. For each £ € dom(A), it holds that A(£) < A(l)

3. For each X € dom(A(any))-{from}, it holds that A(l)(\) C,, A(any)())
4. A(l)(any) =, A(any)(from).

Apart from technical reasons, this definition seems reasonable when considering A to be the type
of locality [. Indeed, the first condition is not too restrictive, because the use of from is really
necessary only when no knowledge of the last node visited by processes is available (i.e. when using
any). The second condition says that [ grants to ¢-processes (for £ € dom(A)) no more privileges
than those granted to its local processes, i.e. those processes statically allocated at . Finally, the
last conditions are similar to the second one, but apply to processes coming from any node; in this
case, it is also required that processes coming from any node own over the source node no more

privileges than those owned by local processes over any node (condition 4.).

Remark 1. Notice that the syntax of types allows locality variables to occur within types. Basically,
they are used when specifying the type of a node dynamically created for referring localities that
will be dynamically determined. By exploiting this feature, we can write processes like the following:

in(lu:...)Q... .newloc(v: [u+— v — {r}]).

3.3 Static Type Checking

For each node of a net, say [ ::2 P, the static type checker analyzes the operations that P intends

to perform when running at [ and determines whether they are enabled by the access policy A or



'l nil
r¢yur(any) &, (o,p) te€T(p) I'l-P
'l out(t)@¢.P

ryur(any)C, (i,p) Te€T(p) upd(I T) P

Il in(T)@e.P
ryur(any)C, (r,p) Te€T(p)  upd(\T) P
'l read(T)Q¢.P

r'¢¢)yur’'(any) C, {e} '+ P
'l eval(Q)@L.P

rac, {n} A is u—well-formed rdju— ') —{n)l P
'l newloc(u : A).P

P THQ I P

I'+~PlQ ' A
Table 4. Type Inference Rules

ifAZ P

not (in fact, it is enough to consider A(l)). To this aim, a type context I' is a function of the form
LUU U {any} —g, (ITUD). To update a type context with the type annotations specified within
a template, we use the auxiliary function upd that behaves like the identity function for all fields

but for formal fields binding locality variables. Formally, it is defined by:

upd(upd (I, F), T") T= FT
upd([,T) =< I'U [u — 7] ifT=lu:m,
r otherwise

The type judgments for processes take the form FH P, where the domain of I" includes all
the localities and all the free locality variables in P. The set of bindings for the localities in I’
implements the access policy of [ for the processes statically located at [, while the remaining
bindings record the type annotations for the locality variables that are free in P. Intuitively, the
judgment Fﬁ P states that, within the context I', P can be safely executed once located at [.

Type judgments are inferred by using the rules in Table 4 that should be quite explicative. For
operations out, in, read and eval, the inference requires the capability associated to the operation
to be enabled by the capabilities owned over the target ¢ or over all the net sites. Instead, for
operation newloc, the capability n must be owned by the site | executing the operation. Moreover,
in this case, it is assumed that the creating node owns over the created one all the privileges it
owns on itself (except, obviously, for the n capability).

We conclude this section by introducing the notion of well-typed net.

Definition 3. A net N is well-typed if for each node l ::2 P in N it holds that A is |-well-formed
and A(l) | P.



matchaqy(V,V) matchaqy(l',1') matchaq)(lz, V)

ADIYUu A (any) T, w matchaqy(eF,ef) matchaq(eT, et)

matchag) (fu: m,1') matchaq)( (eF,eT) , (ef,et))
Table 5. Matching Rules

4 Operational Semantics

We start by introducing a way to represent tuples and tuple spaces. Like in [15, 16], we model tuples
as processes. To this aim, we extend the pKLAIM syntax with processes of the form out(et), where
et stands for evaluated tuples. Tuples/templates evaluation function is written &[] and simply
replaces each expression occuring in - with its evaluation. Processes out(et) are similar to process
nil because they do not perform any action and, thus, need no capability. Well-typedness of these
processes is stated by the axiom

(%) I'l- out(et)

that must be added to the rules in Table 4.

We then define the pattern-matching predicate match, used to select (evaluated) tuples from a
tuple space according to (evaluated) templates. The predicate is defined by the rules in Table 5. It
states that matching succeeds whenever the tuple and the template have the same number of fields
and values in corresponding positions are identical. Moreover, it requires that for each formal field
lu : m the corresponding value I” that will replace u is such that the security policy A of the node
I where the in/read operation is performed allows local processes to perform all the operations
enabled by 7 over I, using if needed also the capabilities owned by [I’s static code over all the net.

Finally, the pKKLAIM operational semantics is given by a net reduction relation, >— , specifying
the basic computational steps and formalizing the informal behaviours sketched in Section 2. Be-
cause of the highly dynamic nature of our calculus, the operational semantics uses types to perform
some dynamic checks; in these cases, the check occurs in the premises of an inference rule thus, if it
fails, the rule cannot be used in the inference (i.e. the corresponding net reduction step is blocked).

> is the least relation induced by the rules in Table 6. Net reductions are defined over
configurations of the form L N, where L is such that 1oc(N) C L Cyy, £ and function loc(N),
that could be easily defined by induction on the syntax of terms, returns the set of localities
occurring in N. In a configuration L F N, L keeps track of the localities in N and is needed to
ensure global freshness of new addresses. For the sake of readability, when a reduction does not
generate any fresh address we write N =— N’ instead of L+ N =— L+ N'.

Let us comment on the rules in Table 6. Rule (OUT) says that, before adding a tuple to a tuple
space, the tuple must be evaluated. Rule (EVAL) says that a process is allowed to migrate only if it
successfully passes a type checking. Indeed, the premise of the rule says that the migrating process
(Q must be checked against the union of the privileges that the security policy A’ of the target node
I assignes to processes coming from ! and to processes coming from any node (in this last case,
occurrences of from must be interpreted as [, as stated by the syntactic substitution A’ (any)[/from|
of from with [ in function A’(any)). Rules (IN) and (READ) say that the process performing the



( ) et =E&[t]
Our 7 7
12 out(®)@l . P || 1'% P w—1:2 Pl :* Plout(et)
A'(l) d (A'(any)[Yfrom]) |- Q
(EVAL) 7 7
I eval(@Q@l'.P||I' =% P — 122 P22 PQ
) matchaqy(E[T ], et)
N ’ ’
L2 in(T)QU.P || I =2 out(et) =— 12 PlEYT] |1 =* nil
matchaq) (E[T' ], et)
(READ) yy ; A A 1A
1% read(T)QI".P || I' = out(et) =— 12 P[EYT] || = out(et)
I'¢L ATl <A™ d 11— AD)Q)])
(NEW) ; ; 77
LE1:newloc(u: A).P = LU{l'} b1 2 @ =0=@OO=0D] prl'a) || 17 2/ nil
LEL:2P |[1:2Q | Ay R e I1:2Q || N'
(SpLIT) .
LE1:2PQ || N——LFi1:% PlQ | N
LFN, = L' - N,
(PAR)
Lt Ny || Ny = L' Nj || N
N=N; LFN1>—>L,FN2 NQEN,
(STrRUCT)
LEN>—L'+N

Table 6. pKLAIM Operational Semantics

operation can proceed only if pattern-matching succeeds. In this case, all the formal fields of T are
replaced with the corresponding values of et in the continuation process P (written P[€Y/T]). Notice
that, since types occurring in the continuation process may contain locality variables, substitutions
must also be applied to such types. In rule (NEW) the set L of localities already in use is exploited
to choose a fresh address I’ for naming the new node. Notice that, once created, the address of the
new node is not known to any other node in the net. Thus, it can be used by the creating process
as a sort of private resource. In order to enable the creation, the specified access policy 4A', after
modification with substitution [ll/u}, must be in agreement with the access policy A of the node
executing the operation (A" denotes the access policy A except that A~" (-)() is defined to be
A(-)(1) — {n}) extended with the ability of performing over I’ all the operations allowed locally (a
part for newloc, of course). This is needed to prevent a malicious node [ from forging capabilities by
creating a new node with powerful privileges where sending a malicious process that takes advantage
of capabilities not owned by [. Rule (SPLIT) is used to split the parallel processes running at a node
thus enabling the application of the rules previously mentioned that, in fact, can only be used when
there is only one process running at [. Technically, a parallel over processes is transformed into a
parallel over nodes. There is a subtlety with rule (SPLIT): in fact, the nets in the premise of the
rule are not well-formed according to the definition of Section 2 because they contain nodes with
the same address (locality 1)3. However, the transition in the conclusion preserves well-formedness.

Rules (PAR) and (STRUCT) are standard. The former says that, if part of a composed net evolves,

3 This feature permits a compact and general formulation of the reduction rules without the need of
explicitly considering all the parallel processes running at a node and of distinguishing between local and

remote operations.



the whole net evolves accordingly. The latter says that structural congruent nets have the same
reductions.

To conclude, we state two properties of the operational semantics. The first one says that nets
well-formedness is preserved along reductions, the second one states a relationship between the set
L and the net N in a configuration L - N (the proofs are omitted since they are very similar to
those in [21]).

Proposition 1. If N is well-formed and loc(N)+ N =— L' N’ then N’ is well-formed.

Proposition 2. Ifloc(N)F N =— L'+ N’ then loc(N') C L'.

5 Type Soundness

We can now state two standard results for type systems, namely, subject reduction and type safety.
The former means that well-typedness is an invariant of the operational semantics; the latter means
that well-typed nets are free from immediate run-time errors. In our framework, such errors would
arise when processes attempt to execute operations that are disabled by the security policy of the
node where they are running. The two properties together amount to saying that well-typed nets
never give rise to run-time errors due to misuse of access privileges.

To prove subject reduction, we first give three preliminary results used in its proof. The first
two state that the static inference is not affected by a uniform renaming of free locality variables
with localities and by using more permissive type contexts; the last one states that well-typedness

is preserved by structural congruence.

Lemma 1 (Substitutivity). If I'l~ P then I'ol~ Po, for each substitution o : U —gn L such
that dom(o) N BV(P) = 0.

Proof: The proof is by induction on length of the inference of the type judgement. The base cases
(i.e., the first rule of Table 4 and rule (%)) are obvious. Let us examine the case in which the last
rule used deals with action prefixing for some action a different from newloc (the newloc, parallel

composition and process invocation cases are easier).

a = out(t)@¢. By hypothesis, I'l- Q, I'(¢) U I'(any) E,, (o,p) and t € T (p). By induction, we
have that I'o|- Qo; moreover, I'o(fo) U I'o(any) C, (o,p) (since substitutions do not affect
patterns) and to € T (p) (straightforward by definition of compliance with a pattern). By static
inference, this sufficies to conclude the desired I'o|5- (a.Q)o.

a = eval(Q)@/¢. Similar.

a=1in(T)@¢ or a = read(T)@¢. The only difference with the out case is that the hypothesis
is upd (I, T)}~ Q. By induction, we have that (upd(I',T))ol Qo; it is easy to prove that
(upd(I',T))o = upd(I'o,To) and to conclude. 0

Lemma 2 (Weakening). If I'l- P then I''\ P, for each I'" such that I" < I"'.

Proof: By induction on the length of the inference for I'l~ P, we prove that each step of such
inference is still legal, once we replace I" with I”. The base case is trivial. Let us only consider the



in inductive case (the others are similar or simpler). By static inference, we have that there exists
a pattern p such that I'(¢) U I'(any) T, (i,p) and T € 7 (p). By hypothesis, I""(¢) C,, I'(¢) and
I"(any) C,, I'(any); by transitivity, I (¢) U I (any) C,, (i,p). We are still left with proving that
upd (I', T) | P implies upd (I, T)} P; but this easily follows by induction and by the fact that
upd (I, T) 2 upd(I'",T) (that is true because of definition of function upd). O

Lemma 3. If N is well-typed and N = N’ then N' is well-typed.

Proof: By inspection of the axioms in Table 2.

(ALPHA). The thesis directly follows from the fact that the static type inference is not affected if
we uniformly rename bound variables within a net.

(In), (Com), (Ass) and (CALL). Obvious.

(ABS). By hypothesis, A(l)}5- P. Moreover, we have that A’(l')|7- nil for each A’ and I’. Hence,
it follows that A~ Pnil. O

Theorem 1 (Subject Reduction). If N is well-typed and loc(N) F N — L'+ N’ then N’ is
well-typed.

Proof: The proof proceeds by induction on the length of the inference of loc(N) - N =— L'+ N'.
Notice that the sets of localities 1oc(N) and L’ do not play any role in what follows (namely, they
do not affect the definition of well-typed net) and will be ignored in the rest of the proof.

Base Step : By case analysis on the axioms (i.e. the first five rules) of Table 6.

(OuT). By hypothesis, we have that A(l)}- out(¢)@I’.P. Due to the form of the process involved,
the second rule of Table 4 has been the last one applied to deduce the type judgement; hence we
also have that A(l)|4 P. Moreover, A’ P’ | out(et) by applying the rule for paralel compo-
sition of Table 4 to A’(I")}5~ P, that holds by hypothesis, and to the axiom A’(I')}5- out(et).
This sufficies to conclude well-typedness of N’.

(EvAL). Well-typedness of node [ ::4 P is inferred like in the previous case. We are only left to
prove that A'(I") |5~ @ since, by hypothesis, A’(I')|7~ P’. By the premise of rule (EVAL), we have
that A'(1)U (A’ (any)[/from]) |7~ Q. If we prove that A’(I)U (A’ (any)[/from]) = A’(I'), we can
conclude by using Lemma 2. Indeed, it sufficies to prove that both A’(l) and A’(any)[/from)]
are subtypes of A’(l’), since trivially the pointwise extension of partial functions respects this
property. By I'-well-formedness of type A’, we have that:

— A'(l) 2 A'(I") (by condition 2. of Definition 2)
— for each \ € dom(A’(any)[/ffrom]), using conditions 3. and 4. of Definition 2, it holds that:
e if A # [ then (A'(any)[/from])(\) = A’(any)(A\) /2 A'(I')(N)
e otherwise, (A'(any)[/from])(I) = A'(any)(l) U A'(any)(from) ;2 A’(I')(l) U
A(1')(any)
These facts amount to say that A’(any)[lfrom] < A’(I').

(IN). To prove that A(l)}- P[eYT], we use the fact that upd(A(l), T)}- P (that holds by hypoth-
esis). By definition, if {u;};c; are the locality variables bound by T and m; are the privileges
associated to u; in T', we have that upd (A(1), T) = A(l)Y[u; — 7;]icr. Moreover, by the premise
of rule (IN), we have that match ) (E[ T ], et) and hence A(l)(l;) U A(l)(any) C,, m; for each
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Table 7. Run-Time Error

i € I. This fact means that [l; — m]icr < A(l). Now, let o 2 (lifu;)ier; hence P[eY/T] = Po.
Putting together all these results, we have that upd (A(l),T)}- P implies (upd(A(1),T))o =
A()U[l; — m)iert Po (by Lemma 1 and by the fact that dom(A(1)) N {l;}ier = ), and hence
A(l)l- P[eYT] (by Lemma 2 and definition of o).

(READ). Similar to the previous case.

(NEW). First of all, we have to prove that the types occurring in the resulting net are still well-

formed. Type AU [l — I — (A()(1) — {n})] is I-well-formed, since it is obtained from the
I-well-formed type A by adding privileges to l-processes; type A'[l'/u] is I'~well-formed since,
by static inference, we have that A’ is u—well-formed.
Then, we are left to prove that AU [l — I' — (A(l)(I) — {n})] P[VJu]. By hypothesis and
definition of the static inference for the newloc prefix, it holds that A(l) U [u — (A(l)(I) —
{n})] |- P. By using Lemma 1, we can conclude the desired (A(l)U[u — (A(I)(I) —{n)D[F ] =
AUl 1 (AQD) — 0] b P

Inductive Step : By case analysis on the last applied operational rule of Table 6.

(SpLIT). By hypothesis, we have that A(l)l~ P|Q; hence, we also have that A(l)}~ P and that
A(l)l Q. Thus, the net A P12 Q| N is well-typed. By induction, we get that
1A P |12 Q || N is well-typed; finally, using Lemma 2 applied to A(l) < A'(l), we get
that A’(l)}- Q" and hence we obtain the thesis.

(PAR). By hypothesis, Ny || Nz is well-typed, hence N7 and N are well-typed too. Now, by
induction, N7 is well-typed and hence Nj || Ny is well-typed.

(STruCT). From the hypothesis, N is well-typed and N = Ny; by Lemma 3, it follows that Ny is
well-typed too. Now, by induction, we get that N5 is well-typed. From this fact and from the
hypothesis No = N’, again by Lemma 3, it follows that N’ is well-typed. 0

To prove type safety, we firstly introduce run-time errors; they are defined by the rules in
Table 7 in terms of predicate N 7 [ that holds true when, within the net N, a process P located
at a node with address [ attempts to perform an action that is not allowed by the access policy of
the node. There, we use functions loc(a) and cap(a) to denote, resp., the target locality of action a
and the least capability needed to safely perform the action; moreover, 7, stands for the negation

of predicate C,,. The rules are straightforward.
Theorem 2 (Type Safety). If N is well-typed then N 11 for nol € loc(N).

Proof: We proceed by contradiction and prove, by induction on the length of the proof of N 71,
that if N 71 for some | € loc(N) then N is not well-typed.

Base Step : The only axiom of Table 7 is rule (ERRACT). Let us now distinguish two cases:



— a.P was part of a [l’-process migrated in [. In this case, it could not be A(l') U
(A(any)[!ffrom)) b~ a.P, otherwise, by Lemma 2, A(l/)l;- a.P and in particular
A(l)(loc(a)) U A(l)(any) T, {cap(a)}. But in this case, the premise of rule (EVAL) in Ta-
ble 6 is not satisfied and hence the migration of the I’-process containing a.P was blocked.
This is in contradiction with assumed origin of process a.P.

— a.P was part of a static process of [. In this case, it must be that A(l)(loc(a)) U
A(l)(any) IZ,, {cap(a)}, thus falsifying the premise of the static inference rule for action
a. This is in contradiction with the well-typedness hypothesis.

Inductive Step : By case analysis on the last error rule used.
(ERRPAR). From the premise N 11 of the rule, by induction, we have that N is not well-typed.
Hence, by definition, N || N’ is not well-typed too.
(ERRSTR). From the premise N’ 1 [ of the rule, by induction, we have that N’ is not well-
typed. Then the thesis follows from the premise N = N’ by using Lemma 3. g

Therefore, executable nets cannot immediately give rise to run-time errors. Now, by combining
together the results shown so far, we get that executable nets never generate run-time errors along
sequences of reductions (usually, we denote with >—* the reflexive and transitive closure of

Corollary 1 (Global Type Soundness). If N is well-typed and loc(N) = N =—* L'+ N’ then
N 11 fornol € lec(N).

Proof: The proof proceeds by induction on the length of 1loc(N) H N =—* L'+ N’. The base
step is trivial, the inductive step follows from Theorems 1 and 2, by using Proposition 2. O

Type soundness is one of the main goal of a type system. However, in our framework it is
formulated in terms of a property requiring the typing of whole nets. While this could be acceptable
for LANs, where the number of hosts usually is relatively small, it is unreasonable for WANs. When
dealing with larger nets, it is certainly more realistic to reason in terms of parts of the whole net.
Hence, we put forward a more local formulation of our properties and results. To this aim, we define
the restriction of a net N to a set of localities D, written Np, as the subnet obtained from N by
deleting all nodes whose addresses are not in D. The wanted local type soundness result can be

formulated as follows.

Theorem 3 (Local Type Soundness). Let N be a net and D C loc(N). If Np is well-typed
and loc(N)+ N =—* L'+ N’ then for nol € D it holds that N' T 1.

The proof is similar to the proof of Corollary 1. In fact, the local type soundness is enforced by the
dynamic checking performed when processes migrate, which prevents to move ill-typed processes
into ND.

6 A Bank Account Management System

In this section, we use our approach to model the simplified behaviour of a bank account manage-

ment system. For ensuring compliance with the security policy of the bank some aspects of our



setting, such as the possibility of granting different privileges to processes coming from different
source nodes and the dynamic type checking of mobile processes when they migrate, have proved

to be crucial.

We suppose that a bank is located at a node with address [ g and can receive and manage requests
coming from many users located at nodes with addresses [y, Iy, .... The bank must provide the
users with typical account managing operations: opening/closing accounts, putting/getting money
in/from accounts, and making statements of accounts. For simplicity, we shall omit some details and
technical operations that in reality take place, like, e.g., the charge of taxes, dealing with improper
operations like the attempt of getting more money than that really available, . ...

For the sake of readability, in the rest of this section we will omit trailing occurrences of process
nil, and use parameterized process definitions (that can be easily implemented in our setting using
out/in operations to pass/recover the parameters), integer values (to denote, e.g., amounts of
money) and strings (to identify the various operations).

For permitting the bank to check the operations that users intend to perform, we assume that
users cannot perform remote operations over [ except for sending processes. Hence, if a user U
wants to require an operation to the bank, it has to send a process to Ip (thus virtually moving
to the bank) which will interact locally with the proper operation handler. The user process, once
it has been accepted (i.e. after its compliance with the bank security policy has been checked),
can require the operation by locally producing a tuple whose first field contains the name of the
operation and whose second field contains the address of the user node (used to identify the user
that made the request). Depending on the operation, the tuple could have other fields containing
the amount of money involved in the operation and the account receiving the money.

The node implementing the bank is illustrated in Table 8. First, the bank creates a new node
that will contain its clients accounts, stored as tuples of the form (userAddress,amount). This
node acts just as a repository for tuples and will not be used for spawning processes, thus it has
assigned the empty type L. Then, five different handler processes, one for each kind of operation, are
concurrently spawned. Each handler continuously waits for a request. When such a request arrives,
the proper handler executes its task by remotely accessing the reserved locality and then reports
locally a confirmation of action completion. The client process performing the request waits for
such a confirmation and then brings it back to its original locality. This last operation is performed
by means of a migration thus providing the user node with the chance of controlling the operation.

Notice that, by taking advantage of the semantics of ulKLAIM operations, the simple handlers of
Table 8 implement the mutual exclusion needed to ensure the correctness of concurrent operations
over shared data. Indeed, once a handler H has withdrawn the tuple representing an account (i.e.
once H has locked the account), in order to proceed in their tasks, all the other handlers have to
wait for H to write the updated tuple (i.e. for H to release the lock).

The security policy Ap is so defined that ‘sensible’ operations over the accounts of a user U (like
getting some money and reading/closing the account) can only be requested by l-processes, while
operations like putting some money can be requested by processes coming from any node. Moreover,
the only remote operation processes are allowed to perform is to came back to their source site.
Therefore, a [;7-process can request to the bank sensible operations only over U’s accounts and can
deliver the confirmations only to ;. Typical processes acting on behalf of a user U are illustrated



Ip ::*B newloc(u : J_).(OpenH(u) | PutH (u) | GetH (u) | ReadH (u) | C’loseH(u))

where:
OpenH (u) 2 in(“open”, !z, y)Qlp.
(OpenH (u) | out(z,y)Qu.out(“OKopen”, z,y)Qlp)
PutH (u) £ in(“put”, lz,ly, lw)Qlps.
(PutH (u) |in(w, !z)Qu.out(w, z + y)Qu.out(“OKput”, z,y, w)Qlg)
GetH (u) = in(“get”, lz,ly)Qlp.
(GetH (u) |in(z,!2)Qu.out(z, z — y)Qu.out(“OKget”, z,y)Qlp)
ReadH (u) 2 in(“read”,\z)Qlp.
(ReadH (u) | read(z, ly)Qu.out(“OKread’, z,y)Qlp)
CloseH (u) = in(“close”,1z)Qip.
(CloseH (u) | in(z, ly)Qu.out(“OKclose”, z,y)Qlg)

Ap 2 g +—[lg +~— {iorn},
any — {e}],
any — [from — {e},
Iz —{{(o,{ (“open”,from, —),
“put”, from, —, —),
“get”, from, —),
“read”, from),

(
(
(
(
(“close”, from)
P
(i,{ (“OKopen”,from, —),
(“OKput”, from, —, —),
(“OKget”, from, —),
(“OKread”, from, —),
(

“OKclose”, from, —)

P

Table 8. The node implementing the bank

in Table 9, where the parameter s denotes an amount of money and the parameter [;;; denotes an
account.

The only possibility for a malicious node to illegally access U’s accounts is to pass through [y,
using a process like eval(eval(MaliciousReq)@lp)@l;. Hence, U has to protect itself from these
attacks by granting an e capability over [g only to processes coming from totally trusted nodes:
the security policy of [y must contain the element [l — Ip +— {e}] only if U trusts the user located
at . However, U can trust [ only if U trusts all I’ trusted by [ (in fact, a node trusted by [ can send
to [ a process that is then allowed to spawn a process at U containing requests on U’s accounts).

Finally, notice that only the handler processes can access the node dynamically created whose

address, say lg, is bound to u. Indeed, when such node is created, the operational semantics dy-



OpenR(s) 2 eval(out(“open”,ly, s)@lp.in(“OKopen”,ly, s)Qlp.
eval(out(“OKopen”, s)Qly)@Qly)Qlp
PutR(s,ly/) 2 eval(out(“put”,ly, s, ly/)Qlp.in(“OKput”,ly, s,y )Qlp.
eval(out(“OKput”, s,y )Qly)Qly)Qlp
GetR(s) 2 eval(out(“get”,ly, s)Qlp.in(“OKget”,ly, s)Qlp.

eval(out(“OKget”, s)Qly)Qly)Qlg

ReadR £ eval(out(“read”, ly)@lp.in(“OKread’, ly,z)Qlp.
eval(out(“OKread’, z)Qly)Qly)Qlp

CloseR 2 eval(out(“close”,ly)Qlp.in(“OKclose”,ly,z)Qlp.
eval(out(“OKclose”,z)Qly)Qly)Qlg

Table 9. Processes of a user U requesting bank operations

namically extends Ap with [lp — ls — {i,r,0}] thus enabling all the processes initially allocated

at Ip to perform in/read/out operations over g.

7 Concluding Remarks

We presented a new capability based type system for the calculus pKrLAIM [21] which controls
data/resource access and process mobility in a flexible and expressive way. It has been designed
to supply real systems security features, e.g. granting different privileges to processes coming from
different nodes and constraining the operations allowed over different kinds of data/resources. Due
to the highly dynamic nature of distributed and mobile systems/applications, our framework uses a
combination of static and dynamic type checking to guarantee compliance with net security policies.
As a future work we plan to integrate in uIKKLAIM other security mechanisms, like e.g. those based
on cryptographic techniques, both for the establishment of secure channels, and for process code
security and authentication.

The choice of the process calculus pKLAIM [21], that is at the core of the programming language
Kramv [14] and hence is based on the Linda [19,11] coordination model, is motivated by the
fact that pKLAIM has a number of features that make it appealing also for network computing
environments where, in general, connections are not stable and host machines are heterogenous.
Indeed, it permits time uncoupling (tuples life time is independent of the producer process life
time), destination uncoupling (the producer of a tuple does not need to know the future use or the
destination of that tuple) and space uncoupling (communicating processes need to know a single
interface, i.e. the operations over the tuple space). As shown in [17], where several messaging models
for mobile processes are examined, the blackboard approach, of which tuple space based models are
variants, is one of the most appreciated, also because of its flexibility. Evidence of the success gained
by the tuple space paradigm is given by the many tuple space based run-time systems, both from
industries, e.g. JavaSpaces [32, 2] and TSpaces [35], and from universities, e.g. PageSpace [13], WCL
[30], Lime [28] and TuCSoN [27].

Many type systems for guaranteeing security properties have been proposed for process calculi
with distribution and mobility, but, as far as we know, ours is the first one implementing such
fine grained policies. Among those type systems more strictly related to security, we mention those
disciplining the types of the values exchanged in communications [9,3,24], those for controlling



Ambients [10] mobility and ability to be opened [6, 7,26, 18, 12], that for controlling resource access
via policies for mandatory access control [4], that for checking that all processes that intend to
perform inputs at a given channel are co-located [36], that for controlling the effect of transmitted
process abstractions over local channels [37], and that for restricting the mobility of values/processes
only to some part of a distributed system [25].

The research line closest to ours is that on the Dr-calculus [24], a distributed version of the
m-calculus equipped with a type system to control access rights of mobile processes over located
resources (i.e. communication channels). Like pKLAIM, the D7-calculus relies on a flat net architec-
ture; however, differently from pKLAIM, communication is local and channel-based, types describe
permissions to use channels, and the net architecture is not independent from the processes in-
volved. [23,29] present two improved type systems for the Dm-calculus that permit establishing
well-typedness of part of a net. This is similar to our local type soundness result that, however, has
been obtained by using only local type information.

[36] presents D7\, a process calculus that results from the integration of the call-by-value -
calculus and the m-calculus, together with primitives for process distribution and remote process
creation. Apart from the higher order and channel-based communication, the main difference with
uKrLAIM is that Dz localities are anonymous (i.e. not explicitly referrable by processes) and simply
used to express process distribution. In [37], a fine-grained type system for D\ is defined that
permits controlling the effect of transmitted process abstractions (parameterized with respect to
channel names) over local channels. Processes are assigned fine-grained types that, like interfaces,
record the channels to which processes have access together with the corresponding capabilities,
and process abstractions are assigned dependent functional types that abstract from channel names
and types. This use of types is similar to that of uKLAIM.

Finally, a number of process calculi base their security policies on transmission of encrypted
data over communication channels so that only those processes knowing the proper keys can access
these information. [1,33,5] present this approach in various settings, but none of them consider

process distribution and mobility.
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