
Daniele Gorla

Semantic Approaches to
Global Computing Systems

PhD Thesis
Dottorato in Informatica ed Applicazioni, ciclo XVII

Dipartimento di Sistemi ed Informatica

Università degli Studi di Firenze

Advisors:

Prof. Rocco De Nicola

Prof. Rosario Pugliese

International Reviewers: Members of the Jury:

Dr. Gérard Boudol Prof. Pierluigi Crescenzi

Prof. Michele Bugliesi Prof. Roberto Grossi

Prof. Davide Sangiorgi

Date of submission: December 31, 2004

Date of defence: February 15, 2005

2

3

Abstract

Programming computational infrastructures available globally for offering uni-
form services has become one of the main issues in Computer Science. The chal-
lenges come from the variable guarantees for communication, co-operation and
mobility, resource usage, security policies and mechanisms, etc. that have to be
taken into account. A key issue is the definition of innovative theories, compu-
tational paradigms, linguistic mechanisms and implementation techniques for the
design, realisation, deployment and management of global computational environ-
ments and their application.

A successful contribution to this research line is K, an experimental lan-
guage with primitives for programming global computers that combines the pro-
cess algebra approach with the coordination-oriented one. Its main features are
process distribution and mobility, remote operations and asynchronous communi-
cation via multiple distributed tuple spaces. K has proved to be suitable for
programming a wide range of distributed applications with agents and code mobil-
ity, and has been implemented on the top of a runtime system written in Java.

In this thesis, we first presents some foundational calculi for mobility based
on K. Then, we concentrate on one of these calculi, namely µK, that re-
tains most of the peculiar features of K, while being much simpler. We present
two approaches to study the behaviours of global computing systems expressed in
µK: (non-standard) type systems and behavioural equivalences. Type systems
permit to control resource accesses, as well as data and process movements. Be-
havioural equivalences, on the other hand, permit to state and verify properties of
distributed applications. Finally, we focus on the expressive power of the calculi by
providing encodings of each calculus into a simpler one. The overall expressive-
ness is then assessed via a formal comparison with the asynchronous π-calculus.

4

5

Acknowledgements

In the years of my PhD, I had the luck of being supervised by Rocco De Nicola
and Rosario Pugliese. Apart from their scientific support, that was really enor-
mous, I could also benefit from their friendship, humanity and honesty. Their
experience and their suggestions taught me the way theorems can be proved but,
mainly, gave me the enthusiasm of pursuing research. I wish their teachings will
always remain fixed in my mind. Rocco also allowed me to work in the group of
Florence, while living in Rome: this was extremely important for me and for my
family.

I am also incredibly indebted with Anna Labella, my MS supervisor. Her
friendship and her support are at the basis of my PhD: she introduced me to Rocco
and she always engaged me in collaborations at the Department of Informatics of
the University of Rome “La Sapienza”. I also thank the deans of this department
for the office given me in these years.

My research benefited from the collaborations with several, first-class authors.
A part from Rocco and Rosario, I mention (in alphabetical order) Michele Bore-
ale, Chiara Braghin, Matthew Hennessy, Anna Labella, Vladimiro Sassone and the
Concurrency and Mobility Group in Florence. Most of the work carried on with
them does not appear in this thesis; however, it strongly influenced all my research.
In particular, Michele introduced me the field of semantics, while Matthew and
Vladimiro very friendly hosted me in the Department of Informatics of the Univer-
sity of Sussex (Brighton, UK). Moreover, I also benefited from several discussions
with a lot of people: Cedric Fournet (that kindly hosted me at Microsoft Research,
Cambridge – UK), Jose Fiadeiro, Antonia Lopez and all the researchers involved
in the projects we were part of.

I am very grateful to Gérard Boudol and Michele Bugliesi that referred this
thesis. Their constructive attitude and the time they spent on these pages produced
a lot of precious suggestions that improved the quality of my work. I also thank
the members of my PhD jury for their efforts aimed at evaluating my work.

My research and my personal education required a lot of money, that were
provided by several companies and institutions. First of all, I really thank the
Microsoft Research at Cambridge (UK) that financed my PhD grant within the
project NAPI. In these years, I had the opportunity to attend several conferences,
schools and meetings. The money I spent were kindly provided by the EU and
by the Italian MURST by means of several research projects: Agile (EU-FET-
GC, Contract IST-2001-32747), Mikado (EU-FET-GC, Contract IST-2001-32222),
TOSCA (MURST-Cofin) and NAPOLI (MURST-Cofin). The EU also paid my stay
at Brighton in the summer 2003 with a Marie Curie fellowship.

6

Last but not least, I cannot describe the impact of my family in my work. My
parents always supported my education with their love (and their money) and al-
ways encouraged me to take my own choices. My mother was a fundamental
presence in our home and helped us even when her health suggested a rest. My
children, Martina and Niccolò, filled my life of joy. Finally, my wife Monica is the
essence of my happiness: she gave me the strength to react against the difficulties
of everyday life, she had the patience of bearing me and she was always the first
supporter of my works. This thesis is dedicated to all of them.

Contents

1 Introduction 9
1.1 Global Computers . 9
1.2 Formal Methods for Global Computers 11
1.3 The Language K . 13
1.4 Overview of the thesis . 15

2 A Family of Process Languages 17
2.1 K . 17
2.2 µK: micro K . 22
2.3 K: core K . 23
2.4 K: local core K . 23
2.5 Related Work: Languages for GCs 24

3 Types to Control Process Activities 29
3.1 Overview: the Approach and Key Principles 30
3.2 A Basic Type System . 32

3.2.1 Static Semantics . 32
3.2.2 Dynamic Semantics . 34
3.2.3 Type Soundness . 37

3.3 Dynamic Management of Capabilities 41
3.3.1 Language Semantics . 43
3.3.2 Type Soundness . 47
3.3.3 Example: Subscribing On-line Publications 50
3.3.4 Variations on Capability Management 52
3.3.5 Discussion on Capability Management 63

3.4 Fine-grained Controls on Process Activities 65
3.4.1 Fine-grained Types . 65
3.4.2 Static Semantics . 68
3.4.3 Dynamic Semantics and Type Soundness 69
3.4.4 Example: A Bank Account Management System 73

3.5 Related Work . 75

7

8 CONTENTS

4 Types for Confining Data and Processes 79
4.1 Controlling Data Movement via Types 80
4.2 Static Inference and Checking 81
4.3 Typed Operational Semantics . 85
4.4 Type Soundness . 87
4.5 Example: Implementing a Multiuser System 91
4.6 Discussion and Related Work . 96

5 Behavioural Theories 99
5.1 Touchstone Equivalences . 100
5.2 Bisimulation Equivalence . 104

5.2.1 Soundness w.r.t. Barbed Congruence 107
5.2.2 Completeness w.r.t. Barbed Congruence 113

5.3 Trace Equivalence . 117
5.3.1 Soundness w.r.t. May Testing 120
5.3.2 Completeness w.r.t. May Testing 123

5.4 Verifying a Protocol for the Dining Philosophers 129
5.5 Equational Laws and the Impact of Richer Contexts 132
5.6 Related Work . 134

6 Expressiveness of the Languages 137
6.1 Technical Preliminaries . 138
6.2 K vs µK . 140
6.3 µK vs K . 149
6.4 K vs K . 159
6.5 A Comparison with the πa-calculus 163

6.5.1 Encoding the πa-calculus in K 164
6.5.2 Encoding K in the πa-calculus 169

6.6 Concluding Assessment and Related Work 172

7 Conclusion and Future Work 177

A Symbols and Notations 179

Chapter 1

Introduction

Technological advances of both computers and telecommunication networks, and
development of more efficient communication protocols are leading to a ever-
increasing integration of computing systems and to diffusion of the so called global
computer (GC, for short). This is a massive networked and dynamically recon-
figurable infrastructure interconnecting heterogeneous, typically autonomous and
mobile components, that can operate on the basis of incomplete information.

A key research challenge is to devise theoretical models and calculi with a for-
mal semantics for specifying, programming and reasoning about global computing
systems. These calculi could provide a sound basis for constructing GCs which are
“sound by construction” and which behave in a predictable and analysable man-
ner. The crux is to identify what abstractions are more appropriate and to supply
foundational and effective tools to support development and certification (stating
and proving correctness) of global computing applications. This thesis aims at
presenting a fully accounted work along this direction.

Before starting with the technical details, we shall carry on a more exhaustive
discussion about the key features of GC and describe the state-of-the-art in this
field. A summary of the thesis is given at the end of this chapter.

1.1 Global Computers

GC merge the features of traditional distributed systems together with the features
of open systems. They borrow from distributed systems the intrinsic concurrency,
the distribution of components, the absence of a global state and the asynchrony
in changes of local states. They borrow from open systems the possibility for
new entities (usually called agents or processes) of dynamically enter and exit the
system, the heterogeneity and autonomy of components, the dynamic change of
system configuration and the mobility of programs/data.

Applications for GC distinguish themselves from traditional distributed appli-
cations in terms of scalability (huge number of users and nodes), connectivity (both
availability and bandwidth), heterogeneity (of operating systems and application

9

10 CHAPTER 1. INTRODUCTION

software), autonomy (of administration domains and mobile agents), and, mostly,
in terms of the ability of dealing with dynamic and unpredictable changes of their
network environment (e.g. availability of network connectivity, lack of resources,
node failures, network reconfigurations and so on). GC are fostering a new style of
distributed programming whose key principle is network awareness: applications
now have information on network settings and can adapt to their variation. Indeed,
applications often need to be aware of the administrative domains where they are
currently located, and need to know how to cross administrative boundaries or how
to access remote resources. Moreover, distant communication and use of remote
resources is also affected, e.g., by the physical distance between locations and by
congestion or (temporary/permanent/intermittent) failure of the underlying com-
munication network [34].

The explicit introduction of locations in the picture imposes some sensible pro-
gramming choices. Indeed, locations are abstractions for components (i.e., pro-
cesses or resources) which share some interface with the environment. The kind of
this interface may be, however, of various nature. For example, one can consider
locations as units of communication (i.e. they provide address spaces for inter-
processes exchanges), units of migration (i.e. co-located components move as a
whole), units of failure (i.e. co-located components fail as a whole), units of secu-
rity (i.e. co-located components share a security policy), and so on. Thus, every
language for GCs must clarify the intended meaning assigned to locations; usually,
the constructs of the language are then tailored accordingly.

The explicit knowledge of the distributed framework underlying a GC leads
to another relevant consideration: programmers can refer localities when writing
their programs. This fact requires the introduction in the language of constructs
to deal with network awareness. Moreover, such constructs should be simple and
powerful, while respecting the underlying meaning assigned to localities.

A suitable abstraction to design and program network-aware applications is
mobility. Its usefulness emerges when developing applications that can implement
both processes moving across the net to run over different hosts (mobile computa-
tion) and mobile devices with intermittent access to the network (mobile comput-
ing). In the literature, the term mobility is used to denote different mechanisms,
ranging from simple ones (e.g., downloading of code [7]) to more sophisticated
ones (supporting the migration of entire computations, e.g. [149, 2, 103]). Mo-
bility has produced new interaction paradigms [73], like Remote Evaluation, Code
On-Demand and Mobile Agents, that differ from traditional client-server patterns
because they permit exchanging active units of behaviour and not just of raw data.
These paradigms increase, e.g., network usage, fault-tolerance, service customisa-
tion, software maintenance and possibility of disconnected operations. They could
be used, e.g., in distributed information retrieval, advanced telecommunication ser-
vices (like video-on-demand), e-commerce and so on.

To support this programming style, new commercial/prototype program-
ming languages with suitable constructs have been designed (e.g. Agent TCL
[82], Facile [143], Java [7], Obliq [33], Pict [144, 127], TACOMA [97], Tele-

1.2. FORMAL METHODS FOR GLOBAL COMPUTERS 11

script/Odissey [148, 76]); this activity has involved several important ICT com-
panies (e.g. Dec, General Magic, IBM, Microsoft, Sun) and academic research
institutes. For a detailed analysis of several languages and calculi for mobility and
for a taxonomical comparison between them, see [21].

1.2 Formal Methods for Global Computers

GC programming has prompted the study of the foundations of languages with ad-
vanced features, including mechanisms for process mobility, for coordinating and
monitoring the use of resources, and for supporting the specification and the im-
plementation of security policies. In particular, several specification and analysis
techniques have been developed to build safe and trustworthy systems, to demon-
strate their conformance to specifications, and to analyse their behaviour.

Foundational calculi have been used to supply formal foundations to the de-
sign of programming languages. A foundational calculus is both a kernel program-
ming language and a computational model for describing and reasoning about the
behaviour of programs. It supplies a formal basis to identify and generate new
programming abstractions and analytical tools. A well-known example of foun-
dational calculus for programming languages is the λ-calculus (and its variants)
[8]. Several foundational languages, presented as process calculi or strongly based
on them, have been developed that have improved the formal understanding of the
complex mechanisms underlying network awareness and code mobility. We men-
tion the Ambient calculus [41], the Dπ-calculus [90], the DJoin calculus [71], the
Seal calculus [45] and Nomadic Pict [140]. Their programming models encompass
abstractions to represent the execution contexts where applications roam and run,
and primitive mechanisms for inter-process communication and coordination.

The most useful theoretical mechanisms to express properties of concurrent
systems are type systems, behavioural equivalences and (modal) logics. In this
thesis we shall explore the first two approaches; a study on modal logics for K
can be found in [106].

Type Systems. The idea of statically controlling the execution of a program via
types dates back in time. The traditional property enforced by types, i.e. type
safety, implies that every data will be used consistently with its declaration during
the computation (e.g., an integer variable will always be assigned integer values).
A similar approach has been incorporated in calculi for concurrent systems since
their origins; we would like to mention, among the others, the seminal works in
[112, 111, 152, 126, 136]. The basic typing principles presented in these works
have been then enriched to enforce more sophisticated properties in [135, 101,
102, 99, 100, 92, 95, 94, 20]. Essentially, in all these work, types monitor the
usage of communication media and, hence, well-typed programs are guaranteed to
respect some expected property (e.g., absence of communication errors due to arity
mismatching, liveness, linear usage of resources, or uniform receptiveness).

12 CHAPTER 1. INTRODUCTION

The type systems developed for GC languages (see [154, 128, 129, 88, 38, 105,
24, 25, 26, 43, 69, 59], among the others) evolve further to control resource access
and process mobility. Types should mainly monitor the use of communication
media and migrations. The main differences among the various type systems is
the way typing information is exploited (only at compile time or, partially, also at
run time) and the way it is stored in the system (centralised in some omniscient
authority, split in several disjoint parts and assigned to different locations, partially
split and partially shared between locations). In particular, we would like to remark
some crucial general points.

• A statically type checked language for GC is definitely interesting from a
theoretical point of view, but is quite unusable in practise. Indeed, the net
is usually too large to allow a preliminary type checking of all its nodes or,
even worse, not all nodes accept to be type checked (e.g. malicious nodes
hosting viruses or misbehaving processes). Hence, a certain amount of run
time overhead is necessary if we want to save the expressive power of the
languages (indeed, one can easily imagine very strict syntactic rules that,
even if protecting a net from misbehaviours, also reject legal nets). Never-
theless, global type checking can be used as a tool to ensure that partially
well-typed systems work correctly.

• The presence of a unique typing context (an omniscient authority) allows
for a greater number of static checks but it is quite unrealistic especially for
GCs, where different administrators are responsible for the assignment of
different policies. Thus, for the sake of realism, the typing information must
be somehow split between the domains of the calculi (i.e. the nodes of the
net). Again, maintaining some shared information simplifies and makes type
checking more efficient, but it is not always a possible assumption.

Logics. An approach that is somehow related to types is the use of modal and
temporal logics, i.e. standard first order logics equipped with reserved constructs
to express modalities, i.e. properties of systems. The typical modalities used in
concurrency (see, e.g., [86, 114]) express the ability of performing some kind of
actions. This can be used, for example, for establishing deadlock freedom, live-
ness and correctness with respect to a given specification. As we already said,
the same properties can be enforced with a type system. Indeed, like a type, a
modal formula is satisfied by all the terms that enjoy the properties described by
the formula. Differently from types, logics are ‘more abstract’ in that the formulae
only focus on some crucial behaviour and ignores the remaining one, while types
usually consider the overall term, not only some ‘sensible’ parts.

Logics take also advantage from the theory developed to automatically check
the satisfaction of a formula, by exploiting tools for model checking [51, 141, 150].

In the setting of GC, some more advanced logics have been recently pro-
posed in literature [40, 42, 32, 66] to establish such properties as resources al-
location, access to resources, information disclosure and spatial allocation of pro-
cesses/resources.

1.3. THE LANGUAGE KLAIM 13

Behavioural Equivalences. Behavioural theories are a well-known and estab-
lished tool to study system components in isolation, but compositionally [110, 65,
146, 147, 15, 115, 113, 96, 14]. Behavioural equivalences are usually exploited to
abstract away a process from its syntactic structure and isolate the essence of its
functionality. The theory can be used in several ways: to prove the soundness of
a protocol implemented in the language, to prove some form of correspondence
between a process written in a language and its encoding in another language, or
to provide the theoretical foundation of an optimisation procedure (that, e.g., takes
a process and produces a more efficient, but still functionally equivalent, one).

In order to be interesting, equivalences have to be congruences, i.e. they should
be closed w.r.t. all the possible contexts of the language. A natural way to de-
fine congruences is via an explicit universal quantification over language contexts;
however, this makes proving equivalences hard. Sometimes, this problem can be
overcome by defining the operational semantics of the languages via a labelled
transition system (LTS, for short), so that, when a system evolves, the action per-
formed is made apparent. In this way, the interaction with an external context is
recorded in the labels and the universal quantification can be dropped: equivalence
proving is made tractable. Two well-known and studied (tractable) equivalences
are bisimulation [123, 109] and trace [91, 65].

Developing equivalences for GCs is a non trivial task. Indeed, a GC usually re-
quires higher-order and asynchronous communication paradigms that complicates
the behavioural theory (see, e.g., [134, 137]). Bisimulation equivalences for some
GC calculi have been recently appeared in literature [85, 107, 28, 44, 108]

1.3 The Language K

Several foundational languages, presented as process calculi or strongly based on
them, have been developed that have improved the formal understanding of the
complex mechanisms underlying GCs. In our view, a language for global com-
puting should be equipped with primitives that support network awareness (i.e.
locations can be explicitly referenced and operations can be remotely invoked), dis-
connected operations (i.e. code can be moved from one location to the other and
remotely executed), flexible communication mechanisms (like distributed reposi-
tories [56, 49, 68] storing content addressable data), and remote operations (like
asynchronous remote communications). Among the proposals appeared in litera-
ture in the last decade, we want to mention the Ambient calculus [41], Dπ [85],
DJoin [71] and Nomadic Pict [140]. They are languages equipped with primitives
to represent at various abstraction levels the execution contexts of the net where ap-
plications roam and run, they provide mechanisms for coordinating and monitoring
the use of resources, and they support the specification and the implementation of
security policies. However, if one contrasts them with the above list of distinguish-
ing features of languages for GCs, one realizes that all of them fall short for at least
one of the targets.

14 CHAPTER 1. INTRODUCTION

K (Kernel Language for Agents Interaction and Mobility, [57]) is an exper-
imental language with programming constructs for GCs that combines the process
algebraic paradigm with the coordination-oriented one and that satisfies all the re-
quirements we mentioned in the previous paragraph. It rests on an extension of
the basic Linda coordination model [74] with multiple distributed tuple spaces. A
tuple space is a multiset of tuples that are sequences of information items. Tuples
are anonymous and associatively selected from tuple spaces by means of a pattern-
matching mechanism. The Linda model was originally proposed for parallel pro-
gramming on isolated machines. Multiple, possibly distributed, tuple spaces have
been advocated later [75] to improve modularity, scalability and performance. The
obtained communication model has a number of properties that make it appealing
for GCs (see, e.g., [56, 49, 68]). The model permits time uncoupling (data life
time is independent of the producer process life time), destination uncoupling (the
producer of a datum does not need to know the future use or the destination of that
datum) and space uncoupling (communicating processes need to know a single in-
terface, i.e. the operations over the tuple space). As shown in [68], where several
messaging models for mobile processes are examined, the blackboard approach,
of which tuple spaces are variants, is one of the most appreciated, also because of
its flexibility. Evidence of the success gained by the tuple space paradigm is given
by the many tuple space based run-time systems, both from industries (JavaSpaces
[6] and IBM TSpaces [151]) and from universities (PageSpace [50], WCL [131],
Lime [125] and TuCSoN [121]).

K handles multiple distributed tuple spaces that are placed on nodes of a
net. The nodes of a net can be thought of as physically distributed machines, or as
logical partitions of the same machine, or, broadly speaking, as shared resources.
Each node can be accessed through its locality and contains a single tuple space
and processes in execution. Localities can be dynamically created and are han-
dled via sophisticated scoping rules à la π-calculus. Processes can be executed
concurrently both at the same node or at different nodes and can perform a few ba-
sic operations over tuple spaces and nodes: retrieve/place tuples from/into a tuple
space, send processes for execution on (possibly remote) nodes, and create new
nodes. Interprocess communication is asynchronous: the producer (i.e. sender)
and the consumer (i.e. receiver) of a tuple do not need to synchronise.

K has a rich set of constructs that ease the task of programming and are at
the basis of the programming language X-K [11, 9], whose run-time system
[12, 52] is written in Java. The features it offers have proved to be suitable for pro-
gramming a wide range of distributed applications with agents and code mobility
[57, 58] that, once compiled in Java, can be run over different platforms.

One significant design choice underlying K is the possibility of abstracting
from the exact physical allocation of some resources in a net. Indeed, differently
from most process languages, K also considers for execution open processes,
i.e. processes containing unbound variables (that are traditionally considered as
programming errors). Unbound variables can be thought of as the symbolic names
for physical addresses (i.e., localities). The bindings between variables and locali-

1.4. OVERVIEW OF THE THESIS 15

ties are stored in the allocation environment of each node of the net. Thus, when a
(open) process uses an unbound variable, the variable is translated to a locality via
the allocation environment of the node where the action is executed. In this way,
programmers are not required to know the precise structure of the whole net; they
can structure programs over distributed environments while ignoring the precise
allocation of some resources.

K-derived Calculi. At least, two possible critiques can be moved to K,
that somehow contrast each other.

• The design choices described above make the language quite heavy both
in the static and in the dynamic semantics (see the type systems and the
operational semantics of [57, 58, 59]). Thus, no behavioural theory has ever
been developed and, more generally, it can be hardly considered as a process
calculus.

• On the other hand, it is also quite far from a real programming language
in that it lacks standard constructs like ‘if-then-else’, ‘while-do’, ‘for’ and
so on. Moreover, no default data type is provided (except from records, i.e.
tuples); thus, every kind of data structure and all the operations they usually
provide must be explicitly implemented.

In [9], the second problem has been addressed and a fully-fledged programming
language, X-K, has been introduced. Its run-time system is written in Java
and, thus, can run over several kinds of platforms. This thesis aims to remedy to
the first critique. We distill from the K paradigm some basic calculi; then, we
develop on them simple but meaningful type systems and semantic theories.

More precisely, in the next Chapter we present three calculi derived from
K. The first one is µK (micro-K) [80]. Mainly, it is obtained by
removing the allocation environments from K’s syntax. Thus, by following
the π-calculus, we can further simplify the language and assume just one syntactic
category of names (instead of distinguishing between localities and variables). A
second simplification step yields K (core K) [10]. It is obtained from
µK by removing the primitive read and by considering only monadic data (i.e.
tuples with only one field). Finally, by also excluding the possibility of remote
communications, we obtain K (local-K) [62]. In the latter calculus, the
only remote operation is code migration; thus, it is very similar to Dπ, except for
the fact that the communication is asynchronous and based on a shared memory
paradigm.

1.4 Overview of the thesis

“Thesis of this thesis” The work we shall present here lays the semantic foun-
dations of the K language. To this aim, we isolate a kernel calculus for K
that retains most of the expressive power of the original language, and use it to
formally study the semantic and type theoretic basis of the considered model.

16 CHAPTER 1. INTRODUCTION

Structure of the thesis In Chapter 2 we formally present K, i.e. its syntax
and operational semantics (via a structural equivalence and a reduction relation).
A simple programming example is then given to illustrate the usability of the lan-
guage features. Then, we formally present the three calculi µK, K and
K; in particular, µK will be the elected reference calculus.

In Chapter 3 we present type systems to implement resource access and mo-
bility control. We start with a very basic type system that controls the (local and
remote) operations a process wants to perform when running in a given node. Then,
we tune the basic setting to encompass more involved features, like dynamic modi-
fication of policies and a fine-grained control over the legal operations. This Chap-
ter is based on [80, 79]. In Chapter 4 we present another typing approach to control
the movement of data and processes, as presented in [81, 61]. Data are tagged with
a set of localities and they can cross only nodes whose addresses are in their tag.
The execution of processes is then constrained accordingly.

In all the typing theories we shall present in this work, we follow an approach
that mixes static and dynamic checks. This choice will be motivated in Chapter 3.
We want to anticipate that completely static disciplines can be developed: e.g., in
[61] we adapt the confining types presented in Chapter 4 to Dπ and to (a variant
of) the Ambient calculus, where static typing is only used. However, static typings
conflict with the principles underlying GC and tuple-spaces; thus, we are forced to
use more dynamic techniques.

In Chapter 5 we turn our attention to the behavioural semantics of our lan-
guages. To this aim, we first define a reduction barbed congruence and a may-
testing equivalence. As usual, such congruences rely on an universal quantification
over language contexts and, thus, are difficult to handle. We define a labelled tran-
sition system as an alternative (but equivalent) operational semantics and build up
over it non standard (tractable) bisimulations and trace equivalences. The theory
is then exploited to prove properties of a well-known distributed protocol, namely
the “Dining philosophers”. The work of this Chapter is an adaption of [60].

In Chapter 6 we will see that µK is a very good candidate to be the kernel
calculus underlying K. Indeed, by means of a few encodings, we shall show
that µK is a good compromise between the expressive power of K and that
of a more basic process calculus, like the asynchronous π-calculus. By examining
the properties enjoyed by the encodings, we shall also evaluate the impact of some
design issues underlying our calculi. These results are based on [62].

In Chapter 7 we conclude the thesis and show possible directions for future
work.

Chapter 2

A Family of Process Languages

We now formally present the languages we shall work with, namely K [57] and
three calculi derived from it. The first one is µK, where, essentially, the dis-
tinction between logical and physical names has been removed from K. From
µK, by only considering monadic communications and by removing the action
read, we obtain K. Finally, by also removing the possibility of performing re-
mote inputs/outputs (thus, by only relying on migration for using remote resources)
we obtain K.

2.1 K

The syntax of K is given in Table 2.1. We assume two disjoint countable
sets: L of locality names l, l′, . . . andV of variables x, y, . . . , X,Y, . . . , self, where
self is a reserved variable (see below). Notationally, we prefer letters X,Y, . . .
when we want to stress the use of a variable as a process variable and x, y, . . .
otherwise. We will use u for basic variables and localities.

Processes, ranged over by P,Q,R, . . ., are the K active computational units
and may be executed concurrently either at the same locality or at different locali-
ties. Processes are built from the terminated process nil and from basic actions by
using action prefixing, parallel composition and recursion. Basic Actions, ranged
over by a, permit removing/accessing/adding data from/to node repositories, acti-
vating new threads of execution and creating new nodes. Action new is not indexed
with an address because it always acts locally; all the other actions explicitly in-
dicate the (possibly remote) locality where they will take effect. Tuples, t, are the
communicable objects: they are sequences of names and processes. Templates, T ,
are patterns used to retrieve tuples and the pattern matching underlying the com-
munication mechanism is the one used for L [74].

Nets, ranged over by N,M,H,K, . . ., are finite collections of nodes. A node
is a triple l ::ρ C, where locality l is the address of the node, ρ is the allocation
environment (a finite partial mapping from variables to names, used to implement
dynamic binding of names) and C is the component located at l. Components,

17

18 CHAPTER 2. A FAMILY OF PROCESS LANGUAGES

N ::= 0
∣∣∣ l ::ρ C

∣∣∣ N1 ‖ N2

∣∣∣ (νl)N

C ::= 〈t〉
∣∣∣ P

∣∣∣ C1 | C2

P ::= nil
∣∣∣ a.P

∣∣∣ P1 | P2

∣∣∣ X
∣∣∣ rec X.P

a ::= in(T)@u
∣∣∣ read(T)@u

∣∣∣ out(t)@u
∣∣∣ eval(P)@u

∣∣∣ new(l)

t ::= u
∣∣∣ P

∣∣∣ t1, t2

T ::= u
∣∣∣ ! x

∣∣∣ ! X
∣∣∣ T1, T2

Table 2.1: K syntax

ranged over by C,D, . . ., can be either processes or data, denoted by 〈t〉. In the net
(νl)N, the scope of the name l is restricted to N; the intended effect is that if one
considers the net N1 ‖ (νl)N2 then locality l of N2 cannot be immediately referred
to from within N1. We say that a net is well-formed if for each node l ::ρ C we have
that ρ(self) = l, and, for any pair of nodes l ::ρ C and l′ ::ρ′ C′, we have that l = l′

implies ρ = ρ′. Hereafter, we will only consider well-formed nets.
Names and variables occurring in K processes and nets can be bound.

More precisely, prefix new(l).P binds l in P, and, similarly, net restriction (νl)N
binds l in N. Prefix in(. . . , ! , . . .)@u.P binds variable in P; this prefix is similar
to the λ-abstraction of the λ-calculus. Finally, rec X.P binds variable X in P. A
name/variable that is not bound is called free. The sets fn(·) and bn(·) (respectively,
of free and bound names of a term) and fv(·) and bv(·) (of free/bound variables) are
defined accordingly. The set n(·) is the union of the free and bound names and vari-
ables occurring in · . As usual, we say that two terms are alpha-equivalent, written
=α, if one can be obtained from the other by renaming bound names/variables. We
shall say that u is fresh for if u < n(). In the sequel, we shall work with terms
whose bound variables are all distinct and whose bound names are all distinct and
different from the free ones.

Remark 2.1.1 The language presented so far slightly differs from [57]: the two
differences are the absence of values and expressions, and the use of recursion
instead of process definitions. Values and expressions (e.g., integers, strings, ...)
are not included only to simplify reasoning, while recursion is easier to deal with
in a theoretical framework (the syntax of a recursive term already contains all the
code needed to properly run the term itself).

Notations and Conventions. We write A , W to mean that A is of the form W;
this notation is used to assign a symbolic name A to the term W. We shall use nota-
tion ũ to denote sequences of names or variables; this will be sometimes written as
ũi∈I , for an appropriate index-set I. Moreover, if ũ = (u1, ..., un), we shall assume
that ui , u j for i , j. If ũ1 = (u1

1, . . . , u
1
n) and ũ2 = (u2

1, . . . , u
2
m) then ũ1, ũ2 will

denote the sequence of pairwise distinct elements (u1
1, . . . , u

1
n, u

2
1, . . . , u

2
m). When

convenient, we shall regard a sequence simply as a set.
We shall sometimes write in()@l, out()@l and 〈〉 to mean that the argument of

2.1. KLAIM 19

(S-PZ) N ‖ 0 ≡ N

(S-PC) N1 ‖ N2 ≡ N2 ‖ N1 ,

(S-PA) (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(S-A) N ≡ N′ if N =α N′

(S-RC) (νl1)(νl2)N ≡ (νl2)(νl1)N

(S-E) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l < fn(N1)

(S-A) l ::ρ C ≡ l ::ρ (C | nil)

(S-C) l ::ρ C1|C2 ≡ l ::ρ C1 ‖ l ::ρ C2

(S-R) l ::ρ rec X.P ≡ l ::ρ P[rec X.P/X]

Table 2.2: K Structural Equivalence

the actions or the datum are an empty sequence of items. We usually omit trailing
occurrences of process nil and write Π j∈J Wj for the parallel composition (both ‘|’
and ‘‖’) of terms (components or nets, resp.) Wj. Similarly, we write {. . .} j∈J to
mean

⋃
j∈J{. . .}.

We also assume that allocation environments act as the identity on locality
names. This assumption simplifies the operational semantics.

Finally, for the sake of readability, in the examples we will omit trailing
occurrences of process nil, and use parameterised process definitions (that can
be easily implemented in our setting using out/in operations to pass/recover the
parameters). Also, some kind of basic values, like integers and strings, will be
silently assumed. They can be implemented by following [112].

The operational semantics relies on a structural congruence relation, ≡, bring-
ing the participants of a potential interaction to contiguous positions, and a reduc-
tion relation, 7−→, expressing the evolution of a net. The structural congruence
is the least congruence closed under the axioms given in Table 2.2. Most of the
rules are standard [112], while laws (S-A) and (S-C) are peculiar to our
setting. The first one states that nil is the identity for ‘|’; the second one turns a
parallel between co-located components into a parallel between nodes (thus, it is
also used to achieve commutativity and associativity of ‘|’). The reduction relation
is given in Table 2.3, where we use two auxiliary functions:

1. a tuple/template evaluation function, E[[]]ρ, to transform variables accord-
ing to the allocation environment of the node performing the action whose
argument is . The main clauses of its definition are given below:

E[[u]]ρ =

u if u ∈ L
ρ(u) if u ∈ dom(ρ)
UNDEF otherwise

E[[P]]ρ = P{ρ}

where P{ρ} denotes the process obtained from P by replacing any free oc-
currence of a variable x that is not within the argument of an eval with ρ(x).

20 CHAPTER 2. A FAMILY OF PROCESS LANGUAGES

(R-O)
ρ(u) = l′ E[[t]]ρ = t′

l ::ρ out(t)@u.P ‖ l′ ::ρ′ nil 7−→ l ::ρ P ‖ l′ ::ρ′ 〈t
′〉

(R-E)
ρ(u) = l′

l ::ρ eval(P2)@u.P1 ‖ l′ ::ρ′ nil 7−→ l ::ρ P1 ‖ l′ ::ρ′ P2

(R-I)
ρ(u) = l′ match(E[[T]]ρ, t) = σ

l ::ρ in(T)@u.P ‖ l′ ::ρ′ 〈t〉 7−→ l ::ρ Pσ ‖ l′ ::ρ′ nil

(R-R)
ρ(u) = l′ match(E[[T]]ρ, t) = σ

l ::ρ read(T)@u.P ‖ l′ ::ρ′ 〈t〉 7−→ l ::ρ Pσ ‖ l′ ::ρ′ 〈t〉

(R-N) l ::ρ new(l′).P 7−→ (νl′)(l ::ρ P ‖ l′ ::ρ[l′/self] nil)

(R-P)
N1 7−→ N′1

N1 ‖ N2 7−→ N′1 ‖ N2

(R-R)
N 7−→ N′

(νl)N 7−→ (νl)N′

(R-S)
N ≡ M 7−→ M′ ≡ N′

N 7−→ N′

Table 2.3: K Reduction Relation

Clearly, E[[P]]ρ is UNDEF if ρ(x) is undefined for some of these x.1 We
shall write E[[t]]ρ = t′ to denote that the evaluation of t using ρ succeeds
and returns t′.

2. a pattern matching function, match(·, ·), to verify the compliance of a tuple
w.r.t. a template and to associate values (i.e. names and processes) to vari-
ables bound in templates. Intuitively, a tuple matches a template if they have
the same number of fields, and corresponding fields match (where a bound
name matches any value, while two names match only if they are identical).
Formally, function match is defined by the following rules:

match(l, l) = ε match(!x, l) = [l/x]

match(!X, P) = [P/X]
match(T1, t1) = σ1 match(T2, t2) = σ2

match(T1,T2 , t1, t2) = σ1 ◦ σ2

1The definition of E[[P]]ρ given here slightly differs from the definition in [57]. There, E[[P]]ρ
always succeeds since it leaves unresolved the x such that ρ(x) = UNDEF. In [57], processes with
unresolved variables can occur as tuple fields (their free variables can be resolved successively) but
their execution gets stuck when trying to perform an action involving unresolved variables. In the
definition given here, unresolved processes cannot occur within evaluated tuples; this simplifies the
work presented here without radically affecting the principles underlying K.

2.1. KLAIM 21

where we let ‘ε’ to be the empty substitution and ‘◦’ to denote substitutions
composition. Here, a substitution σ is a mapping of names and processes for
variables; Pσ denotes the (capture avoiding) application of σ to P. More-
over, we assume that Pσ yields a process written according to the syntax of
Table 2.1.

The intuition behind the operational rules of K is the following. In rule
(R-O), the local allocation environment is used both to determine the name of
the node where the tuple must be placed and to evaluate the argument tuple. This
implies that if the argument tuple contains a field with a process, the corresponding
field of the evaluated tuple contains the process resulting from the evaluation of its
free variables. Hence, processes in a tuple are transmitted after the interpretation
of their free variables through the local allocation environment. This corresponds
to a static scoping discipline for the (possibly remote) generation of tuples. A
dynamic linking strategy is adopted for the eval operation, rule (R-E). In this
case the free variables of the spawned process are not interpreted using the local
allocation environment: the linking of variables is done at the remote node. Rules
(R-I) and (R-R) require existence of a matching datum in the target node.
The tuple is then used to replace the free occurrences of the variables bound by the
template in the continuation of the process performing the actions. With action in,
the matched datum is consumed while with action read it is not. Finally, in rule
(R-N), the environment of a new node is derived from that of the creating one
with the obvious update for the self variable. Therefore, the new node inherits all
the bindings of the creating node.

Notice that, even if there exist prefixes for placing data to nodes, no synchro-
nization takes place between (sending and receiving) processes: hence, the commu-
nication paradigm is really asynchronous. On the contrary, a sort of synchroniza-
tion takes place between a sending process and its target node (see rules (R-O)
and (R-E)). A similar synchronization takes place between the node hosting
a datum and the process looking for it (see rules (R-I) and (R-M)).

Remark 2.1.2 The main characteristic of K’s communication mechanisms is
the possibility of retrieving data while partially analysing them (by exploiting the
pattern matching function). As we shall see in Chapter 6, the pattern matching is
very powerful and expressive. Nevertheless, its distributed implementation is quite
lightweight: in X-K [9], the process performing an in/read first retrieves the
tuple; it then performs the pattern matching locally and, in case of failure, restores
the tuple at its original place.

Programming in K: A printing service. To illustrate K’s paradigm and
its usefulness to implement distributed applications with mobile code, we now give
a simple example. We suppose to have two departments modelled as network nodes
with addresses dep1 and dep2, respectively. We also have one printer associated
to each of them; this is again modelled as two distinct network nodes with address

22 CHAPTER 2. A FAMILY OF PROCESS LANGUAGES

prnt1 and prnt2. The logical name print is resolved both by ρ1 and by ρ2, the
allocation environments of the departments; as expected, we let ρ1(print) = prnt1

and ρ2(print) = prnt2. Moreover, we let ρ1(self) = dep1 and ρ2(self) = dep2.
The printers are installed by running the following code:

Inst , < start − up code > .out(“printer address : ”, print)@self

This process first executes some start-up activity and then, once the printer has been
successfully installed, it publishes its address. If executed at depi (for i = 1, 2), the
resulting net will be

dep1 ::ρ1 . . . | 〈“printer address : ”, prnt1〉 ‖ prnt1 :: . . .
‖ dep2 ::ρ2 . . . | 〈“printer address : ”, prnt2〉 ‖ prnt2 :: . . .

This reductions emphasise the use of the local allocation environment when per-
forming actions out. Now, a client can send papers for printing in two ways:

1. he can retrieve (from a possibly remote node) the address of the printer of
the first department and directly send his paper to the printer. This is imple-
mented as

RemPrint , read(“printer address : ”, !y)@dep1.

out(“print”, paper)@y

2. he can spawn a process that locally requires the print. This can be imple-
mented as

LocPrint , eval(out(“print”, paper)@print)@dep1

This solution relies on the dynamic handling of logical names; indeed, the
name print is resolved only after migration by exploiting the association
[print 7→ prnt1] in ρ1.

2.2 µK: micro K

The calculus µK has been derived in [80] from K by removing allocation
environments and the possibility of having pieces of code as tuple fields.2 Its syntax
is given in Table 2.4. The removal of allocation environments makes it possible to
merge together names and variables. Thus, we only assume a countable set N
of names l, l′, . . . , u, . . . , x, y, . . . , X,Y, Names provide the abstract counterpart
of the set of communicable objects and can be used as localities, basic variables
or process variables: we do not need to distinguish between these three kinds of
objects anymore. Like before, we prefer letters l, l′, . . . when we want to stress the
use of a name as a locality, x, y, . . . when we want to stress the use of a name as a

2.3. CKLAIM: CORE KLAIM 23

N ::= 0
∣∣∣ l :: C

∣∣∣ N1 ‖ N2

∣∣∣ (νl)N

C ::= like in Table 2.1

P ::= like in Table 2.1

a ::= like in Table 2.1

t ::= u
∣∣∣ t1, t2

T ::= u
∣∣∣ ! x

∣∣∣ T1, T2

Table 2.4: µK Syntax

basic variable, and X,Y, . . . when we want to stress the use of a name as a process
variable. We will use u for basic variables and localities.

Notice that µK can be considered as the largest sub-calculus of K
where tuples do not contain any process, allocation environments are empty and
all processes are closed. These modifications sensibly simplifies the operational
semantics of the language. The structural congruence is readily adapted from Ta-
ble 2.2; the key laws to define the reduction relation are given in Table 2.5. Notice
that now tuples/templates evaluation function is useless and substitutions are (stan-
dard) mappings of names for names. Hence, the definition of function match is
given by the following laws:

match(l, l) = ε

match(!x, l) = [l/x]

match(T1, t1) = σ1 match(T2, t2) = σ2

match(T1,T2 , t1, t2) = σ1 ◦ σ2

2.3 K: core K

The calculus K has been introduced in [10] by eliminating from µK ac-
tion read and by only considering monadic communications (i.e. tuples and tem-
plates containing only one field). The formal syntax of K is given in Table 2.6.
Notice that K is a sub-calculus of µK and thus it inherits from µK
the operational semantics.

2.4 K: local core K

K is the version of K where actions out and in can be only performed
locally, i.e. the only remote primitive is action eval (this is the principle underlying
the language Dπ, [90]). The syntax of the new calculus can be derived from the
syntax of K given in Table 2.6 by using the following production for process
actions:

a ::= in(T)
∣∣∣ out(t)

∣∣∣ eval(P)@u
∣∣∣ new(l)

2The calculus used here slightly differs from the calculus given in [80]: the differences are the
absence of values and expressions (to simplify reasoning) and the use of recursion. These simplifi-
cations have been motivated in Remark 2.1.1.

24 CHAPTER 2. A FAMILY OF PROCESS LANGUAGES

(R-O) l :: out(t)@l′.P ‖ l′ :: nil 7−→ l :: P ‖ l′ :: 〈t〉

(R-E) l :: eval(P2)@l′.P1 ‖ l′ :: nil 7−→ l :: P1 ‖ l′ :: P2

(R-I)
match(T, t) = σ

l :: in(T)@l′.P ‖ l′ :: 〈t〉 7−→ l :: Pσ ‖ l′ :: nil

(R-R)
match(T, t) = σ

l :: read(T)@l′.P ‖ l′ :: 〈t〉 7−→ l :: Pσ ‖ l′ :: 〈t〉

(R-N) l :: new(l′).P 7−→ (νl′)(l :: P ‖ l′ :: nil)

and rules (R-P), (R-R) and (R-S) from Table 2.3

Table 2.5: µK Reduction Rules

We want to remark3 that K is a sub-calculus of K: indeed, it is the
largest sub-calculus of K closed under the predicate{, defined as

N { , N = 0 ∨ (N = (νl)N′ ∧ N′ {) ∨

(N = N1 ‖ N2 ∧ N1 { ∧ N2 {) ∨ (N = l :: C ∧ C {l)

C {l , C = 〈l′〉 ∨ (C = P ∧ P{l) ∨

(C = C1|C2 ∧ C1 {l ∧ C2 {l)

P{u , (P = nil, X) ∨ (P = eval(Q)@v.R ∧ Q{v ∧ R{u) ∨

(P = P1|P2 ∧ P1 {u ∧ P2 {u) ∨

(P = in(T)@u.Q, out(t)@u.Q, new(l).Q, rec X.Q ∧ Q{u)

The only relevant cases are those for prefixes in/out/eval: they ensure that actions
in and out only specify as target node the node where the action is executed (i.e.
the u decorating{u).

The operational semantics of K is obtained by replacing rules (R-O)
and (R-I) of Table 2.5 with the following ones:

(R-O) l :: out(l′).P 7−→ l :: P | 〈l′〉

(R-I) l :: in(T).P | 〈l′〉 7−→ l :: Pσ if match(T, l′) = σ

2.5 Related Work: Languages for GCs

To conclude this chapter, we shall describe some of the most successful calculi
including features for code distribution and mobility. We present the languages by
grouping them according to the underlying design principles. Thus, we start with
some distributed versions of the CCS [110] and of the π-calculus [113]; then, we

3This allows us to put an arrow ‘↪→’ between K and K in Table 6.8 (see Chapter 6).

2.5. RELATED WORK: LANGUAGES FOR GCS 25

N ::= like in Table 2.4

C ::= like in Table 2.4

P ::= like in Table 2.4

a ::= in(T)@u
∣∣∣ out(t)@u

∣∣∣ eval(P)@u
∣∣∣ new(l)

t ::= u

T ::= u
∣∣∣ !x

Table 2.6: K Syntax

present the Ambient calculus [41] and other calculi derived from it. Here we only
comment on the design choices underlying the various languages. More technical
comments on the typing theories and behavioural semantics for (some of) these
calculi will be given at the end of Chapters 3, 4 and 5.

Distributed versions of CCS

In the eighties and nineties, many CCS-like process calculi have been enriched
with localities to explicitly describe the distribution of processes [47, 54, 22, 46].
The aim was mainly to provide these calculi with non interleaving semantics or,
at least, to differentiate processes’ parallel components (thus obtaining more in-
spective semantics than the interleaving one). This line of research is far from the
principles of GC, where localities are used as a mean to make processes network
aware, thus enabling them to refer the network locations as target of remote com-
munications or as destination of migrations. As we already said, localities in GCS
are not only considered as units of distribution but, according to the case, as units
of mobility, of communication, of failure or of security.

A more recent CCS-based calculus is [130]. There, processes run over the
nodes of an explicit, flat and dynamically evolving net. Nodes can fail thus causing
loss of all hosted processes. There are explicit operations to kill nodes and to query
the status of a node; thus, failures can be detected. The operational semantics
uses information on the state of nodes (either failed or alive), but it is otherwise
very close to that of CCS. The idea is that distribution is transparent in absence of
failures.

Distributed versions of the π-calculus

Dπ [90]. Dπwas firstly introduced in [128]. The language was equipped with com-
plex features like dynamically evolving, hierarchically structured nets and primi-
tives for moving part of the hierarchy, for moving code and for killing alive loca-
tions. The language was also equipped with a primitive to test the state of locations,
thus enabling failure detection. The original language has been simplified in [90];
the calculus contains primitives for code movement and creation of new locali-
ties/channels in a net with a flat architecture. Communication occurs only between
co-located processes; thus, processes must move to communicate.

26 CHAPTER 2. A FAMILY OF PROCESS LANGUAGES

Dπλ [153, 154]. Dπλ enhances Dπ by integrating the call-by-value λ-calculus
and the π-calculus, together with primitives for process distribution and remote
process creation. The communication is higher-order, in that process code can
be transmitted and retrieved over channels. Localities are anonymous (i.e. not
explicitly referrable by processes) and simply used to express process distribution.
Their function is to allow the development of fine-grained typing theories (this
aspect will be illustrated and discussed in Chapter 3). This design choice, together
with the absence of a migration primitive, makes Dπλ unsuited for programming
GCS. Indeed, it better models traditional distributed and multi-threaded systems,
where distribution is transparent.

π1`-calculus [4]. The π1`-calculus extends the π-calculus to encompass distribution
and mobility. Locations can host processes, can asynchronously fail and can be
killed by other processes. The language enables creation of new locations and
channels, permits testing for liveness of locations and supports code movement. A
channel c allocated at ` is accessed simply by naming c, provided that name c is
known and ` is alive.

DJoin [71]. In the Distributed Join calculus, located mobile processes are hierar-
chically structured and form a tree-like structure evolving during the computation.
Entire subtrees, and not only single processes, can move. Technically, nets are
flat collections of named nodes, where the name of a node indicates the nesting
path; e.g., a node whose name is l1. · · · .lk.l represents a node referrable to via
the unique name l and that is nested in lk, that is a node contained in lk−1 and so
on. Communication in DJoin takes place in two steps: firstly, the sending process
sends a message on a channel; then, the ether (i.e. the environment containing all
the nodes) delivers the message to the (unique) process that can receive on that
channel. Failures are modelled by tagging locality names: e.g. the (compound)
name · · · .lΩi . · · · .l states that l is a node contained in a failed node li and, thus, l
itself is failed. The Ω at li has been caused by execution of the primitive halt by a
process running at li. Failures can be detected by using the primitive f ail. Failed
nodes cannot host running computations but can receive data/code/sublocations
that, however, once arrived in the failed node, become definitely stuck.

dpi [139]. It is a distributed process calculus similar to the DJoin in that it com-
bines the channel-based communication mechanism of the π-calculus with the hi-
erarchical organisation and mobility of localities. However, differently from the
DJoin, channels are not explicitly allocated by the syntax and no notion of failure
is present. Channels can be used remotely or locally; a channel is local if it is
accessed only by co-located processes.

Nomadic Pict [140, 145]. It is a distributed and agent-based version of P [127],
a concurrent language based on the asynchronous π-calculus [93, 19]. The lan-
guage relies on a net (a collection of named sites) where named agents can roam.

2.5. RELATED WORK: LANGUAGES FOR GCS 27

Both agents and sites are uniquely named. Channels are not located, but communi-
cation between two agents can take place only if they are located at the same node
(thus no low-level remote communication is allowed). However, the language also
provides a (high-level) primitive for remote communication, that transparently de-
livers a message to an agent even if the latter is not co-located with the sender. This
primitive is then encoded in the low-level calculus by a central forwarding server,
implemented by only using the low-level primitives.

Confined-λ [98]. Confined-λ is a higher-order functional language that supports
distributed computing by allowing expressions at different localities to remotely
communicate via located channels. Confined-λ is a typed language: the transmis-
sible process abstractions can be parameterised with respect to channel names, and
the types of transmissible values permit restricting the subsystem where a value
can freely move (for more comments on the type system, see Chapter 4).

Ambient-like languages

The Ambient Calculus [41]. The Ambient calculus is an elegant notation to model
hierarchically structured distributed applications. The calculus is centred around
the notion of connections between ambients, that are at the same time administra-
tive domains and computational environments. The focus of the calculus is on the
mobility primitives, for entering, exiting and dissolving ambients. Each primitive
can be executed only if the ambient hierarchy is structured in a precise way; e.g.,
an ambient n can enter an ambient m only if n and m are sibling, i.e. they are
both contained in the same ambient. Inter-processes communication happens in-
side an ambient; it is asynchronous and anonymous (i.e. no named communication
medium is used).

Remarkably, as shown in [41], the primitives in, out and open are enough to
achieve Turing completeness: Turing machines and arithmetic can be coded in a di-
rect way. These primitives can also encode communication, but explicit operations
for sending and receiving messages are added for the sake of programmability.

Safe Ambients [105]. Even if elegant and concise, the Ambient calculus suffers
from the lack of a rich equational theory. This is mainly caused by the so called
grave interferences. Roughly speaking, these are cases where the inherent nonde-
terminism of ambient movement goes wild. More precisely, an ambient system
is said interferent whenever it contains a sub-term that can reduce in two or more
ways that are logically different. Hence, it turns out that it is extremely difficult to
write programs which preserve their behaviour in all contexts and so the algebraic
theory of the calculus is poor.

In [105], several examples of interfering systems are provided. The analysis
of their behaviour is then exploited to motivate the introduction of co-capabilities.
In this way, the execution of each action must be authorised by the target ambi-
ent; for example, if n wants to enter m (by exercising the capability in m), then
m has to accept it (by exercising the co-capability in m). Then, each movement

28 CHAPTER 2. A FAMILY OF PROCESS LANGUAGES

is executed as the effect of a synchronisation between a capability and the corre-
sponding co-capability. In this way, grave interferences can be better controlled
and the behavioural theory of the calculus gets richer.

[107] enhances the previous framework by controlling the execution of an ac-
tion by also exploiting passwords. Now, to execute an action, it is both required
that the target ambient enables the action (via a co-capability) and that the exer-
cising ambient provides a legal password to perform the action. This is a mean to
achieve a sound and complete bisimulation, as further discussed in Chapter 5.

Boxed Ambients [25]. A major problem in the Ambient calculus is the open primi-
tive. Indeed, by exercising it, the executing ambient embodies all the content of the
dissolved ambient, including its capabilities and migration strategies. Of course,
there is nothing wrong with that but it must be used very carefully. Unluckily, in
Ambient its use is quite common, since it is the only mean to enable the commu-
nication between processes located in different ambients.

The key observation leading to Boxed Ambient [25] is that the expressiveness
of the paradigm and the underlying philosophy are maintained by allowing a very
constrained form of remote communication. Indeed, a part from local exchanges,
the calculus enables the execution of input/output actions towards the father (i.e.,
the enclosing ambient) or the children (i.e., the enclosed ambients). Thus, the open
primitive is dropped and directed communications replace it.

However, the key design principles of Boxed Ambients introduce several form
of non-local communication interferences (similar to the grave interferences of
[105]). Thus, in [28] co-capabilities and passwords (akin to [107]) are added. The
behavioural semantics of the calculus is simplified, even if its syntax and opera-
tional semantics are slightly complicated.

The Seal Calculus [45]. Similarly to Boxed Ambients, the Seal calculus is a vari-
ant of Ambient without the open primitive and with the possibility of having par-
ent/child synchronous communication. Differently from all the previous variants
of Ambient, communication is channel-based (à la π-calculus). Moreover, whole
ambients can be passed through a channel. This is the only way to program ambi-
ent movements: indeed, no primitive such as in or out is present. Thus, an ambient
can move from n to m if it is sent along a channel by a process within n and is
received by a process within m that puts it in execution. Hence, the calculus is sim-
ilar to Safe Ambients, in that movement capabilities (i.e. output actions containing
an ambient) can be reduced only if appropriate co-capabilities (input actions over
the same channel) are present in the receiving ambient.

Mobile Resources [77]. The calculus is a CCS-derived language whose general
structure has been inspired by Ambient: resources are contained within a named
slot (the equivalent of an ambient) and, since resources can be slot themselves,
there is a hierarchical nesting structure. Resources can be moved within the hierar-
chy and their movement crosses slot boundaries with the assurance that no resource
can be created (i.e. capacity constraints are respected).

Chapter 3

Types to Control Process
Activities

As we said in the Introduction, code mobility is a fundamental aspect of global
computing; however it gives rise to a lot of relevant security problems, other than
attacks to inter-process communication over the communication channels (e.g.
traffic analysis, message modifications/forging). For instance, malicious mobile
processes can attempt to perform illegal actions while running in the nodes hosting
them. Hence, a server receiving a mobile process for execution needs to impose
strong requirements to ensure that the incoming process does not violate the access
control policy it imposes on its code. Such problems have increasingly importance
due to the spreading of security critical applications, like, e.g., electronic commerce
and on-line bank transactions.

Several alternative approaches have been exploited to enforce access control
policies in distributed computing systems, ranging from type systems [59, 38, 90]
to control and data flow analysis [120, 67, 89], from abstract interpretation
[83, 104] to proof carrying code [117]. The approaches may differ in the level
of trust required, the flexibility of the enforced policy and their costs to compo-
nents producers and users. Some sensible and flexible language-based security
techniques are investigated in [70].

In this chapter, we present the type theory we developed to control resource
accesses and process mobility in µK. We start by intuitively illustrating our
approach and by providing some key principles that drew our works (Section 3.1).
Then, in Section 3.2, we present a basic capability-based type system that meets our
requirements. Sections 3.3 and 3.4 contain two (orthogonal) evolutions of the basic
system: the first one shows how our theory can be tailored to allow dynamic man-
agement of capabilities, the second one refines our types to express finer-grained
policies. Finally, Section 3.5 reviews some related papers appeared in literature on
this subject, and contrasts our theory against them.

29

30 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

3.1 Overview: the Approach and Key Principles

The idea of statically controlling the execution of a program via types dates back
in time. However, to better deal with global computing problems, we generalised
traditional types to types describing process behaviours. Intuitively, these types
provide information about the intentions of processes, namely the operations pro-
cesses can perform at a specific locality (downloading/consuming tuples, produc-
ing tuples, activating processes and creating new nodes). By using types, each
node comes equipped with a policy, specified in terms of execution capabilities:
the policy of node l describes the actions processes located at l are allowed to exe-
cute. Type checking will guarantee that only processes whose intentions match the
rights provided by the node executing them are allowed to proceed.

Capabilities and Types

To formalise the intuitions we have just outlined, we first define capabilities and
types.

Definition 3.1.1 (Capabilities and Types) The set of capabilities C is
{r, i, o, e, n}. We let Π be the powerset of C and use π to range over Π.

Types, ranged over by δ, are functions mapping L into Π such that δ(l) , ∅
only for finitely many ls.

For the sake of readability, a type mapping li to a non-empty πi, for i = 1, . . . , k,
will be written as [li 7→ πi]i=1,...,k. Intuitively, r, i, o, e and n indicate the operation
whose name begins with it. For example, e is used to control process mobility; thus,
the capability [l′ 7→ {e}] in the type of locality l will enable processes running at l to
perform eval actions over l′. Notice that, once spawned from l to l′, a process can
take advantage of the capabilities offered by l′ and will not use anymore capabilities
offered by l. This models real-life scenarios and supports our view of policies as
descriptions of local behaviours. Thus, if l does not allow inputs from l′′ while l′

does, then the agent eval(in(· · ·)@l′′)@l′ is perfectly legal at l.
To simplify notation, we permit that n ∈ δ(l′) also if δ is the type of a node

l , l′; indeed, the fact that n ∈ δ(l′) or not is of no importance because the syntax
prescribes to execute action new always locally.

We now introduce an ordering relation over types to formalise degrees of re-
strictions among policies of nodes. To this aim, we start with defining an ordering
over sets of capabilities that will induce the desired ordering on types.

Definition 3.1.2 π1 vΠ π2 if and only if π2 ⊆ π1.

Thus, if π1 vΠ π2 then π1 enables at least the actions enabled by π2. Here, the order-
ing v

Π
is borrowed from [80]. However, the type theory we develop is completely

parametric with respect to the used ordering over capabilities and other alternatives
are possible (see, e.g., [59]).

3.1. OVERVIEW: THE APPROACH AND KEY PRINCIPLES 31

By taking advantage of the fact that types are functions, we express subtyping
in terms of the standard pointwise inclusion of functions.

Definition 3.1.3 (Subtyping) We say that δ1 is a subtype of δ2 (or that δ2 is a
supertype of δ1), written δ1 � δ2, if δ2(l) v

Π
δ1(l) for every l ∈ L.

Subtyping formalises the idea that, if δ1 � δ2, then δ1 expresses a less permissive
policy than δ2. Notice that subtyping is easily decidable because we need to check
δ2(l) v

Π
δ1(l) only for those l such that δ1(l) , ∅.

Typed syntax

The syntax of µK, as reported in Table 2.4, must be slightly modified to intro-
duce typing information in the syntax. First, nodes must be equipped with a type
describing their policy and become triples of the form

l ::δ C

Moreover, dynamically created nodes (via the action new) must also be associated
with a policy. We can decide to assign them some kind of ‘default policy’ (e.g.,
the policy of their creators) but, for the sake of flexibility, we prefer to explicitly
specify a δ as argument of actions new, that now become

new(l : δ)

Finally, we also find it convenient to require an explicit declaration of how a name
received via an action read/in is used by the continuation process. Thus, names
bound by templates are now annotated with a set of capabilities π and take the form

! x : π

Intuitively, in read(!x : π)@l.P process P only needs the capabilities [x 7→ π] to
be executed, i.e. π specifies the access rights corresponding to the operations that
P wants to perform over (the name that will replace) x.1

Our Approach

In order to justify our typing approach, we first sketch how a completely static
type system could be developed. We shall see, however, that this approach violates
some principles of global computing and of tuple spaces; this will lead us to a more
suitable typing approach.

First, for every action of the form eval(P)@l in the net, we have to verify that P
complies with δ, where δ is the type associated to the node with address l in the net.

1Notice that the π associated to x is not strictly necessary: it can be inferred by examining how
the continuation process P uses x. However, its presence enables a simpler static type checking.
An example where a typing information is inferred from the continuation process will be given in
Section 4.2; a similar approach can be used here.

32 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

This implies that a full knowledge of the net is needed during type checking. The
problem here is that, in the setting of global computers, one would desire to have
checkings that could be performed locally, i.e. that could be carried on without any
remote information.

The case for actions out, read and in is even more problematic. Indeed, we
have to statically control the exchanges that can take place within a net. By follow-
ing the approach of [126] for the π-calculus, we could associate to the tuple space
of a node l a sorting that constraints the kind of tuples the node can host (i.e., the
tuple space only hosts tuples ‘of the same shape’). While this can be acceptable for
a channel, that traditionally represents a port or a method invocation, this is quite
unrealistic for a tuple space. Indeed, tuple spaces usually model large portions of
memory, that can unlikely store data of the same kind.

We now sketch the solutions we propose to overcome the problems presented
above. Actions eval are typed akin to [88], by deferring at runtime the typing of
spawned agents. Thus, when l tries to spawn a process P to l′ (whose policy is δ′),
we require that

δ′ `l′ P

This judgement intuitively means that P can run at l′ without violating δ′.
Compliance between the typing information in a tuple and that in a template is

checked when executing the corresponding actions in and read; thus, no sorting is
assigned to tuple spaces. This does not make the semantics too inefficient because
(R-I)/(R-R) already invoke function match. Thus, we only need to charge
match with the burden of verifying type compliance between the accessed tuple, t,
and the template T used to access it.

3.2 A Basic Type System

We now formalise the intuitive ideas presented in the last section. As we already
said, each node is decorated with a type that determines the access policy of the
node in terms of access rights on the other nodes of the net. We show the mixture
of static and dynamic checks needed to ensure the controls on resource accesses
and processes mobility we aim at, and we prove soundness of our solution.

3.2.1 Static Semantics

A static type checker verifies whether the processes in the net do comply with the
access control policies of the nodes where they are allocated. Thus, for each node
of a net, say l ::δ C, the static type checker procedure can determine if the actions
that C intends to perform when running at l are enabled by the access policy δ or
not. Moreover, the type checker verifies that the declarations made for localities
bound by actions in and read are consistent with the way in which the continuation
process uses them.

3.2. A BASIC TYPE SYSTEM 33

(T-N)

Γ `l nil

(T-D)

Γ `l 〈t〉

(T-V)

Γ `l X

(T-R)
Γ `l P

Γ `l rec X.P

(T-P)
Γ `l C1 Γ `l C2

Γ `l C1 | C2

(T-O)
Γ(u) v

Π
{o} Γ `l P

Γ `l out(t)@u.P

(T-E)
Γ(u) v

Π
{e} Γ `l P

Γ `l eval(Q)@u.P

(T-I)
Γ(u) v

Π
{i} upd(Γ, T) `l P

Γ `l in(T)@u.P

(T-R)
Γ(u) v

Π
{r} upd(Γ, T) `l P

Γ `l read(T)@u.P

(T-N)

Γ(l) v
Π
{n} δ � Γ d [l′ 7→ Γ(l)] Γ d [l′ 7→ Γ(l)] `l P

Γ `l new(l′ : δ).P

Table 3.1: Static Inference Rules for the Basic Type System

The type judgement takes the form Γ `l C, where Γ is called type context
and it is indeed a type. It is used to keep track of the local policy of the node
where the inference takes place and to record the type annotations specified within
a template T when typing the continuation of an action in or read. The updating
of a type context with the type annotations specified within a template T is denoted
upd(Γ,T) and is formally defined as

upd(Γ,T) =

upd(upd(Γ,T1),T2) if T = T1,T2

Γ d [x 7→ π] if T = ! x : π,
Γ otherwise

where d denotes the pointwise union of functions.
We now comment on the type checking rules of Table 3.1. Rules (T-N),

(T-D) and (T-V) state that process nil, datum 〈t〉 and process variable
X do not affect the behaviour of a component located in a node. Rule (T-R)
type checks a recursive process by type checking its body, while rule (T-P)
type checks in isolation parallel components located at the same node. The main
rules are those for action prefixing. In all these rules, the static checker verifies the
existence of the capability for executing the checked action in the current typing
environment. In rule (T-O), this is the only check performed, together with the
fact that the continuation type checks. A similar situation arises in rule (T-E);
indeed, in general nothing can be statically said about the legacy of Q at u. Since u
can be instantiated at runtime (upon execution of a in/read binding u and prefixing

34 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

the eval action), the locality name replacing u (and hence its associated policy)
will be known only at run-time. In rules (T-I) and (T-R), the continuation
process P can intend to perform actions on the names bound by T , as specified by
the capabilities associated to u in T . Thus, P must be typed in the environment
obtained from Γ by adding such information on these names. In rule (T-N),
we assume that the creating node owns over the created one all the capabilities it
owns on itself2; thus, the continuation process P will be typed in the environment Γ
extended with the association [l′ 7→ Γ(l)]. Moreover, the check δ � Γ d [l′ 7→ Γ(l)]
verifies that the access policy δ for the new node is in agreement with (i.e., less
permissive than) the policy Γ of the node executing the operation. This check
prevents a malicious node l from forging capabilities by creating a new node with
more powerful capabilities (where, e.g., sending a malicious process that takes
advantage of capabilities not owned by l).

Remark 3.2.1 Notice that the type checker does not verify whether each process
invocation (via a process variable X) is always associated with a recursive process
declaration (i.e., a binder rec X). Indeed, this does not compromise the security we
aim at: an undefined variable turns out to be stuck, since in the operational seman-
tics no rule is given for it. Similarly, the type checker does not verify whether the
bound names occurring in a process are all distinct; we assume they are. Control
of both these features can be integrated in a standard way in our type system; we
omit it for the sake of simplicity.

To conclude, we define well-typed nets as nets where each node can success-
fully pass a static type checking phase.

Definition 3.2.2 (Well-typedness) A net is well-typed if, for each (restricted or
not restricted) node l ::δ C, it holds that δ `l C.

3.2.2 Dynamic Semantics

As we have already illustrated, the operational semantics of Table 2.5 needs to be
modified by adding some runtime type checks. Since each node comes equipped
with one policy (that can be modified through computations, see later on), we want
to impose that all clones of the same node have the same policy. The simplest way
to enforce this requirement is to only deal with well-formed nets, i.e. nets where
distinct nodes have pairwise different addresses; here and in the next chapter we
only consider well-formed nets. Clearly, well-formedness has to be preserved by
the operational semantics. Unfortunately, by inspecting the rules in Tables 2.2
and 2.5, it turns out that this is not the case: by using rules (R-S) and

2It is necessary to modify the policy of the creating node to also allow operations over the created
one, otherwise the new node would be useless. Indeed, no other node of the net could perform any
operation on it (since it is fresh, its name cannot be in the policy of any other node) and it could
not perform any operation (since no code is located on it). Our solution was driven by the sake of
simplicity.

3.2. A BASIC TYPE SYSTEM 35

matchδ(l′, l′) = ε
δ(l′) v

Π
π

matchδ(!x : π, l′) = [l
′
/x]

matchδ(T1, t1) = σ1 matchδ(T2, t2) = σ2

matchδ(T1, T2 , t1, t2) = σ1 ◦ σ2

Table 3.2: Typed Matching Rules

(S-C) it is possible to turn a well-formed net into an ill-formed one. To
overcome this problem, we remove (S-C) from the definition of structural
congruence. However, notice that the main reduction rules can only be used when
there is exactly one component located at each node; rule (S-C), possibly
together with rule (S-A), ensured that this requirement was always satisfiable,
also when the action is performed locally. Hence, we need to properly adapt the op-
erational rules to cope with this deficiency. Our solution is to add a new reduction
rule, (R-S), that permits splitting on-the-fly the parallel components running
at a node into clones, thus enabling the application of the main reduction rules.
This temporarily turns a well-formed net into an ill-formed one; however, we shall
prove that the reduction relation still relates well-formed nets only. In conclusion,
(R-S) permits a compact and general formulation of the reduction rules with-
out the need of explicitly considering all the parallel components running at a node
and of having different rules for local and remote operations.

We are now ready to give the dynamic semantics of typed µK. The struc-
tural congruence is readily adapted from Table 2.2 (remember that in µK the
allocation environments ρ are all empty and, thus, omitted); we only need to set
rules (S-A) and (S-R) to be

l ::δ C ≡ l ::δ C |nil l ::δ rec X.P ≡ l ::δ P[rec X.P/X]

and to ignore rule (S-C).
Pattern-matching must now take into account typing information. Its formal

definition is given in Table 3.2, while the intuitions behind it have already be given
in Section 3.1. The main novelty is that, when l tries to replace a template field !x
declared at π with the name l′, the capabilities owned by l over l′ must be at least
(w.r.t. the ordering v

Π
) π.

Finally, the µK operational semantics with types for resource access and
process mobility control is the least relation induced by the rules in Table 3.3. The
key points w.r.t. the relation defined in Table 2.5 are the premise of rule (R-E)
and the introduction of the typed version of function match in rules (R-I) and
(R-R). Also notice that in rule (R-N) the type of the creating node is
extended to collect capabilities over the newly created node. All these features
have been previously motivated; thus, we omit any further comment here.

We end this section by proving that the reduction relation preserves nets’ well-
formedness. As usual, we shall write 7−→∗ to denote the reflexive and transitive
closure of 7−→.

36 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

(R-O)

l ::δ out(t)@l′.P ‖ l′ ::δ
′

nil 7−→ l ::δ P ‖ l′ ::δ
′

〈t〉

(R-E)
δ′ `l′ Q

l ::δ eval(Q)@l′.P ‖ l′ ::δ
′

nil 7−→ l ::δ P ‖ l′ ::δ
′

Q

(R-I)
matchδ(T, t) = σ

l ::δ in(T)@l′.P ‖ l′ ::δ
′

〈t〉 7−→ l ::δ Pσ ‖ l′ ::δ
′

nil

(R-R)
matchδ(T, t) = σ

l ::δ read(T)@l′.P ‖ l′ ::δ
′

〈t〉 7−→ l ::δ Pσ ‖ l′ ::δ
′

〈t〉

(R-N)

l ::δ new(l′ : δ′).P 7−→ (νl′)(l ::δ d [l′ 7→δ(l)] P ‖ l′ ::δ
′

nil)

(R-S)

l ::δ C1 ‖ l ::δ C2 ‖ N 7−→ (ν̃l)(l ::δ
′

C′1 ‖ l ::δ C′2 ‖ N′)

l ::δ C1|C2 ‖ N 7−→ (ν̃l)(l ::δ
′

C′1|C
′
2 ‖ N′)

with rules (R-P), (R-R) and (R-S) from Table 2.3

Table 3.3: Typed Operational Semantics for µK

Proposition 3.2.3 If N is well-formed and N 7−→∗ N′, then N′ is well-formed.

Proof: It is easy to prove, by induction on the rules, that the (modified) structural
congruence preserves well-formedness of nets. Thus, we are only left to prove that
the reduction relation does never transform a well-formed net into a net where two
distinct nodes have the same address (indeed, the reduction rules could also be ap-
plied to nets that do not satisfy this property). To this aim, we first prove a Lemma
stating that a single reduction step from a net N preserves the number of nodes
having the same address. This property is expressed by using clone(N) to denote
the least number of nodes that should be removed from N in order the remaining
nodes have different addresses (i.e. the remaining net to be well-formed). To for-
mally define function clone(·), we exploit the auxiliary function mnl(·) (mnl stands
for ‘multiset of node localities’), that when applied to a net returns the multiset of
localities naming the nodes of the net, and is inductively defined over the syntax of
nets as follows:

mnl(l ::δ C) = {|l|} mnl(N1 ‖ N2) = mnl(N1) q mnl(N2)

where {|l0, . . . , ln|} denotes the multiset with elements l0, . . . , ln and q denotes mul-

3.2. A BASIC TYPE SYSTEM 37

tiset union. Now, for any µK net N, we can define clone(N) as the cardinality
of the multiset obtained by removing from mnl(N) one occurrence of each different
locality occurring in it.

Lemma 3.2.4 If N 7−→ N′ then clone(N) = clone(N′).

Proof: We reason by induction on the length of the proof of the re-
duction N 7−→ N′. The base case (i.e. one of the axioms (LTS-O),
(LTS-E), (LTS-I), (LTS-R), (LTS-N) has been used) is ob-
vious. In the inductive case, we reason by case analysis on the last rule
applied. The cases of rules (LTS-P), (R-R) and (LTS-S) (it
can be easily seen that ≡ preserves clone(·)) easily follow by induction.
Suppose now that the last applied rule is (R-S) and let N1 7−→ N2

be its premise. Then, due to the form of the nets involved in the rule,
we have clone(N1) = clone(N) + 1 and clone(N2) = clone(N′) + 1.
Since the proof of N1 7−→ N2 is shorter than that of N 7−→ N ′, we can
apply induction and deduce that clone(N1) = clone(N2), from which it
follows that clone(N) = clone(N ′) that proves the thesis.

To conclude, note that a net N is well-formed if, and only if, clone(N) = 0. Hence,
by using Lemma 3.2.4 and by a straightforward induction on the length of reduction
sequences, the thesis easily follows.

3.2.3 Type Soundness

We first prove some standard results for type systems, i.e. weakening and substi-
tutivity. Then, we show that (the modified) structural congruence preserves well-
typedness; all these results will enable us to prove that the reduction relation pre-
serves well-typedness. Then, we formalise the runtime errors we aim at eliminating
and prove that in well-typed nets runtime errors never occur. Finally, we can state
that a well-typed net never gives rise to runtime errors along any computation. This
result will be also generalised to deal with only partially well-typed nets.

Lemma 3.2.5 (Weakening) If Γ `l C then Γ′ `l C, for every Γ′ such that Γ � Γ′.

Proof: Trivial.

Lemma 3.2.6 (Substitutivity)

1. If Γ `l C then, for any substitution σ, Γσ `l Cσ.

2. If Γ `l C and Γ `l Q, then Γ `l C[Q/X].

Proof:

1. The proof is by induction on length of the inference of the type judgement.
The base cases (i.e., rules (T-N), (T-D) and (T-V)) are trivial.
Let us examine the case in which the last rule used is (T-I); the cases
for (T-R), (T-O), (T-E), (T-N) and (T-P) are similar or

38 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

easier. By definition, C = in(T)@l′.P, Γ(l′) v
Π
{i} and upd(Γ,T) `l P.

Without loss of generality, we can assume that dom(σ) ∩ bv(T) = ∅ (oth-
erwise, if this is not the case, we could rename the bound names); thus
we have that Cσ = in(Tσ)@(l′σ).(Pσ). Now, by induction, we have that
(upd(Γ,T))σ `l Pσ that easily implies upd(Γσ,Tσ) `l Pσ. Finally, it is
clear that (Γσ)(l′σ) v

Π
{i}; thus, we can apply rule (T-I) and conclude.

2. The proof proceeds by induction on length of the inference of the type judge-
ment. The base cases, i.e. rules (T-N), (T-D) and (T-V), are triv-
ial. If the last used rule is (T-R), the thesis easily follows by induction
(recall that substitution application may require renaming of bound variables
to avoid capturing free names). If the last used rule is (T-P), the thesis fol-
lows by induction using the fact that (C1|C2)σ = C1σ |C2σ. The cases when
the last rule used is (T-I), (T-R), (T-O), (T-E) and (T-N)
are similar; we examine only the first one. By definition, C = in(T)@l′.P,
Γ(l′) v

Π
{i} and upd(Γ,T) `l P. By hypothesis, Γ `l Q; thus, by using

Lemma 3.2.5, we have that upd(Γ,T) `l Q, since we can always assume that
bv(T) ∩ fv(Q) = ∅. Then, by using the induction hypothesis, we get that
upd(Γ,T) `l P[Q/X] and, by applying rule (T-I), we conclude.

Lemma 3.2.7 If N is well-typed and N ≡ N ′, then N′ is well-typed.

Proof: By mutual induction on the length of the inferences for N ≡ N ′ and
N′ ≡ N. The base case covers the axioms in Table 2.2, except rule (S-C),
and reflexivity of ≡. All the cases are trivial; just notice that the static typing
is not affected if we coherently rename bound names within a net and that rule
(S-R) relies on Lemma 3.2.6(2). The inductive step (for symmetry, transitivity
and context closure) are easy.

Theorem 3.2.8 (Subject Reduction) If N is well-typed and N 7−→ N ′, then N′ is
well-typed.

Proof: By induction on the length of the inference of N 7−→ N ′.

Base Step: We reason by case analysis on the axioms (i.e. the first five rules) of
Table 3.3.

(LTS-O). Since by hypothesis N is well-typed, we have that δ `l out(t)@l′.P.
Due to the form of the process involved, rule (T-O) has been the last
one applied to deduce the type judgement; hence we also have that δ `l P.
Moreover, by applying (T-P) to δ′ `l′ C′ (that holds by hypothesis) and
to δ′ `l′ 〈t〉 (axiom (T-D)), we get that δ′ `l′ C′ | 〈t〉. This suffices to
conclude that N′ is well-typed.

(LTS-E). By reasoning like before, we can prove that δ′ `l′ P′ | Q. This easily
follows by applying (T-P) to δ′ `l′ P′, that holds by hypothesis, and to
δ′ `l′ Q, that is the premise of rule (R-E).

3.2. A BASIC TYPE SYSTEM 39

(LTS-I). Since it holds that δ′ `l′ nil, we are only left to prove that δ `l Pσ.
Now, by hypothesis, we have that δ `l in(T)@l′.P, where rule (T-I) has
been the last one applied to infer the judgement; hence we also have that
upd(δ,T) `l P. Now, let {xi : πi}i∈I be the formal fields of T and {li}i∈I

be the corresponding names of t. By the premise of rule (LTS-I) and by
the definition of matchδ from Table 3.2, we have that matchδ(T, t) = σ,
where σ = [li/xi]i∈I , and δ(li) vΠ πi for every i ∈ I. This means that [li 7→

πi]i∈I � δ and upd(δ,T) = δ d [xi 7→ πi]i∈I ; thus, (upd(δ,T))σ = δ. By
Lemma 3.2.6(1), we can conclude.

(LTS-R). Similar to the previous case.

(LTS-N). By hypothesis we have that δ `l new(l′ : δ′).P, where rule (T-N)
has been the last one applied to infer the judgement. Hence we also have
that δ d [l′ 7→ δ(l)] `l P. The thesis follows by using Lemma 3.2.6(1) with
substitution σ = [l′/l′].

Inductive Step: We reason by case analysis on the last applied operational rule of
Table 3.3.

(R-S). By hypothesis, we have that δ `l C1|C2. Due to the form of the pro-
cess involved in the judgement, rule (T-P) has been the last one applied
to deduce the judgement; hence we also have that δ `l C1 and δ `l C2. Thus,
we have that the net l ::δ C1 ‖ l ::δ C2 ‖ N is well-typed. By induction,
we get that (ν̃l)(l ::δ

′

C′1 ‖ l ::δ C′2 ‖ N′) is well-typed. It is easy to prove
that δ(u) ⊆ δ′(u) for each u ∈ L; thus, the thesis directly follows by using
Lemma 3.2.5.

(R-P). By hypothesis, N1 ‖ N2 is well-typed, hence N1 and N2 are well-typed
too. Now, by induction, N ′1 is well-typed and hence N ′1 ‖ N2 is well-typed.

(R-R). By definition, (νl)N is well-typed if and only if N is well-typed; this
suffices to conclude by a straightforward induction.

(R-S). From the hypothesis, N is well-typed and N ≡ N1; by Lemma
3.2.7, it follows that N1 is well-typed too. Now, by induction, we get that
N2 is well-typed. From this fact and from the hypothesis N2 ≡ N′, again by
Lemma 3.2.7, it follows that N ′ is well-typed.

Now, we introduce the notion of run-time error and state type safety, i.e. that
well-typed nets do not give rise to run-time errors. Run-time errors are defined by
the rules in Table 3.4 in terms of predicate N ↗ that holds true when, within the
net N, a process P located at a node with address l attempts to perform an action
that is not allowed by the access policy of the node. The rules are straightforward.

Notation 3.2.9 Here and in what follows, given an action a different from new, we
use arg(a) to denote its argument, tgt(a) its target location and cap(a) the capability

40 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

(EA)
δ(tgt(a)) 6v

Π
{cap(a)}

l ::δ a.P↗
(EP)

N ↗

N ‖ N′ ↗

(ER)
N ↗

(νl)N ↗
(ES)

N ≡ N′ N′ ↗

N ↗

Table 3.4: Run-Time Error

corresponding to a. For example, if a is out(t)@l, then we have arg(a) = t, tgt(a) =
l and cap(a) = o.

Theorem 3.2.10 (Type Safety) If N is well-typed then N ↗ does not hold.

Proof: We proceed by contradiction and prove, by induction on the length of the
inference of N ↗ , that, if N ↗ , then N is not well-typed.

Base Step: In this case, the error is generated by using axiom (EA). This
means that N is a node of the form l ::δ a.P and δ(tgt(a)) 6v

Π
{cap(a)}.

Therefore, node l ::δ a.P, and hence N, is not well-typed otherwise rules
(T-O), (T-E), (T-I), (T-R) or (T-N) would have failed.

Inductive Step: By case analysis on the last error rule used.

(EP). From the premise N ↗ of the rule and by induction, we have that N is
not well-typed. Hence, by definition, N ‖ N ′ is not well-typed too.

(ER). Similar.

(ES). From the premise N ′ ↗ of the rule and by induction, we have that N ′

is not well-typed. Then the thesis follows from the premise N ≡ N ′, by using
Lemma 3.2.7.

Therefore, well-typed nets cannot immediately give rise to run-time errors. Now,
by combining together the results shown so far, we get that well-typed nets never
generate run-time errors along sequences of reductions.

Corollary 3.2.11 (Global Type Soundness) If N is well-typed and N 7−→∗ N′,
then N′ ↗ does not hold.

Proof: The proof proceeds by induction on the length of N 7−→∗ N′. The base
step is Theorem 3.2.10, while the inductive step follows from Theorems 3.2.8
and 3.2.10.

Type soundness is one of the main goal of any type system. However, in our
framework it is formulated in terms of a property requiring the typing of whole nets.
While this could be acceptable for LANs, where the number of hosts is usually
relatively small, it is unreasonable for WANs, where in general hosts are under the

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 41

control of different authorities. When dealing with larger nets, it is certainly more
realistic to reason in terms of parts of the whole net. Hence, we put forward a
more local formulation of our properties and results. To this aim, we define the
restriction of a net N to a set of localities S , written NS , as the subnet obtained
from N by deleting all nodes whose addresses are not in S . The wanted local type
soundness result can be formulated as follows.

Theorem 3.2.12 (Local Type Soundness) Let N be a net and S ⊆ fv(N). If NS is
well-typed and N 7−→∗ N′, then N′S ↗ does not hold.

Notice that in the previous statement, no assumption on the whole net N is made.
The proof is similar to the proof of Corollary 3.2.11; in fact, local type soundness
is enforced by the dynamic checking performed when processes migrate, which
prevents ill-typed processes to get into NS .

3.3 Dynamic Management of Capabilities

The basic type system presented in the previous section suffers from the fact that
policies are fixed and can never change during computations. Indeed, mechanisms
supporting modifications at run-time of access control polices and process capabil-
ities turn out to be essential for dealing with pervasive network applications, like,
e.g., those for e-commerce.

In this section, we discuss how our theory can be extended to take into account
very flexible and sophisticated mechanisms to dynamically handle capabilities. For
the sake of presentation, we will first introduce only the possibility for a policy to
be enlarged with new capabilities; then, we will argue on how implementing further
desirable features, like capability consumption, expiration and revocation.

Types and Grantings

As we have already said, actions new can only be performed locally. Hence, the
corresponding capability cannot be passed through. Since in this section we focus
on capability passing, we only consider capabilities i, r, o and e, and, for the sake of
simplicity, we assume that actions new are enabled everywhere. Types are defined
like in Definition 3.1.1 over this restricted set of capabilities. However, now types
can also change during computations; recall that the pointwise union of functions
δ1 and δ2, written δ1dδ2, is the type δ such that δ(u) = δ1(u)∪δ2(u) for each u ∈ L.

We allow capabilities to be passed at runtime by following the discretionary
access control model, where each principal owning a capability can pass it through.
Policy modifications could be carried on by using specific primitives, like in [53].
However, for the sake of economy, we prefer to merge it in the communication
primitives. This means that capabilities are associated to tuples when performing
an action out and are retrieved when performing actions in/read. More precisely,

42 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

each name occurring in a tuple argument of actions out is now equipped with a
granting.

Definition 3.3.1 (Capabilities and Types – revisited) The set of capabilities C is
{r, i, o, e}. We let Π be the powerset of C and use π to range over Π.

Types, ranged over by δ, are functions mapping L into Π such that δ(l) , ∅
only for finitely many ls.

Definition 3.3.2 (Grantings) Grantings, ranged over by µ, are finite partial func-
tions mapping L to Π.

Thus, the formal syntax of tuples from Table 2.4 is now changed to be

t ::= u : µ
∣∣∣ t1, t2

Intuitively, grantings are used in actions out to point out some capabilities to be
passed through together with the names in the tuple. The intended meaning is that,
if l retrieves a tuple 〈. . . , l′ : [· · · , l 7→ π, · · ·], . . .〉, then l receives the capability
[l′ 7→ π].

We could decide to let dynamically acquired capabilities be exploitable only
by the process that performed the in/read. However, this choice would imply that
the policy of the node is not changed. Hence, our approach consists in changing
the policy of the node where the action was fired and sharing the new capabilities
between all co-located processes. Moreover, since the exact moment in which an
acquisition of capabilities takes place is unknown (because of the non determinism
underlying the operational semantics), we let all processes already in execution at
l exploit the new capabilities. This choice is driven by the sake of fairness; indeed,
it seems us unfair to assign new capabilities only to newly spawned processes.
Unluckily, this choice requires more runtime checks. Indeed, an action that is stat-
ically illegal could become legal upon acquisition of the capability enabling it. For
this reason, if a process intends to perform an action not allowed by the policy of
the node hosting it, the static typing system cannot reject the process since the ca-
pability necessary to perform the action could in principle be dynamically acquired
by the node. In such cases, the typing system simply marks the action (turning a
into a) to require its dynamic checking. So, we shall define the operational se-
mantics for nets written in an ‘intermediate language’, where marked actions can
be used to prefix a process. Notationally, we will write P (C and N, resp.) to
emphasise that process P (component C and net N, resp.) may contain marked
actions.

Finally, we also have to check grantings within actions out. This is necessary
to avoid capability forging like in

l ::δ out(l′ : [l 7→ π])@l.in(!x : π)@l

where [l′ 7→ π] 6� δ. If the first action was legal, the second action would add
new capabilities to δ and l would have enlarged its policy autonomously. This is a

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 43

clear security breach that must be avoided. Such an action out should be executed
only if δ(l′) v

Π
π. However, if we perform this check statically, dynamically ac-

quired capabilities could not be passed anymore; this somehow collides with the
discretionary access control, where a dynamically received capability becomes a
first-class capability (that must be handled like statically assigned ones). Thus, we
defer the check on grantings at run-time too.

3.3.1 Language Semantics

In this section, we present the static and the dynamic semantics of our calculus.
For the sake of presentation, we will first introduce a basic setting where capabil-
ities can only be acquired; in Section 3.3.4 we shall enrich it to deal with further
desirable features.

Static Semantics

We start with the static part of the language semantics. Informally, for each node
of a net, say l ::δ C, the typing system determines if the actions that C intends to
perform when running at l are enabled by the access policy δ or not. For example,
capability e can be used to control process mobility: a process in C can migrate to
l′ only if [l′ 7→ {e}] is a subtype of δ.

However, because a node can dynamically acquire capabilities when C ac-
cesses data, some actions that can be permissible at run-time could be statically ille-
gal; such actions are marked to be dynamically checked. The marking mechanism
never applies to actions whose targets are names bound by in/read, because such
actions can be statically checked, thus alleviating the burden of dynamic checking
and improving system performance. In fact, according to the syntax, whenever a
name x is bound by an action in/read, it is annotated with a set of capabilities π
that specifies the operations that the continuation process is allowed to perform by
using x as the target address. Moreover, π also specifies the ‘minimal’ set of capa-
bilities that the executing node must own or acquire over the net locality that will
replace x at run-time. Hence, our type system has to reject node

l1 ::[l
′ 7→{r}] read(!x : {o})@l′.read(!y)@x

because r does not belong to the annotation of x: this is a clear programming error
and the type system can statically check it. On the other hand, the type system
should accept node

l2 ::[l
′ 7→{r}] read(!x : {o})@l′.out(t)@l′

because action out(t)@l′ can be marked and checked at run-time. In fact, if x is
dynamically replaced with l′, l2 will acquire capability o over l′ and the process
running at l2 can proceed; otherwise, the process will be suspended. In our sys-
tem, the dynamic acquisition of capabilities is exploited exactly for relaxing the

44 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

(T-) (T-)
Γ `L

l nil . nil Γ `L
l 〈t〉 . 〈t〉

(T-)
X ∈ L

Γ `L
l X . X

(T-)

Γ `
L∪{X}
l P . P

Γ `L
l rec X.P . rec X.P

(T-)

Γ `L
l C1 . C1 Γ `L

l C2 . C2

Γ `L
l C1 | C2 . C1 | C2

(T-)

cap(a) ∈ {o, e} Γ `L
l P . P

Γ `L
l a.P . markL(Γ)a.P

(T-)

cap(a) ∈ {i, r} upd(Γ, arg(a)) `L∪bn(arg(a))
l P . P

Γ `L
l a.P . markL(Γ)a.P

(T-)

δ � Γ d [l′ 7→ Γ(l)] Γ d [l′ 7→ Γ(l)] `L∪{l′ }
l P . P

Γ `l new(l′ : δ).P . new(l′ : δ).P

Table 3.5: Typing Rules for Dynamic Capabilities Management

static type checking and admitting nodes like l2 while requiring on (part of) them
a dynamic checking.

Type judgements for processes take the form Γ `L
l C . C. Here, L is a finite set

of names and it is used to keep track of bound names that have been freed during
the inference as the result of removing a binding operator, i.e. in/read/new/rec.
The environment Γ collects together the capabilities contained in the policy of l
and the type annotations for the names that have been freed in C. Intuitively, the
judgement Γ `L

l C . C states that, when C is located at l, the unmarked actions in
C are admissible w.r.t. Γ. Instead, the marked actions in C cannot be deemed legal
at compile time but could become permissible at run-time, after dynamic acquisi-
tion of the necessary capabilities (via execution of actions in/read performed at l).
When L is empty, we shall simply write Γ `l C . C.

Type judgements are inferred by using the rules in Table 3.5. The function
markL(Γ)· for marking process actions is defined as follows

markL(Γ)a =

a if Γ(tgt(a)) v

Π
{cap(a)}

a if Γ(tgt(a)) 6v
Π
{cap(a)} and tgt(a) < L

where 6v
Π

denotes the negation of v
Π
. Condition tgt(a) < L distinguishes actions

using localities as target from those using freed names, marking the formers and
rejecting the latters (as previously explained).

The rules in Table 3.5 should be quite explicative, we only remark a few points.
Rule (T-) says that located tuples always successfully pass the static type

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 45

µ = [li 7→ πi]i=1,...,k ∀ i = 1, . . . , k . δ(l) v
Π
πi

[[l : µ]]δ

[[t1]]δ [[t2]]δ

[[t1, t2]]δ

Table 3.6: Checking Grantings

checking, regardless their contents. This choice simplifies the technical devel-
opment; however, in order to check grantings therein, we require that no tuple
is present in the net at the outset (data must all be produced via actions out, that
are dynamically checked). Rules (T-) and (T-) deal with recursive defini-
tions and only accept processes whose process variables are bound by a rec. Rule
(T-) deals both with process composition and with component composition.
Rule (T-) deals with out and eval; as we already explained in Section 3.1, the
arguments of these actions are not statically checked. Rule (T-) deals with ac-
tions in and read; the type annotations in the formal fields of the template are used
to enrich the current type environment in order to type the continuation process.
Action new is dealt with differently from the other actions by rule (T-) and
is always statically checked (i.e. it is never marked). Indeed, new is always per-
formed locally and the corresponding capability cannot be dynamically acquired.

We end this section by formalising the notion of well-typed net.

Definition 3.3.3 A net is well-typed if, for each node l ::δ C, there exists a compo-
nent C such that δ `l C . C.

Dynamic Semantics

The first ingredient we need for defining the operational semantics is a mechanism
to control the capabilities passed through while executing an action out from node
l′. This check is defined as the predicate [[·]]δ, that can be inferred by using the
rules in Table 3.6. [[·]]δ is parameterised with respect to δ, the policy of the node
l′ where the action out takes place. Intuitively, whenever a tuple passes the capa-
bilities πi over l to li (thus, the tuple is of the form 〈. . . , l : [· · · , li 7→ πi, · · ·], . . .〉),
we need to verify that l′ owned such capabilities.

Another ingredient we need is a formal way to say that a template and a tuple
do match. The pattern-matching function, matchδl , is defined by the rules in Ta-
ble 3.7 and is parameterised with the locality l and the access control policy δ of
the node where it is invoked. A successful matching returns a type, used to extend
the type of the node executing the matching with the capabilities granted by the
tuple, and a substitution, used to assign names to variables in the process invoking
the matching. We use σ to range over substitutions (with finite domain) of names
for names, ε to denote the ‘empty’ substitution and ◦ to denote substitutions com-
position. As usual, substitution application may require alpha-conversion to avoid
capturing of free names.

Notice that the node where the read/in is executed must be authorised to access
all the names occurring in the tuple accessed; this is verified by examining all the

46 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

(M1)
l ∈ dom(µ)

matchδl (l′, l′ : µ) = 〈[], ε〉
(M2)

δ(l′) ∪ µ(l) v
Π
π

matchδl (! x : π, l′ : µ) = 〈[l′ 7→ π], [l
′
/x]〉

(M3)
matchδl (T1, t1) = 〈δ1, σ1〉 matchδl (T2, t2) = 〈δ2, σ2〉

matchδl ((T1, T2) , (t1, t2)) = 〈δ1 d δ2, σ1 ◦ σ2〉

Table 3.7: Matching Rules for Dynamic Capabilities Management

grantings in the tuple. Indeed, the pattern-matching fails whenever l, the node
where the tuple is accessed, is not named in all the grantings within the tuple. This
is explicitly required in the premise of rule (M1) and implicitly required by the
fact that the µ(l) in the premise of rule (M2) must be defined. This feature permits
controlling ‘immediate access’ to tuples, i.e. constraining the nodes from where
tuples can be accessed (see Section 3.3.3). Moreover, rule (M2) ensures that if
a read/in executed at l looks for a locality where performing the actions enabled
by π, then locality l′ can be selected only if the union of the capabilities over l′

owned by l and of the capabilities over l′ granted to l by the tuple enables π. The
capabilities granted by the tuple are then used to enrich the capabilities of l over l′.

Function matchδl satisfies the following property, whose proof can be easily
done by induction on the number of fields of the first argument of the function.

Proposition 3.3.4 If matchδl (T, t) = 〈δ′, σ〉 with dom(σ) = {xi}i∈I , then δ′ = [li 7→
πi]i∈I where, for every i ∈ I, ! xi : πi is a field of T , li : µi is the corresponding field
of t and σ(xi) = li.

As we already said, the operational semantics relates µK nets that may
contain marked actions. It is given by a reduction relation, 7−→, which is the least
relation induced by the rules in Table 3.8. Let us comment on the rules in Ta-
ble 3.8. Rule (R-O) says that, before adding a tuple to a TS, the grantings
within the tuple must be checked according to the policy δ of the node where the
process performing the out runs. Rule (R-E) says that a process is allowed
to migrate only if it successfully passes a type checking against the access policy
of the target node. During this preliminary check, some process actions could be
marked to be effectively checked when at run-time. Rules (R-I) and (R-R)
say that the process performing the operation can proceed only if pattern-matching
succeeds. In this case, the access policy of the receiving node is enriched with the
type returned by the matching mechanism and the substitution returned along with
the type is applied to the continuation of the process performing the operation (and
in the type annotations therein). Rule (R-M) says that the in-lined security
monitor stops execution whenever the capability for executing a is missing.

Notice that Proposition 3.2.3 still holds in this framework. To conclude this
section, we informally present a simple but significant example where our setting
turns out to be expressive and elegant; this informal presentation will be refined
in Section 3.3.3. Let lU be the address of a node representing the server of a

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 47

(R-O)
[[t]]δ

l ::δ out(t)@l′.P ‖ l′ ::δ
′

C′ 7−→ l ::δ P ‖ l′ ::δ
′

C′|〈t〉

(R-E)
δ′ `l′ Q . Q

l ::δ eval(Q)@l′.P ‖ l′ ::δ
′

C′ 7−→ l ::δ P ‖ l′ ::δ
′

C′|Q

(R-I)
matchδl (T, t) = 〈δ′′, σ〉

l ::δ in(T)@l′.P ‖ l′ ::δ
′

〈t〉 7−→ l ::δdδ
′′

Pσ ‖ l′ ::δ
′

nil

(R-R)
matchδl (T, t) = 〈δ′′, σ〉

l ::δ read(T)@l′.P ‖ l′ ::δ
′

〈t〉 7−→ l ::δdδ
′′

Pσ ‖ l′ ::δ
′

〈t〉

(R-N) l ::δ new(l′ : δ′).P 7−→ (νl′)(l ::δd[l′ 7→δ(l)] P ‖ l′ ::δ
′

nil)

(R-M)
l′ = tgt(a) δ(l′) v

Π
{cap(a)} l ::δ a.P ‖ l′ ::δ

′

C′ 7−→ N

l ::δ a.P ‖ l′ ::δ
′

C′ 7−→ N

with rule (R-S) from Table 3.3
and rules (R-P), (R-R) and (R-S) from Table 2.3

Table 3.8: Operational Semantics with Dynamic Capabilities Management

given department and let lP be the address of a node representing the publisher
of some on-line publications. We want to implement a protocol through which
the department chief subscribes a ‘licence’ enabling all the department members
to access the on-line publications. In terms of access control, this means that the
protocol must extend the policy δ of node lU with the capability of reading papers
from lP. Hence, upon completion of the protocol, lU ’s policy should become δ d
[lP 7→ {r}]. Then, all the department members can spawn code over lU and thus
retrieve lP papers by simply using the process

eval(read(paperTitle, !x)@lP .out(paperTitle, x)@lM)@lU

Action read(paperTitle, !x)@lP looks for a paper whose title is paperTitle and
whose body is a text B; if such a paper is found, it is copied in lM’s tuple space,
where lM is the address of the department member who required the paper. In a
more realistic scenario, the capability ‘read’ over lP will not be delivered forever
to lU . To model this scenario, we will also take into account means of managing
capabilities loss, in Section 3.3.4.

3.3.2 Type Soundness

In this section, we first present a type soundness result that involves whole nets;
then, we point out the modifications needed to get a local type soundness result

48 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

relative to a subnet of a larger net.
We start introducing the notion of executable nets that, intuitively, are nets

already containing all necessary marks (as if they have already passed a static type
checking phase).

Definition 3.3.5 A net is executable if, for each node l ::δ C, it holds that δ `l C .C
where, for inferring the type judgement, in addition to the rules in Table 3.5, one
can also use the rules

(T--) (T--)
cap(a) ∈ {o, e} Γ `L

l P . P

Γ `L
l a.P . a.P

cap(a) ∈ {i, r} upd(Γ, arg(a)) `L∪bn(arg(a))
l P . P

Γ `L
l a.P . a.P

that allow a process to already contain marked actions. For the sake of readability,
the judgement Γ `l C . C will be written as Γ `l C.

Notice that executable nets are well-typed. Our main results will be stated in terms
of executable nets; indeed, due to the dynamic acquisition of capabilities, well-
formed nets that are statically deemed well-typed can still give rise to run-time
errors. However, by marking those actions that should be checked at run-time,
well-typed (and well-formed) nets can be transformed into executable nets that,
instead, cannot give rise to run-time errors (see Corollary 3.3.11).

We now adapt the results in Section 3.2.3 to the new scenario. We only present
the most relevant differences.

Lemma 3.3.6 (Weakening) If Γ `L
l C then Γ d Γ′ `L

l C.

Lemma 3.3.7 (Substitutivity)

1. If Γ `L
l C then, for any substitution σ, Γσ `L′

l Cσ where L′ = L − dom(σ).

2. If Γ `L∪{X}
l C, X < L and Γ `L

l Q, then Γ `L
l C[Q/X].

Proof:

1. The proof is by induction on length of the inference of the type judge-
ment. The base cases (i.e., rules (T-), (T-) and (T-)) are ob-
vious. Let us examine the case in which the last rule used is (T-) (the
cases for (T-), (T-), (T-), (T-) and (T--/) are
similar or easier). By hypothesis, for some process Q and action a such
that Γ(tgt(a)) v

Π
{cap(a)} ⊂ {i, r}, we have that C = a.Q and Γ `L

l a.Q;

thus, upd(Γ, arg(a)) `L∪bn(arg(a))
l Q. Without loss of generality, we can

assume that dom(σ) ∩ bn(arg(a)) = ∅ (otherwise, if this is not the case,
we could rename the bound names); thus we have (a.Q)σ = aσ.Qσ.
Now, by induction, we have that (upd(Γ, arg(a)))σ `L′′

l Qσ, where L′′ =
(L ∪ bn(arg(a))) − dom(σ) = (L − dom(σ)) ∪ bn(arg(a)) = L′ ∪ bn(arg(a)).
Now, upd(Γσ, arg(aσ)) `L′′

l Qσ (indeed, it is easy to prove that (Γ1dΓ2)σ =
(Γ1σ) d (Γ2σ)) and, by applying rule (T-), we conclude that Γσ `L′

l
aσ .Qσ, i.e. Γσ `L′

l (a.C)σ.

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 49

2. The proof proceeds by induction on length of the inference of the type judge-
ment. The base cases (i.e., rules (T-), (T-) and (T-)) are obvi-
ous. If the last used rule is (T-), the thesis easily follows by induction
(recall that substitution application may require renaming of bound variables
to avoid capturing free names). If the last used rule is (T-), the thesis fol-
lows by induction using the fact that (C1|C2)σ = C1σ |C2σ. The cases when
the last rule used is (T-), (T-), (T-) or (T--/)
are similar; we examine only the first one. By hypothesis, for some pro-
cess P and action a such that Γ(tgt(a)) v

Π
{cap(a)} ⊂ {i, r}, we have that

C = a.P and Γ `L∪{X}
l a.P; thus, for the premises of rule (T-), we

have that upd(Γ, arg(a)) `L∪{X}∪bn(arg(a))
l P. By hypothesis, Γ `L

l Q thus,
by using Lemma 3.3.6, we have that upd(Γ, arg(a)) `L

l Q. Moreover, we
can always assume that bn(arg(a)) ∩ fn(Q) = ∅; hence, it also holds that
upd(Γ, arg(a)) `L∪bn(arg(a))

l Q. Then, by using the induction hypothesis, we

get that upd(Γ, arg(a)) `L∪bn(arg(a))
l P[Q/X] and, by applying rule (T-),

we obtain Γ `L
l a.(P[Q/X]), that is Γ `l (a.P)[Q/X].

Now we prove that the property of a net of being executable is an invariant both
of the structural congruence and of the reduction relation.

Lemma 3.3.8 If N is executable and N ≡ N ′ then N′ is executable.

Theorem 3.3.9 (Subject Reduction) If N is executable and N 7−→ N ′, then N′ is
executable.

Proof: The proof proceeds by induction on the length of the inference of N 7−→
N′. We only present the most peculiar cases.

(R-E). Since by hypothesis N is executable, we have that δ `l eval(Q)@l′.P.
Due to the form of the process involved, rule (T-) has been the last one
applied to deduce the last type judgement; hence we also have that δ `l P.
Moreover, by applying (T-) to δ′ `l′ C′ (that holds by hypothesis) and to
δ′ `l′ Q . Q′ (that is the premise of rule (R-E)), we get that δ′ `l′ C′ |
Q′. This suffices to conclude that N ′ is executable.

(R-I). Since it holds that δ′ `l′ nil, we are only left to prove that δ d δ′′ `l Pσ.
Now, by hypothesis, we have that δ `l in(T)@l′.P, where rule (T-) has
been the last one applied to infer the judgement; hence we also have that
upd(δ,T) `bn(T)

l P. By definition, if {xi : πi}i∈I are the formal fields of T ,
we have that upd(δ,T) = δ d [xi 7→ πi]i∈I . Moreover, by the premise of
rule (R-I) and by Proposition 3.3.4, we have that matchδl (T, t) = 〈δ′′, σ〉,
where δ′′ = [li 7→ πi]i∈I and σ = [li/xi]i∈I . Now, upd(δ,T) = δ d [xi 7→ πi]i∈I

implies that upd(δ,T)σ = δ d [li 7→ πi]i∈I = δ d δ
′′. Thus, by applying

Lemma 3.3.7.1 to upd(δ,T) `bn(T)
l P, we conclude that δ d δ′′ `l Pσ.

50 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

(R-M). By hypothesis, we have that δ `l a.P. Due to the form of the process
involved in the judgement, rule (T--) has been the last one applied
to deduce the judgement; hence we also have that upd(δ, arg(a)) `l P. By
the premise of (R-M), we have that, when the reduction takes place,
δ(tgt(a)) v

Π
{cap(a)}. Hence, by applying (T-)/(T-), we can derive

δ `l a.P, that, together with the hypothesis δ′ `l′ C′, implies that l ::δ a.P ‖
l′ ::δ

′

C′ is executable. The thesis now follows by induction.

To prove type safety we still use the notion of run-time errors defined in Ta-
ble 3.4. The rules are formally unchanged. Notice that, since marked actions
are checked at run-time, they cannot give rise to run-time errors. At most, when
their execution is not permissible, the process that is trying to execute them blocks
waiting for the acquisition of the corresponding capabilities by a parallel process
running at the same node.

Theorem 3.3.10 (Type Safety) If N is executable then N ↗ does not hold.

Proof: Similar to the proof of Theorem 3.2.10.

Therefore, we can combine together the results shown so far as in Section 3.2.3.

Corollary 3.3.11 (Global Type Soundness) If N is executable and N 7−→∗ N′,
then N′ ↗ does not hold.

Theorem 3.3.12 (Local Type Soundness) Let N be a net. If NS is executable and
N 7−→∗ N′, then N′S ↗ does not hold.

3.3.3 Example: Subscribing On-line Publications

In this section, we take up the simple example presented at the end of Section 3.3.1
in order to show µK’s programming style and a way to exploit its type system
for establishing access control policies.

Suppose that a user U wants to subscribe a ‘licence’ to enable accessing on-
line publications of a given publisher P. To model this scenario we use three local-
ities, lU , lP and lC , respectively associated to U, P and to the repository containing
P’s on-line accessible publications (this slightly differs from the informal scenario
sketched in Section 3.3.1 – we explain later the reason why node lC is needed).
First of all, U sends a subscription request to P including its address (together with
an ‘out’ capability) and credit card number; then, U waits for a tuple that will de-
liver it the capability r needed to access P’s publications and proceeds with the rest
of its activity. The behaviour described so far is implemented by the process

AU , out(“S ubscr”, lU : [lP 7→ {o}],CrCrd)@lP.in(“Acc”, !x : {r})@lU .R

where process R may contain operations like read(. . .)@lC .

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 51

Once P has received the subscription request and checked (by possibly using
a third party authority) the validity of the payment information, it gives U a ‘read’
capability over lC . P’s behaviour is modelled by the following process.

AP , rec X. (in(“S ubscr”, !x : {o}, !y)@lP.

check credit card y of x and require the payment .
out(“Acc”, lC : [x 7→ {r}])@x | X)

Concretely, the capability r will be delivered to U for a limited period of time (for
example, annual subscriptions would obtain read capabilities valid for one year) or
for a limited number of accesses. In Section 3.3.4 we shall present some simple
ways to implement these features in our setting.

For processes AU and AP to behave in the expected way, the underlying net
architecture, namely distribution of processes and access control policies, must be
appropriately configured. A suitable net is:

lU ::[lU 7→{o,i,r,e}, lP 7→{o}] AU ‖ lP ::[lP 7→{o,i,r,e},lC 7→{o,i,r}] AP

‖ lC ::[] 〈paper1〉 | 〈paper2〉 | . . .

where we have intentionally used AU to emphasise the fact that the static
type checking might have marked some actions occurring in AU , e.g. actions
read(. . .)@lC in R. Upon completion of the protocol, the net will be

lU ::[lU 7→{o,i,r,e},lP 7→{o},lC 7→{r}] R ‖ lP ::[lP 7→{o,i,r,e},lC 7→{o,i,r},lU 7→{o}] AP

‖ lC ::[] 〈paper1〉 | 〈paper2〉 | . . .

To conclude this section, we want to remark four features of this example that
shed light on some peculiarities of our framework.

1. P’s papers cannot be safely put in lP’s TS because otherwise the integrity
of P’s publications could be compromised by the execution in lU of the le-
gal process out(not−a−P ’s−paper)@lP. Indeed, differently from Section 3.4
(see later on), our types do not provide support for restricting the kind of tu-
ples over which actions can operate thus enabling out(“S ubscr”, lU : [lP 7→

{o}],CrCrd)@lP and disabling out(not−a−P ’s−paper)@lP.

2. Knowledge of address lC is not enough for reading papers: the ‘read’ capa-
bility is needed. Indeed, security in the µK framework does not rely on
name knowledge but on access control policies.

3. Once the ‘read’ capability over lC has been acquired, all processes eventually
spawned at lU can access P’s on-line publications. In other terms, U obtains
a sort of ‘site licence’ valid for all processes running at lU . This fact should
not be considered as a security breach: indeed, in order to enter in lU , a
mobile process could be required to exhibit some credential (like a password
[107]), that however we do not model in our framework. Moreover, notice
that this way of handling privileges is different from [59], where, by using

52 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

the same protocol, U would have obtained a sort of ‘individual licence’ for
process R. In the next section we will present variations of our framework
that permit delivering different capabilities to co-located processes.

4. The licence delivered by P to U can be used only at lU since the granting
associated to lC only delivers to lU the capability r over lC . Moreover, no
intruder can interfere with the protocol between the user and the publisher
because the tuple 〈“Acc”, lC : [lU 7→ {r}]〉 located at lU can only be retrieved
by processes running at lU (see rules (M1) and (M2) in Table 3.7). A similar
argument holds for the tuple 〈“S ubscr”, . . .〉 inserted by AU at lP.

3.3.4 Variations on Capability Management

Up to now, capabilities are always acquired by the node hosting the process per-
forming actions in/read, and not by the process itself. This may be adequate in
some cases, e.g. when a department subscribes a ‘site licence’ (i.e. valid for all its
members), and unrealistic in others, e.g. when a mobile process has to buy a good
on behalf of its owner. Moreover, capabilities can only increase; this does not fit
well to control wastable resources where one usually wants to count the number of
times a given resource is used or to deliver accesses for a limited period of time.

In the next two subsections, we will show that our framework can be smoothly
tailored for taking into account these different scenarios. For each variant, we shall
first describe the scenario we want to model from an operational point of view (that
should be more intuitive and that enables the presentation of a concrete example
motivating the variation). Then, we shall discuss how the typing theory can be
accommodated to keep the results of Section 3.3.2 valid.

Variations on Capabilities Acquisition

In this section, we show an adaption of our framework that allows processes to
acquire capabilities for themselves. We start by presenting a scenario where all the
dynamically acquired capabilities are assigned to processes; then, we shall com-
bine together the possibility of assigning capabilities to processes and to nodes.

(I) Acquisition by Processes. We start modifying our framework in such a way
that capabilities, in particular those dynamically acquired, can be associated to
processes. To this aim, we annotate located processes with a type that specifies the
capabilities they own. Thus, a process can also use its own private capabilities, in
addition to the capabilities of the executing node that are shared by all co-located
processes. Now, a µK node is of the form l ::δ AC, where AC is an annotated
component generated from the following auxiliary syntactic productions

AC ::= 〈t〉
∣∣∣ {{ P }}δ

∣∣∣ AC1|AC2

Notice that only process components can be annotated.

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 53

(R-O′)
[[t]]δdδ1

l ::δ {{ out(t)@l′.P }}δ1 ‖ l′ ::δ
′

AC′ 7−→ l ::δ {{ P }}δ1 ‖ l′ ::δ
′

AC′|〈t〉

(R-E′)
δ′[δ1] `l′ Q . Q

l ::δ {{ eval(Q)@l′.P }}δ1 ‖ l′ ::δ
′

AC′ 7−→ l ::δ {{ P }}δ1 ‖ l′ ::δ
′

AC′|{{ Q }}δ1

(R-I′)

matchδdδ1l (T, t) = 〈δ′′, σ〉

l ::δ {{ in(T)@l′.P }}δ1 ‖ l′ ::δ
′

〈t〉 7−→ l ::δ {{ Pσ }}δ1dδ′′ ‖ l′ ::δ
′

nil

(R-R′)

matchδdδ1l (T, t) = 〈δ′′, σ〉

l ::δ {{ read(T)@l′.P }}δ1 ‖ l′ ::δ
′

〈t〉 7−→ l ::δ {{ Pσ }}δ1dδ′′ ‖ l′ ::δ
′

〈t〉

(R-N′)

l ::δ {{ new(l′ : δ′).P }}δ1 7−→ (νl′)(l ::δ {{ P }}δ1d[l′ 7→δ1(l)] ‖ l′ ::δ
′

nil)

(R-M′)

l′ = tgt(a) δ1(l′) v
Π
{cap(a)} l ::δ {{ a.P }}δ1 ‖ l′ ::δ

′

AC′ 7−→ N

l ::δ {{ a.P }}δ1 ‖ l′ ::δ
′

AC′ 7−→ N

(R-S′1)

l ::δ AC1 ‖ l ::δ AC2 ‖ N 7−→ l ::δ AC′1 ‖ l ::δ AC′2 ‖ N′

l ::δ AC1|AC2 ‖ N 7−→ l ::δ AC′1|AC
′
2 ‖ N′

(R-S′2)

l ::δ {{ P }}δ1 ‖ l ::δ {{ Q }}δ1 ‖ N 7−→ l ::δ {{ P′ }}δ2 ‖ l ::δ {{ Q }}δ1 ‖ N′

l ::δ {{ P|Q }}δ1 ‖ N 7−→ l ::δ {{ P′ }}δ2 | {{ Q }}δ1 ‖ N

plus rules (R-P), (R-R) and (R-S) from Table 3.8.
[[·]] is defined in Table 3.6 and matchl(·, ·) is defined in Table 3.7

Table 3.9: Acquisition by Processes: Operational Semantics

The structural congruence is modified by replacing rules (S-A) and
(S-A) in Table 2.2 with rules

(A′)
P =α P′

l ::δ {{ P }}δ′ ≡ l ::δ {{ P′ }}δ′

(S-A′)

l ::δ AC ≡ l ::δ AC | {{ nil }}δ′

54 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

Instead, the operational semantics is changed for managing the acquisition of ca-
pabilities that now increases process type annotations while leaves types of nodes
unchanged. In the initial configuration, all processes could have assigned the same
empty type or could have assigned different and more informative type annotations,
reflecting different capabilities for the processes. Table 3.9 presents the modified
reduction rules that should be self-explicative. Notice that in (R-M′) only the
type associated to the process is used to check admissibility of action a; indeed, the
type of the node does never change (i.e. it is statically known) and has already been
used in the static typing phase.

Let us now briefly revise the subscription example. If in the initial configura-
tion all processes have assigned the empty type, the evolution of the net according
to the modified semantics leads to

lU ::[lU 7→{o,i,r,e},lP 7→{o}] {{ R }}[lC 7→{r}] ‖ lP ::[lP 7→{o,i,r,e},lC 7→{o,i,r}] AP

‖ lC ::[] 〈paper1〉 | 〈paper2〉 | . . .

where now R is the only process having the capability to access the papers stored at
lC . Moreover, notice that the capability o over lU delivered by AU to AP disappears
upon completion of the parallel component running at lP that handles AU’s request.
Indeed, at the end of its task such a component becomes {{ nil }}[lU 7→{o}] and hence
can be removed by using rule (S-A′) above.

(II) Acquisition by Nodes and Processes. In practice, a (mobile) process could
acquire some capabilities and, from time to time, decide whether it wants to keep
them for itself or to share them with other processes running at the same node. An
example of the first scenario is a mobile process that buys a book and obviously
wants the book to be delivered to its owner. An example of the second scenario is
a process that subscribes a ‘site licence’ to enable accessing some on-line publica-
tions to be shared with all members of a given department.

A simple way to model both cases is to use different acquisition actions de-
pending on whether the acquisition should be made on behalf of the node or of
the process. Hence, we could leave the operational semantics of actions in/read
unchanged (i.e. as given in Section 3.3.1) apart for the replacement of processes
with annotated processes, add actions inpr(T)@u and readpr(T)@u to the syn-
tax, and model their operational semantics by using rules akin to (R-I′) and
(R-R′) in Table 3.9. In such a way, actions in/read would increase the type
of the node where they are executed while actions inpr/readpr would increase the
private type of the executing process. Therefore, in this variant of the calculus,
processes are more powerful because, whenever capabilities are acquired, they can
decide to share these capabilities with the other co-located processes or not.

Of course, to control the new actions, we also need to introduce the corre-
sponding capabilities and to extend the capability ordering relation. Finally, no-
tice that, since node types can dynamically change (like in the original seman-
tics), in rule (R-M′) the hypothesis δ1(l′) v

Π
{cap(a)} must be replaced by

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 55

δ1(l′) ∪ δ(l′) v
Π
{cap(a)}. Indeed, a marked action can be enabled both by the ca-

pabilities accumulated by the process and by the capabilities offered by the hosting
node.

Type Soundness. We now sketch how the results of Section 3.3.2 can be adapted
to the variant we have just presented (notice that the setting of Section 3.3.4(I) is
clearly an instance of the theory we develop here). The static typing needs smooth
extensions: it should consider annotated processes and it should let rule (T-)
deal with actions inpr/readpr too. The first task can be carried on by adding the
following rule

(T-)
Γ d δ `L

l P . P

Γ `L
l {{ P }}δ . {{ P }}δ

A marked annotated component AC is an annotated component that may contain
annotated marked processes of the form {{ P }}δ. Then, well-typedness and exe-
cutableness are defined like before, but take into account annotated components.

Definition 3.3.13 A net is well-typed if, for each node l ::δ AC, there exists a
component AC such that δ `l AC . AC. A net is executable if, for each node
l ::δ AC, it holds that δ `l AC . AC (abbreviated as δ `l AC).

Finally, run-time errors are defined accordingly, by letting rule (EA) become

(EA′)
δ(tgt(a)) ∪ δ′(tgt(a)) 6v

Π
{cap(a)}

l ::δ {{ a.P }}δ′ ↗

Thus, soundness of the revised framework can be formulated and proved like in
Theorem 3.3.12. Notice that, by taking the set S to be fn(N), we easily obtain also
the global type soundness of Corollary 3.3.11.

Managing Loss of Capabilities

In this subsection, we deal with some scenarios where capabilities can be lost. The
three settings we shall present mainly differ in the formal definition of capabilities
and in the way in which capabilities are lost. The main common feature is that
static typing is weakened since there are a lot of ingredients that can dynamically
change. As it could be expected, more flexibility requires more run-time checks.

Since in this subsection we need to express capabilities removal, we introduce
notation δ = δ1, δ2 to state that, for each u ∈ L, we have δ(u) = δ1(u) ∪ δ2(u),
δ1(u) = δ(u) − δ2(u) and δ2(u) = δ(u) − δ1(u). A similar notation is exploited also
for grantings.

56 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

(R-O′′)

[[t]]δ
δ1 = δ′1

l ::δ {{ out(t)@l′.P }}δ1 ‖ l′ ::δ
′

AC′ 7−→ l ::δ {{ P }}δ′1 ‖ l′ ::δ
′

AC′|〈t〉

(R-E′′)

δ1 = δ
′
1, δ
′′
1 δ′ `l′ Q . Q

l ::δ {{ eval(Q)@l′.P }}δ1 ‖ l′ ::δ
′

AC′ 7−→ l ::δ {{ P }}δ′1 ‖ l′ ::δ
′

AC′|{{ Q }}δ′′1

(R-I′′)

matchδdδ1l (T, t) = 〈δ′′, σ, t′〉

l ::δ {{ in(T)@l′.P }}δ1 ‖ l′ ::δ
′

〈t〉 7−→ l ::δ {{ Pσ }}δ1dδ′′ ‖ l′ ::δ
′

nil

(R-R′′)

matchδdδ1l (T, t) = 〈δ′′, σ, t′〉

l ::δ {{ read(T)@l′.P }}δ1 ‖ l′ ::δ
′

〈t〉 7−→ l ::δ {{ Pσ }}δ1dδ′′ ‖ l′ ::δ
′

〈t′〉

(R-M′′)

l′ = tgt(a) δ1 = δ
′
1, [l

′ 7→{cap(a)}] l ::δ{{ a.P }}δ′1 ‖ l′ ::δ
′

AC′ 7−→ N

l ::δ {{ a.P }}δ1 ‖ l′ ::δ
′

AC′ 7−→ N

plus rules (R-N′), (R-S′1) and (R-S′2) from Table 3.9
and rules (R-P), (R-R) and (R-S) from Table 2.3

Table 3.10: Consumption of Capabilities: Operational Semantics

Consumption. If we interpret the ‘acquisition of capabilities’ as the ‘purchase
of services/goods’, it seems natural that a process will lose the acquired capabil-
ity once it uses the service. For example, by paying the price of a book a user
purchases one copy of the book; if he wants another copy, he has to pay again. To
enable multiple acquisitions and consumptions of capabilities, we should be able to
count the number of capabilities that nodes/processes have over each resource (this
is somehow similar to ‘affine’ capability types of [38]). To this aim, we modify our
semantic framework by working with multisets of capabilities, instead of sets; in
particular, Π now denotes the set of the multisets built upon {i, e, r, o}. All the oper-
ations over and relations between sets used up-to now (i.e., union, subset inclusion,
...) must be considered as operations over and relations between multisets.

We start considering the case of dynamic acquisition and consumption of ca-
pabilities only by processes (see Section 3.3.4(I)). This means that node types are
statically known and left unchanged by the operational semantics. The operational
rules are modified as reported in Table 3.10. The main change is that process

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 57

capabilities must be deleted whenever used; this happens in rules (R-O′′),
(R-E′′) and (R-M′′). Notice that the checking of grantings now deletes
the process capabilities passed in the tuple and returns the capabilities left. Its
formal definition updates Table 3.6 as follows:

µ = [li 7→ πi]i=1,...,k

δ1 = δ
′
1, [l 7→

⋃k
i=1(πi − δ(l))]

∀ i = 1, . . . , k . (δ(l) ∪ δ1(l)) v
Π
πi

[[l : µ]]δ
δ1 = δ′1

[[t1]]δδ1 = δ2
[[t2]]δδ2 = δ3

[[t1, t2]]δ
δ1 = δ3

Finally, also pattern matching needs to be modified; now, when it is invoked
by l on T and t, it returns a triple 〈δ′′, σ, t′〉. The difference is in the tuple t′

obtained by removing from the grantings within t all the capabilities granted to l
(i.e., the capabilities collected in δ′′). This is necessary otherwise repeated accesses
to a tuple via actions read would lead to a form of ‘capability forging’. Indeed,
each time a process at l reads t, the capabilities in δ′′ would be delivered to the
process. Since the read can be repeated an unbounded number of times (until 〈t〉 is
available), it would be possible to acquire several times the capabilities in δ′′. The
new formulation of function match relies on the following modification of rule
(M2)

δ(l′) ∪ µ(l) v
Π
π µ = µ′, [l 7→ (π − δ(l′))]

matchδl (! x : π, l′ : µ) = 〈[l′ 7→ (π − δ(l′))], [l
′
/x], l′ : µ′〉

where only the capabilities delivered by the tuple that are not already owned by
the executing node are used to enrich the policy of the executing process (this is
needed to avoid delivering the process capabilities already in δ). As concerns (M1),
it is modified to additionally return the tuple passed as second argument to function
matchδl , while (M3) is modified to additionally return the tuple resulting from the
concatenation of the two tuples returned by its premises.

Taking up the example of Section 3.3.3, we can now program the acquisition
(and the consumption) of a fixed number of capabilities r over the on-line reposi-
tory. The user explicitly requires a number k of capabilities r and the publisher will
charge on U’s credit card the cost of k accesses to its publications. The processes
implementing these behaviours are

AU , out(“S ubscr”, lU : [lP 7→ {o}],CrCrd, k)@lP.

in(“Acc”, !x : {k × r})@lU .R

AP , rec X. (in(“S ubscr”, !x : {o}, !y, !z)@lP.

check credit card y of x and charge the cost for z accesses .
out(“Acc”, lC : [x 7→ {z × r}])@x | X)

where { × r} stands for the multiset with occurrences of capability r.

Type Soundness. Differently from Section 3.3.4, process capabilities do not
play any role in the static typing (thus, rule (T-) is missing): indeed, since they

58 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

can also decrease, it is statically impossible to rely on them to determine whether
a given action will be legal at run-time or not. As an example, consider the net
l ::[] {{ P|Q }}[l′ 7→{o}], where P , out(t)@l′ and Q , out(t′)@l′. In this case, exactly
one between P and Q will be able to perform action out while the other process
will be blocked, depending on the execution order. However, it is impossible to
statically tell which one will evolve and which one will get stuck (and hence both of
them have to be marked). Moreover, the static semantics differs from that presented
before because it has to mark all the actions, except those directly enabled by the
access policy of the node where the inference takes place (i.e. those actions a such
that δ(tgt(a)) v

Π
{cap(a)}, where δ is the type of the node). This is necessary to

properly handle nodes like l ::[l′ 7→{i}] in(!u : {o})@l′.out(·)@l′.out(·)@u, where
action in should be the only unmarked one after static typing. Indeed, if we use
the static typing of Section 3.3.1, the second action out would not be marked; this
could generate a run-time error because if u is replaced by l′ upon execution of the
in, then the acquired capability o (that enables the execution of the second action
out) would be consumed to perform the first action out.

Well-typed and executable nets are formally defined like in Definition 3.3.13;
recall that process types are never used to infer judgements, because rule (T-)
is missing here. Run-time errors are defined like in Section 3.3.4(II), i.e. by exploit-
ing rule (EA′). Thus, type soundness can be still stated and proved similarly
to Theorem 3.3.12.

A more general framework. Finally, let us now briefly consider the general
setting where both processes and nodes can dynamically acquire and consume ca-
pabilities (see Section 3.3.4(II)). This scenario is the most expensive because a
static typing phase cannot be exploited at all and all actions must be checked at
run-time. In fact, since also node types can dynamically change, it is impossible
to statically determine if a given action will have the necessary capabilities at run-
time. Moreover, both the type associated to a process and the type of the node
where the process is running can provide the process with the capability necessary
to perform a given action. In this case, the capability can be removed from the type
of the node or from the type of the process, and a strategy must be implemented.
The operational rules can be easily modified to control capabilities and remove the
used ones, but, to save space, we do not show the modified rules.

Validity duration. Another possible way of modelling capability lost is by in-
troducing duration, as we already mentioned in the example of Section 3.3.3. Each
capability can be assigned a validity duration by indexing it with a natural number
(or ∞) representing a period of time during which the capability is valid, i.e. can
be used: a capability is available until its validity has not been expired. Thus, types
(and grantings) map L to Π′, where Π′ is the powerset of C × (Nat ∪ {∞}) and it
is ranged over by p. For example, [l 7→ {i10, o5, e∞}] expresses the fact that it is
still possible to perform over l actions in for 10 time units, actions out for 5 time
units and actions eval for ever. A capability associated to ∞ is called ‘persistent’

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 59

since its validity never expires; notationally, we write them without any annotation
(notice that all the capabilities considered so far were indeed persistent).

The operational semantics of the basic framework needs to be modified to
model time passing and the effect of time passing on validity durations. To point
out the passing of τ time units, we label net reductions with τ. All the rules in
Table 3.8 except (R-P) and (R-S) represent computational steps and
are assumed to be instantaneous; thus, the reductions occurring therein are labelled
with ‘0’. The reductions contained in rules (R-P) and (R-S) are instead
labelled with a generic label τ. Of course, this choice is far from being realistic but
it allows us to incorporate durations in our framework with very small modifi-
cations and can model all real situations. Because of the intrinsic asynchronous
nature of our nets, we assume that time can pass differently in different parts of
the net but, at each node, time passes uniformly for all the processes running there.
This behaviour is implemented by adding to the rules in Table 3.8 the following
one

(R-T) l ::δ C
τ
−→ l ::(δ)−τ (C)−τ

Function (·)−τ is defined inductively as

(C1|C2)−τ = (C1)−τ | (C2)−τ

(〈t〉)−τ = 〈t′〉 with t′ obtained from t by replacing each µ with (µ)−τ

[]−τ = []

([l 7→ p])−τ = [l 7→ p′]
where p′ is obtained from p by:
• subtracting τ to all the durations, and
• deleting the capabilities with a non-positive duration

(δ d δ′)−τ = (δ)−τ d (δ′)−τ

(µ d µ′)−τ = (µ)−τ d (µ′)−τ

and it is the identity function in all the other cases. Thus, it can be easily seen that
when τ1 time units pass in l1 and τ2 time units pass in l2, the net l1 ::δ1 C1 ‖ l2 ::δ2

C2 evolves as follows:

l1 ::δ1 C1 ‖ l2 ::δ2 C2
τ1
−→ l1 ::(δ1)−τ1 (C1)−τ1 ‖ l2 ::δ2 C2
τ2
−→ l1 ::(δ1)−τ1 (C1)−τ1 ‖ l2 ::(δ2)−τ2 (C2)−τ2

Type Soundness. We can statically control only the operations that are enabled
by persistent capabilities; all the other operations have to be marked, since it is not
possible to exactly know when they will be performed. In particular, all the actions
having a variable as target must be marked. Moreover, to avoid forging capability
durations, we also need to ensure that a process delivers a capability with duration
τ only if the capability is persistent or has a duration at least τ in the type of the
node where the process runs.

60 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

These tasks can be achieved by defining an ordering on Π′, written v
Π′

, as
follows

τ ≥ τ′

{cτ} vΠ′ {cτ′ }

p1 ⊆ p2

p2 vΠ′ p1

p1 vΠ′ p′1 p2 vΠ′ p′2

(p1 ∪ p2) v
Π′

(p′1 ∪ p′2)

Clearly [[·]]δ, matchδl (·, ·) and markL(Γ)· now exploit this ordering. In particular,
this fact implies that, since cap(a) returns a capability that is not annotated, action a
is marked whenever a corresponding persistent capability is missing in the current
typing environment. On the other hand, rule (R-M) still invokes v

Π
, that can

be straightforwardly extended to annotated capabilities by ignoring durations.
Well-typedness and executableness are still defined like in Definitions 3.3.3

and 3.3.5. Type soundness is then formulated and proved like in Corollary 3.3.11
and Theorem 3.3.12: it relies on the run-time errors defined in Table 3.4, that are
still defined in terms of 6v

Π
(properly extended to ignore validity durations). The

only difference is that, in stating and proving subject reduction (Theorem 3.3.9),

we also need to consider time passing, i.e. reductions of the form
τ
−→ . We omit the

easy details.

Revocation. We shall now touch upon a new scenario where capabilities can be
revoked, i.e. a node can delete capabilities of other nodes. To rule out obvious
nasty attacks, we allow l to remove a type δ from l′ only if l has previously passed
a supertype of δ to l′ (notice that this complies with standard trends in discretionary
access control models). In doing so, we have also to take into account the fact that
several nodes could have passed δ to l′.

We let S to be the set of the finite subsets of L and we let s, s′, . . . to range
over S. We now annotate capabilities, ranged over by c, with the identity of the
deliverers, thus obtaining the set of annotated capabilities Π′, ranged over by p.
Formally, Π′ contains the subsets of {r, i, o, e} × S such that, if (c1, s1) ∈ p and
(c2, s2) ∈ p, for some s1 , s2, then c1 , c2. Statically assigned capabilities take
the form (c, ∅) and are abbreviated as c. We let the preorder v

Π′
on annotated

capabilities to be defined by the following rules:

s2 ⊆ s1 ∨ s1 = ∅

{(c, s1)} v
Π′
{(c, s2)}

p1 ⊆ p2

p2 vΠ′ p1

p1 vΠ′ p′1 p2 vΠ′ p′2

(p1 ∪ p2) v
Π′

(p′1 ∪ p′2)

Grantings are left unchanged, i.e. they are finite partial functions from L to Π,
while types now use annotated capabilities. We use γ to range over these annotated
types that, formally, are functions mapping L to Π′ such that γ(l) , ∅ only for
finitely many ls. E.g., the type [l 7→ { (i, {l1}) , (o, {l2, l3}) }] used as access control
policy of node l′ enables actions in/out from l′ over l, and records that the capabil-
ity i has been delivered by l1 while the capability o has been delivered by both l2

and l3. The subtyping relation between annotated types, �′, is defined like � but of
course relies on v

Π′
instead of v

Π
. If γ1 and γ2 are annotated types, the extension

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 61

(R-O′′′)
[[t]]pol(γ)

l ::γ out(t)@l′.P ‖ l′ ::γ
′

C′ 7−→ l ::γ P ‖ l′ ::γ
′

C′|〈t〉l

(R-E′′′)
pol(static(γ ′)) `l′ Q . Q

l ::γ eval(Q)@l′.P ‖ l′ ::γ
′

C′ 7−→ l ::γ P ‖ l′ ::γ
′

C′|Q

(R-I′′′)
matchpol(γ)

l (T, t) = 〈δ, σ〉

l ::δ in(T)@l′.P ‖ l′ ::δ
′

〈t〉l
′′

7−→ l ::γdδ
{l′′ }

Pσ ‖ l′ ::δ
′

nil

(R-R′′′)
matchpol(γ)

l (T, t) = 〈δ, σ〉

l ::δ read(T)@l′.P ‖ l′ ::δ
′

〈t〉l
′′

7−→ l ::γdδ
{l′′ }

Pσ ‖ l′ ::δ
′

〈t〉l
′′

(R-R)
γ ′ = γ ′′, δ{l}

l ::γ revoke(δ)@l′.P ‖ l′ ::γ
′

C′ 7−→ l ::γ P ‖ l′ ::γ
′′

C′

plus rules (R-N), (R-S), (R-P), (R-R) and (R-S)
from Table 3.8, with γ in place of δ everywhere.
[[·]] is defined in Table 3.6 and matchl(·, ·) is defined in Table 3.7

Table 3.11: Revocation of Capabilities: Operational Semantics

γ1 d γ2 is the annotated type γ′ such that γ′(u) = γ1(u) + γ2(u) for each u ∈ L,
where p1 + p2 is inductively defined as

∅ + p = p

{(c, s)} + p =

{
{(c, s] s′)} ∪ p′ if (c, s′) ∈ p and p′ = p − {(c, s′)}
{(c, s)} ∪ p if (c,) < p

({(c, s)} ∪ p) + p′ = {(c, s)} + (p + p′)

We let s1] s2 be s1 ∪ s2 if both si , ∅, and ∅ otherwise. Underlying the definition
of] there is the assumption that, if a capability has been statically assigned to a
given node (and hence one of the si is the empty set), then no other node will ever
be allowed to revoke it; a similar motivation inspired us the definition of v

Π′
.

To enable capability revocations, we add operation revoke(δ)@` to the syntax
of µK actions. The new operational semantics is given in Table 3.11. The main
modification w.r.t. Section 3.3.1 is a way to ‘sign’ a tuple with the identity of the
producer, so that, when capabilities contained in the tuple are acquired, the identity
of the granter is properly recorded to enable their possible future revocation. This
can be obtained by letting located tuples take the form

〈t〉l

where l is the producer of the tuple. Then, when a policy is updated by exploiting

62 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

capabilities passed by a node l′′ (see rules (R-I′′′) and (R-R′′′)), the re-
ceived capabilities are annotated with l′′, as expressed by notation δ{l

′′}. Formally,
for any u ∈ L, we let δ{l

′′}(u) = {(c, {l′′}) : c ∈ δ(u)}. In the first four rules of
Table 3.11, we used function pol(γ) that yields a simple (i.e., not annotated) type
δ by deleting from γ all capability annotations, and static(γ), that is the annotated
type obtained from γ by removing all the capabilities that have not been statically
assigned. Finally, rule (R-R) deals with revocations: it verifies that the
revocated capabilities, δ, are present in the type γ ′ of l′, and that l was one of the
grantors of δ in γ ′.

We now show two possible uses of revoke in the example of Section 3.3.3. The
first use consists in an alternative way of implementing the subscription for a fixed
period of time d. Indeed, if we do not introduce validity durations as previously
shown, we can let P to manage timing information: once U’s capability r has
expired, P can revoke it. A simplified process AP implementing this behaviour is

AP , rec X. (X | in(“S ubscr”, !x : {o}, !y, !d)@lP.

check c.c. y of x and require the payment for duration d.
out(“Acc”, lC : [x 7→ {r}])@x.out(x,Today() + d)@l′P.B)

B , rec Y. in(x, !s)@l′P.
out(“check”, x,Today(),Today()≤ s)@l′P .
(in(“check”, x,Today(), false)@l′P.revoke([lC 7→ {r}])@x
| in(“check”, x,Today(), true)@l′P.out(x, s)@l′P.Y)

where l′P is a reserved locality where P stores timing information (we have silently
used basic values representing dates and booleans, together with some obvious op-
erations over them). Intuitively, process AP handles timing expirations by record-
ing in l′P the expiration date of U’s subscription (given by function Today() + d).
Then, process B repeatedly verifies the validity of the subscription by checking
whether the current date (given by function Today()) is antecedent to the expira-
tion date of U’s subscription. When expired, the capability enabling the access to
P’s papers is revoked.

Another possible use of revoke in our example consists in revoking the access
capability to a misbehaved user, e.g. a user that sold the acquired capability r to a
third part at a lower price (thus being a tricky contender of P). Notice, however,
that evidence of U’s crime cannot be implemented in our calculus (also in real life
there would be an external authority entitled to discover the crime and inform the
publisher).

Type Soundness. We now adapt the static typing of Section 3.3.1 to the new
scenario. First, notice that we do not need a specific capability to enable revoke:
the operation is enabled only if l has previously delivered δ to l′, and this is checked
at run-time, see rule (R-R). Hence, the static typing system is modified
adding the following rule

(T-)
Γ `L

l P . P

Γ `L
l revoke(δ)@l′.P . revoke(δ)@l′.P

3.3. DYNAMIC MANAGEMENT OF CAPABILITIES 63

Moreover, rule (T-) now relies on �′.
Like for the previous variants, the typing can only rely on statically assigned

capabilities; indeed, annotated capabilities can be revoked in unpredictable ways.
Again, this forces us to also mark all those actions whose target is a variable be-
cause we cannot know if the action will be enabled by a revocable capability or
not. This is why in rule (R-E′′′) we have used function static(·), that is also
exploited to define well-typedness and executableness, as follows.

Definition 3.3.14 A net is well-typed if, for each node l ::γ C, there exists a com-
ponent C such that

pol(static(γ)) `l C . C

A net is executable if, for each node l ::γ C, it holds that

pol(static(γ)) `l C . C

The definition of run-time errors now relies on the following variation of rule
(EA)

pol(γ)(tgt(a)) 6v
Π
{cap(a)}

l ::γ a.P↗

and soundness of the revised framework can be formulated and proved like in The-
orem 3.3.12.

To conclude, notice that, here and in the other variants on capability loss, the
soundness theorems can be essentially proved like in Section 3.3.2. This is due to
the fact that, for the static typing, we only consider the capabilities always avail-
able, i.e. those capabilities that cannot be consumed, that never expires and that
cannot be revoked. The marking mechanism, that does never give rise to run-time
errors, is exploited whenever capabilities that can become unavailable are required.

3.3.5 Discussion on Capability Management

We now briefly discuss some language design issues related to the management of
capabilities. Our type theory is largely independent from the underlying language.
More specifically, it is possible to define a type theory similar to the one for µK
we have presented in this section, whenever we have a language with the following
features: (i) a set of (possibly remote) process operations and a set of correspond-
ing capabilities, (ii) an ordering relation over capabilities, and (iii) some linguistic
primitives for exchanging capabilities.

Notice that, however, several choices were possible when defining most of the
functions used throughout this section; we shall only comment on some of them.

• When a tuple is produced, no check is made to control that the capabilities
delivered through the tuple do agree with the access control policy of the
node where the tuple is being inserted. Such ‘compatibility’ check is desir-
able if the point of view is taken that a node is responsible for the capabilities

64 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

it provides; clearly, this would give rise to a different notion of well-typed
nets. The check could be implemented by appropriately modifying the check
on grantings of Table 3.6 so that also the access control policy of the target
node is taken into account.

• In rule (M2) only the capabilities actually required by the process enrich the
type of the node performing an action in/read. An alternative could be to
enrich the type with all the capabilities delivered to the receiving node by
the producer of the tuple.

• The definition of grantings used here is simpler than that of [80]. In loc.cit.,
we can write [l 7→ π̄] to mean that we want to pass to l all the capabilities
currently owned, except for those in π. By taking π = ∅, it is thus possible to
pass all the capabilities owned at run-time (that are statically unknown and
unpredictable). Moreover, another way to make our theory more powerful is
to add a reserved keyword others that could be used to denote all the nodes of
a net; thus, the granting [others 7→ π] would specify that the capabilities in
π are granted to any node. Both these features can be easily accommodated
in the theory presented in this section, but they require more run-time checks
and more complicated definitions. Their integration in the framework we
have presented is an easy task and it is left to the interested reader.

The theory presented in Section 3.3.4 is perhaps the simplest way to model
capabilities revocation. We conclude by sketching more elaborated scenarios.

• According to rule (R-R), the process revoke(δ)@l′.P is stuck if only
a subtype of δ is present in γ ′. If we want to avoid this block, we can define
the type γ1 u γ2 to be the greatest common subtype (w.r.t. �′) of both γ1 and
γ2, and redefine (R-R) to be

γ ′ = γ ′′, (γ ′ u δ{l})

l ::γ revoke(δ)@l′.P ‖ l′ ::γ
′

C′ 7−→ l ::γ P ‖ l′ ::γ
′′

C′

Thus, we can remove from γ ′ the greatest subtype of δ delivered by l.

• The proposed formulation rules out direct attacks aimed at revoking as many
capabilities as possible to reduce the functionality of a system. These attacks
can be mounted by executing actions revoke(δ)@l′ by a process running
at l, where l did not delivered δ to l′. However, one can easily imagine a
scenario in which l spawns such a malicious process over an l′′ that delivered
δ to l′. A simple way to avoid this is to define two typing systems: the
first one is `l, the other one, denoted by || l , is defined as the first one but
without rule (T-). We still use `l in the definitions of well-typed and of
executable nets, while we use || l in rule (R-E) (in this way we block
incoming agents containing actions revoke). This solution can however be

3.4. FINE-GRAINED CONTROLS ON PROCESS ACTIVITIES 65

over-restricting: a better (but more complex) solution is to define || l in such
a way that revoke(δ)@l′ is deemed legal only if it is syntactically preceded
by an action out delivering l′ some supertype of δ.

• The last scenario we consider is when l1 delivers δ to l2 and then l2 delivers
δ to l. Should it be legal for l1 to perform an action revoke over l? In the
framework of Section 3.3.4 it is not. However, we could model this sce-
nario by annotating capabilities with subsets of S; each such subset should
represent all the (unordered) paths leading to the acquisition of the capabil-
ity. E.g., if c is annotated with the set { {l1, l2} , {l′1, l

′
2, l
′
3} } in the annotated

type of l, then c has been delivered to l through l1 and l2 and, independently,
through l′1, l′2 and l′3. Clearly, the semantics has to be modified to enable all
the lis and l′js to perform actions revoke over l.

3.4 Fine-grained Controls on Process Activities

We now present a second evolution of the basic type system of Section 3.2; as we
already said, it can be readily combined with the theory of Section 3.3 to yield a
very powerful and flexible mean to control program executions. The type system
we present in this section mainly implements two ideas leading to a fine-grained
control:

1. the type system exploits the source of mobile processes for granting them
different privileges, and

2. process capabilities regulate operations over parts of a tuple space (i.e., the
multiset of all those tuples contained in the tuple space that can be described
by a given pattern).

These desirable features can be found in real systems like, e.g., UNIX, where dif-
ferent users can have different privileges and different files can be manipulated by
different allowed operations.

3.4.1 Fine-grained Types

We start by adapting capabilities and types of Definition 3.1.1 to the new sce-
nario. We want to implement policies such that, for example, if l trusts l′, then l’s
access control policy could accept processes coming from l′ (that will be called
l′-processes) and let them accessing any tuple in l’s TS. If l′ is not totally trusted,
then l’s access control policy could grant l′-processes the capabilities for execut-
ing in/read only over tuples that do not contain classified data, for example tuples
starting with a field containing the value “public”.

66 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

T (p′) ⊆ T (p)

{〈c, p〉} v
Π
{〈c, p′〉}

π1 ⊆ π2

π2 vΠ π1

π1 vΠ π
′
1 π2 vΠ π

′
2

π1 ∪ π2 vΠ π
′
1 ∪ π

′
2

Table 3.12: Rules for Fine-grained Capability Ordering

Capabilities

Capabilities are used to specify the allowed process operations and are formally
defined as

C , {e, n} ∪ { 〈c, p〉 : c ∈ {i, r, o} ∧ p ⊆finP }

where P , (L ∪ {from,−})+ is the set of all patterns. Capabilities e and n enable
process migration and node creation, like before. A capability of the form 〈c, p〉
enables the operation whose name’s first character is c (i.e. in if c is i, and so
on); operation arguments must comply with the finite set of patterns p if p , ∅,
and are not restricted otherwise (in this case, we write c instead of 〈c, ∅〉). Like
tuples and templates, patterns are finite, not empty sequences of fields; pattern
fields may be localities, the reserved word from (denoting the last locality visited
by a mobile process) and the “don’t care” symbol − (denoting any template field).
Thus, for instance, the capability 〈 i , {(“public”,−), (3,−, from)} 〉 enables the op-
erations in(“public”, !x)@... and in(3, !x : π, l)@... for a l-process, while disables
operations like in(“private”, !x)@... .

We use π to denote a non-empty subset of C such that, if 〈c, p〉 ∈ π and 〈c′, p′〉 ∈
π, then c , c′. Π will denote the set of all these πs.

We say that a template complies with a pattern if the template is obtained by
replacing in the pattern all occurrences of from with a locality, and any occurrence
of ‘−’ with any template field allowed by the syntax. Given a non-empty set of
patterns p, we write T (p) to denote the set of all templates complying with patterns
in p. By definition, T (∅) denotes the set of all templates. Since tuples are also
templates (see Table 2.4), the previous definitions also apply to tuples.3

We now extend the ordering between capabilities given in Definition 3.1.2;
formally, it is the least reflexive and transitive relation induced by the rules in
Table 3.12. The chosen ordering relies the assumption that, if a process is allowed
to perform a read/in/out over arguments complying with patterns in p, then it is
allowed to perform the same operation over arguments complying with any set of
patterns p′ that has at most the same ‘complying templates’ as p.

3Notice that the definition of pattern fields affects, via the relation ‘complies with’, the ability of
our types to control the tuples accessed by process operations. However, our framework is largely
independent of the choice of a specific set of fields. For instance, adding to µK basic values (of
type int, string, bool,...), we could also permit fields of the form −Θ, for any type Θ of basic
values. Then, the relation ‘complies with’ could be defined in such a way that an occurrence of −Θ
would be replaced by any value/variable of type Θ. In this way, a finer control could be exercised on
the tuples accessed by processes because we could distinguish, e.g., between a tuple field containing
a integer and one containing a string.

3.4. FINE-GRAINED CONTROLS ON PROCESS ACTIVITIES 67

Types

Types, ranged over by ∆, are functions of the form

∆ : L ∪ {any} →fin ({⊥} ∪ (L ∪ {any, from} →fin Π))

where →fin means that the function maps only a finite subset of its domain to
significant values (i.e. values different from ⊥ and ∅). With abuse of notation, we
use ⊥ to also denote the empty type, i.e. the function mapping any element of its
domain to ⊥. Moreover, by letting λ to range over L ∪ {any, from}, we shall write
any ∆ different from ⊥ as a non-empty list [λi 7→ [λi j 7→ πi j] j=1,...,ki]i=1,...,n; in this
case, we shall denote the set {λi}i=1,...,n as dom(∆).

Like before, types express the access control policies of nodes. Intuitively, if
the type ∆ of a node with address l contains the element [l′ 7→ l′′ 7→ π], then l′-
processes located at l are allowed to perform over l′′ only the operations enabled
by π. The reserved word any is used to refer any node of the net. If it occurs in
the domain of ∆ then it collects the capabilities granted to processes coming from
any node of the net (i.e. [any 7→ l′′ 7→ π] grants all processes the capabilities π
over l′′). If any is contained in the domain of ∆(l′), for some l′, then it is used for
denoting the operations that l′-processes located at l are allowed to perform over
any node of the net (i.e. [l′ 7→ any 7→ π] grants l′-processes the capabilities π
over all net nodes). The reserved word from stands for the last node visited by
a process and is used to grant capabilities over this node whatever it is; thus, for
instance, [any 7→ from 7→ π] grants l′-process spawned at l the capabilities π over
l′. The type ⊥ expresses total absence of capabilities.

We now revise the notion of subtyping; again, this notion is derived from the
standard preorder over functions, by also using the pointwise union of functions,
denoted by d.

Definition 3.4.1 The subtyping relation, 6, is the least reflexive and transitive re-
lation closed under the rule

∀ λ ∈ dom(∆1) : ∆1(λ) � ∆2(λ) d ∆2(any)

∆1 6 ∆2

where � extends the relation of Definition 3.1.3 to take into account associations
for the reserved name any. Formally, it is the least reflexive and transitive relation
closed under the following rules:

m ≤ n ∀ i = 1, . . . ,m : π′i ∪ π
′
k vΠ πi

[λi 7→ πi]i=1,...,m � [λ j 7→ π
′
j] j=1,...,n

λk = any

m ≤ n ∀ i = 1, . . . ,m : π′i vΠ πi

[λi 7→ πi]i=1,...,m � [λ j 7→ π
′
j] j=1,...,n

∀ j.λ j , any

68 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

Notice that ⊥ 6 ∆ for any ∆, since dom(⊥) = ∅.
We finally introduce the notion of well-formed types, that will be useful when

proving soundness of our system.

Definition 3.4.2 The type ∆ is l–well-formed whenever the following conditions
hold:

1. If from ∈ dom(∆(λ)) then λ = any

2. For each λ ∈ dom(∆), it holds that ∆(λ) � ∆(l)

Apart from technical reasons, this definition seems reasonable when considering
∆ to be the type of locality l. Indeed, the first condition is not too restrictive,
because the use of from is really necessary only when no knowledge of the last
node visited by processes is available (i.e. when using any). The second condition
says that l grants to λ-processes (for λ ∈ dom(∆)) no more capabilities than those
granted to its local processes, i.e. those processes statically allocated at l. This
seems reasonable because usually local code is more trusted than foreign code
and, hence, it is assigned more capabilities.

3.4.2 Static Semantics

For each node of a net, say l ::∆ C, the static type checker analyses the operations
that the component C located at l intends to perform and determines whether they
are enabled by the access policy ∆ or not. A type context Γ is now a function of
the form

L ∪ {any} →fin Π

The updating of a type context Γ with the type annotations specified within a tem-
plate T is still denoted upd(Γ,T) and is formally defined like in the previous sec-
tions.

Type judgements for processes take the form Γ `∆l P and, like before, state that,
within the context Γ, P can be safely executed once located at l, whose policy is ∆.
Type judgements are inferred by using the rules in Table 3.13 that should be now
quite explicative. For operations out, in, read and eval, the inference requires the
capability associated to the operation to be enabled by the capabilities owned over
the target u or over all the net sites. Instead, for operation new, the capability n
must be owned by the site l executing the operation. In this case, it is assumed that
the creating node owns over the created one all the capabilities it owns on itself.
Moreover, the type ∆′, declared as the policy of the new node, must be well-formed
for l′ and less permissive than its creator’s type ∆. To this aim, we also need to add
the associations contained in Γ to ∆ when checking relation 6, since ∆′ is allowed
to contain names that are in the domain of Γ but not in the domain of ∆: consider
for example the case of the process

in(!x : π)@l.new(l′ : [l′ 7→ x 7→ π′]). · · ·

3.4. FINE-GRAINED CONTROLS ON PROCESS ACTIVITIES 69

(T-N)

Γ `∆l nil

(T-D)

Γ `∆l 〈t〉

(T-V)

Γ `∆l X

(T-R)

Γ `∆l P

Γ `∆l rec X.P

(T-P)

Γ `∆l C1 Γ `∆l C2

Γ `∆l C1 | C2

(T-E)

Γ(u) ∪ Γ(any) v
Π
{e} Γ `∆l P

Γ `∆l eval(Q)@u.P

(T-O)

Γ(u) ∪ Γ(any) v
Π
〈o, p〉 t ∈ T (p) Γ `∆l P

Γ `∆l out(t)@u.P

(T-I)

Γ(u) ∪ Γ(any) v
Π
〈i, p〉 T ∈ T (p) upd(Γ, T) `∆l P

Γ `∆l in(T)@u.P

(T-R)

Γ(u) ∪ Γ(any) v
Π
〈r, p〉 T ∈ T (p) upd(Γ, T) `∆l P

Γ `∆l read(T)@u.P

(T-N)

Γ(l) v
Π
{n} Γ d [l′ 7→ Γ(l)] `∆d [l7→l′ 7→∆(l)(l)]

l P

∆ is l′–well-formed ∆′ 6 ∆ d [l 7→ ([l′ 7→ ∆(l)(l)] d Γ])

Γ `∆l new(l′ : ∆′).P

Table 3.13: Inference Rules for the Fine-grained System

We conclude this section by defining well-typed nets w.r.t. the fine-grained type
system.

Definition 3.4.3 A net N is well-typed if for each node l ::∆ C in N it holds that ∆
is l–well-formed and ∆(l) `∆l C.

3.4.3 Dynamic Semantics and Type Soundness

Like in the previous sections, the operational semantics of Table 2.5 needs to be
modified by adding some runtime type checks. The structural congruence is readily

70 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

match∆(l)(l′, l′) = ε
∆(l)(l′) ∪ ∆(l)(any) v

Π
π

match∆(l)(!u : π, l′) = [l
′
/u]

match∆(l)(T1, t1) = σ1 match∆(l)(T2, t2) = σ2

match∆(l)(T1, T2 , t1, t2) = σ1 ◦ σ2

Table 3.14: Matching Rules with Fine-grained Types

adapted from Section 3.2.2. With respect to Table 3.3, the main modifications affect
the pattern-matching predicate and the rules for actions eval and new. The revised
definition for pattern-matching readily extends the definition given in Table 3.2; for
the sake of clarity, its definition is given in Table 3.14. The main novelty is that,
when trying to replace a formal field !u : π with a value l′, the capabilities owned
by l’s static code over any node can be added to the capabilities owned over l′ to
obtain the needed capabilities in π.

The µK operational semantics with fine-grained types is the least relation
induced by the rules in Table 3.15. Let us comment on the key modifications. Rule
(R-E) says that the migrating process Q must be checked against the union
of the capabilities that the access control policy ∆′ of the target node l′ assigns to
processes coming from l and to processes coming from any node (in this last case,
occurrences of from must be interpreted as l, as stated by the syntactic substitution
∆′(any)[l/from] of from with l in function ∆′(any)).

To conclude, notice that Proposition 3.2.3 still holds in this framework.

Type Soundness.

We can now adapt the results of Section 3.2.3 to the setting of fine-grained types.
The formulations of Lemmas 3.2.5 and 3.2.6 need to be slightly modified and their
proofs is carried-on like in Section 3.2.3; Lemma 3.2.7 is stated in the same way
and proved similarly.

Lemma 3.4.4 (Weakening) If Γ `∆l C then Γ′ `∆l C, for every Γ′ such that Γ � Γ′.

Lemma 3.4.5 (Substitutivity)

1. If Γ `∆l C then, for any substitution σ, Γσ `∆l Cσ.

2. If Γ `∆l C and Γ `∆l Q, then Γ `∆l C[Q/X].

Theorem 3.4.6 (Subject Reduction) If N is well-typed and N 7−→ N ′, then N′ is
well-typed.

Proof: The proof is a smooth adaption of the corresponding one of Theorem 3.2.8;
we only discuss the two most significant differences.

3.4. FINE-GRAINED CONTROLS ON PROCESS ACTIVITIES 71

(R-O)

l ::∆ out(t)@l′.P ‖ l′ ::∆
′

nil 7−→ l ::∆ P ‖ l′ ::∆
′

〈t〉

(R-E)

∆′(l) d (∆′(any)[l/from]) `∆
′

l′ Q

l ::∆ eval(Q)@l′.P ‖ l′ ::∆
′

nil 7−→ l ::∆ P ‖ l′ ::∆
′

Q

(R-I)
match∆(l)(T, t) = σ

l ::∆ in(T)@l′.P ‖ l′ ::∆
′

〈t〉 7−→ l ::∆ Pσ ‖ l′ ::∆
′

nil

(R-R)
match∆(l)(T, t) = σ

l ::∆ read(T)@l′.P ‖ l′ ::∆
′

〈t〉 7−→ l ::∆ Pσ ‖ l′ ::∆
′

〈t〉

(R-N)

l ::∆ new(l′ : ∆′).P 7−→ (νl′)(l ::∆ d [l7→l′ 7→∆(l)(l)] P ‖ l′ ::∆
′

nil)

(R-S)

l ::∆ C1 ‖ l ::∆ C2 ‖ N 7−→ (ν̃l)(l ::∆
′

C′1 ‖ l ::∆ C′2 ‖ N′)

l ::∆ C1|C2 ‖ N 7−→ (ν̃l)(l ::∆
′

C′1|C
′
2 ‖ N′)

with rules (R-P), (R-R) and (R-S) from Table 2.3

Table 3.15: Operational Semantics with Fine-grained Types

(R-E). Well-typedness of node l ::∆ P is inferred like in the previous case.
We are only left to prove that ∆′(l′) `l′ Q since, by hypothesis, ∆′(l′) `l′ P′.
By the premise of rule (R-E), we have that ∆′(l) d (∆′(any)[l/from]) `l′
Q. If we prove that

∆′(l) d (∆′(any)[l/from]) � ∆′(l′)

then we can conclude by using Lemma 3.4.4. Indeed, it suffices to prove
that both ∆′(l) and ∆′(any)[l/from] are subtypes of ∆′(l′), since trivially the
pointwise extension of partial functions respects this property. By l′–well-
formedness of type ∆′, we have that:

• ∆′(l) � ∆′(l′) (by condition 2. of Definition 3.4.2)

• let λ ∈ dom(∆′(any)[l/from]); then

– if λ , l then (∆′(any)[l/from])(λ) = ∆′(any)(λ) and, since

72 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

∆′(any) � ∆′(l′) (again, by Definition 3.4.2(2)), it holds that
∆′(l′)(λ) v

Π
(∆′(any)[l/from])(λ)

– otherwise, it is easy to check that (∆′(any)[l/from])(l) is
∆′(any)(l) ∪ ∆′(any)(from). By Definition 3.4.2(2), we have that
∆′(l′)(l) v

Π
∆′(any)(l). By Definition 3.4.2(1), we also know

that from < dom(∆′(l′)); hence, because ∆′(any) � ∆′(l′) and by
Definition 3.4.1, it must be that ∆′(l′)(any) v

Π
∆′(any)(l).

These facts amount to say that ∆′(any)[l/from] � ∆′(l′).

(R-N). First of all, we have to prove that the types occurring in the resulting
net are still well-formed. Type ∆d[l 7→ l′ 7→ (∆(l)(l)−{n})] is l–well-formed,
since it is obtained from the l–well-formed type ∆ by adding capabilities to
l-processes; type ∆′ is verified to be l′–well-formed by the static checker.
Then, the fact that l ::∆ d [l7→l′ 7→∆(l)(l)] P is well-typed is proved similarly to
the case for (R-N) in Theorem 3.2.8; we leave the details to the reader.

The notion of run-time errors is adapted from Table 3.4 by upgrading rule
(EA) as follows

∆(l)(tgt(a)) ∪ ∆(l)(any) 6v
Π
{cap(a)}

l ::∆ a.P↗

Theorem 3.4.7 (Type Safety) If N is well-typed then N ↗ does not hold.

Proof: Like in Theorem 3.2.10, we proceed by contradiction. The only relevant
difference is for the base case, where we have to reason on two sub-cases:

• a.P was part of a l′-process migrated to l. In this case, it cannot be ∆(l′) d
(∆(any)[l

′
/from]) `∆l a.P, otherwise, by Lemma 3.4.4, ∆(l) `∆l a.P and in

particular ∆(l)(tgt(a))∪∆(l)(any) v
Π
{cap(a)}. But then, the premise of rule

(R-E) in Table 3.15 would not be satisfied and hence the migration of
the l′-process containing a.P would have been blocked. This contradicts the
assumption on the origin of process a.P.

• a.P was located at l at the outset. In this case, it must be that ∆(l)(tgt(a)) ∪
∆(l)(any) 6v

Π
{cap(a)}, thus falsifying the premise of the static inference rule

for action a. This contradicts the well-typedness hypothesis.

Corollary 3.4.8 (Global Type Soundness) If N is well-typed and N 7−→∗ N′, then
N ↗ does not hold.

Theorem 3.4.9 (Local Type Soundness) Let N be a net. If NS is well-typed and
N 7−→∗ N′, then N′S ↗ does not hold.

3.4. FINE-GRAINED CONTROLS ON PROCESS ACTIVITIES 73

3.4.4 Example: A Bank Account Management System

In this section, we use our approach to model the simplified behaviour of a bank ac-
count management system. For ensuring compliance with the access control policy
of the bank some aspects of our setting, such as the possibility of granting different
privileges to processes coming from different source nodes and the dynamic type
checking of mobile processes when they migrate, have proved to be crucial.

We suppose that a bank is located at a node with address lB and can receive
and manage requests coming from many users located at nodes with addresses
lU , lU′ , The bank must provide the users with typical account managing op-
erations: opening/closing accounts, putting/getting money in/from accounts, and
making statements of accounts. For simplicity, we shall omit some details and
technical operations that in reality take place, like, e.g., charging taxes and dealing
with improper operations (like the attempt of getting more money than that really
available).

For permitting the bank to check the operations that users intend to perform,
we assume that users cannot perform remote operations over lB except for sending
processes. This can be achieved by using the type system presented in Section 3.3:
the bank can pass its address, that should be fresh, only associated with the e capa-
bility. Hence, if a user U wants to require an operation to the bank, it can only send
a process to lB (thus virtually moving to the bank) which will interact locally with
the proper operation handler. The user process, once it has been accepted (i.e. after
its compliance with the bank access control policy has been checked), can require
the operation by locally producing a tuple whose first field contains the name of
the operation and whose second field contains the address of the user node (used
to identify the user that made the request). Depending on the operation, the tuple
could have other fields containing the amount of money involved in the operation
and the account number receiving the money.

The node implementing the bank is illustrated in Table 3.16. First, the bank
creates a new node that will contain its clients accounts, stored as tuples of the
form (userAddress, amount). This node acts just as a repository for tuples and will
not be used for spawning processes, thus it has assigned the empty type ⊥. Then,
five different handler processes, one for each kind of operation, are concurrently
spawned. Each handler continuously waits for a request. When such a request
arrives, the proper handler executes its task by remotely accessing the reserved
locality and then reports locally a confirmation of action completion. The client
process performing the request waits for such a confirmation and then brings it back
to its original locality. This last operation is performed by means of a migration
thus providing the user node with the chance of controlling the operation.

Notice that, by taking advantage of the semantics of µK operations, the
simple handlers of Table 3.16 implement the mutual exclusion needed to ensure
the correctness of concurrent operations over shared data. Indeed, once a handler
H has withdrawn the tuple representing an account (i.e. once H has locked the
account), the other handlers cannot perform other tasks on the same account until

74 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

lB ::∆B new(lS : ⊥).(OpenH(lS) | PutH(lS) | GetH(lS) | ReadH(lS) | CloseH(lS))

where:

OpenH(u) , rec X.in(“open”, !x, !y)@l B.

(X | out(x, y)@u.out(“OKopen”, x, y)@l B)

PutH(u) , rec X.in(“put”, !x, !y, !w)@l B.

(X | in(w, !z)@u.out(w, z + y)@u.out(“OK put”, x, y,w)@l B)

GetH(u) , rec X.in(“get”, !x, !y)@l B.

(X | in(x, !z)@u.out(x, z − y)@u.out(“OKget”, x, y)@l B)

ReadH(u) , rec X.in(“read”, !x)@l B.

(X | read(x, !y)@u.out(“OKread”, x, y)@l B)

CloseH(u) , rec X.in(“close”, !x)@l B.

(X | in(x, !y)@u.out(“OKclose”, x, y)@l B)

∆B , [lB 7→ [lB 7→ {i, o, r, n},
any 7→ {e}] ,

any 7→ [from 7→ {e},
lB 7→ { 〈 o , { (“open”, from,−),

(“put”, from,−,−),
(“get”, from,−),
(“read”, from),
(“close”, from)
} 〉,

〈 i , { (“OKopen”, from,−),
(“OK put”, from,−,−),
(“OKget”, from,−),
(“OKread”, from,−),
(“OKclose”, from,−)
} 〉

]
]

Table 3.16: The node implementing the bank

H writes the updated tuple (i.e. H releases the lock).

The access control policy ∆B is so defined that ‘sensible’ operations over the
accounts of a user U (like getting some money and reading/closing the account)
can only be requested by lU-processes, while operations like putting some money
can be requested by processes coming from any node. Moreover, the only remote
operation processes are allowed to perform is to came back to their source site.
Therefore, a lU -process can request to the bank sensible operations only over U’s
accounts and can deliver the confirmations only to lU . Typical processes acting on
behalf of a user U are illustrated in Table 3.17, where the parameter s denotes an

3.5. RELATED WORK 75

OpenR(s) , eval(out(“open”, l U, s)@lB.in(“OKopen”, l U, s)@lB.

eval(out(“OKopen”, s)@l U)@lU)@lB

PutR(s, lU′) , eval(out(“put”, l U , s, lU′)@lB.in(“OK put”, l U, s, lU′)@lB.

eval(out(“OK put”, s, l U′)@lU)@lU)@lB

GetR(s) , eval(out(“get”, l U , s)@lB.in(“OKget”, l U , s)@lB.

eval(out(“OKget”, s)@l U)@lU)@lB

ReadR , eval(out(“read”, l U)@lB.in(“OKread”, l U, !x)@lB.

eval(out(“OKread”, x)@l U)@lU)@lB

CloseR , eval(out(“close”, l U)@lB.in(“OKclose”, l U , !x)@lB.

eval(out(“OKclose”, x)@l U)@lU)@lB

Table 3.17: Processes of a user U requesting bank operations

amount of money and the parameter lU′ denotes an account.
The only possibility for a malicious node to illegally access U’s accounts is to

pass through lU , using a process like eval(eval(MaliciousReq)@lB)@lU . Hence,
U has to protect itself from these attacks by granting an e capability over lB only to
processes coming from totally trusted nodes: the access control policy of lU must
contain the element [l 7→ lB 7→ {e}] only if U trusts the user located at l. However,
U can trust l only if U trusts all l′ trusted by l (in fact, a node trusted by l can
send to l a process that is then allowed to spawn a process at U containing requests
on U’s accounts). Notice that we do not aim at modelling here sophisticated trust
managements; a wide literature on this topic is available and can be accommodated
in our setting.

Finally, notice that only the handler processes can access the node dynamically
created whose address is lS . Indeed, when such node is created, the operational
semantics dynamically extends ∆B with [lB 7→ lS 7→ {i, r, o}] thus enabling all, and
only those, processes initially allocated at lB to perform in/read/out operations
over lS .

3.5 Related Work

There is a lot of work on type systems for security in calculi with process distri-
bution and mobility. We conclude by surveying more strictly related work and by
contrasting it against the theory we have presented in this chapter.

A lot of type systems for GCs are strictly related to security; among the others,
we mention those for controlling

• the types of the values exchanged in communications [39, 25, 90],

• Ambients mobility and ability to be opened [36, 37, 105, 69, 43],

• resource access via policies for mandatory and discretionary access control
[26, 27],

76 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

• co-location of all processes that intend to access a given channel [139, 153],

• the effect of transmitted process abstractions over local channels [154, 87].

The research line closest to ours is that on the Dπ-calculus [90, 88, 129], where
type systems control capabilities of mobile processes over located resources (i.e.
communication channels). Differently from µK, node types describe permis-
sions to use local channels (this is in sharp contrast with µK types that aim at
controlling the remote operations that a network node can perform over the other
network nodes). For establishing well-typedness, the type system in [90] needs
considering the whole net, while that in [88] only needs local information (because
processes are dynamically checked whenever they migrate), and thus is similar to
our approach. In [129], the global knowledge about the net is split into several parts
(that are updated independently, but still in accordance with the global knowledge,
via dynamic knowledge acquisition through communication) and, to reduce the
amount of dynamic controls, a relation of trust among nodes is exploited (thus, no
process coming from a trusted node is type checked).

[153] presents Dπλ, a process calculus that results from the integration of the
call-by-value λ-calculus and the π-calculus, together with primitives for process
distribution and remote process creation. Apart from the higher order and channel-
based communication, the main difference with µK is that Dπλ localities are
anonymous (i.e. not explicitly referrable by processes) and simply used to express
process distribution. Dπλ comes equipped with a type system that controls how
processes use resources (i.e. channels) by guaranteeing that in well-typed systems
processes that intend to perform inputs at a given channel are co-located. In [154],
a fine-grained type system for Dπλ is defined that permits controlling the effect
of transmitted process abstractions (parameterised with respect to channel names)
over local channels. Processes are assigned fine-grained types that, like interfaces,
record the channels to which processes have access together with the corresponding
capabilities, and process abstractions are assigned dependent functional types that
abstract from channel names and types. This use of types is akin to µK’s one,
though the differences between the underlying languages still remain.

Recently [87], the Dπ has been extended to allow high-order data to be trans-
mitted. In the resulting formalism, called SafeDpi, parameterised code may be sent
between sites using higher-order channels. A host location may protect it self by
only accepting code which conforms to a given type associated to the incoming
port. A sophisticated static type system is then defined for these ports to restrict
the capabilities and access rights of any process launched by incoming code. De-
pendent and existential types are used to add flexibility, allowing the behaviour
of these launched processes to depend on the host’s instantiation of the incoming
code. However, similarly to [90, 154], the approach strongly relies on a global typ-
ing environment to type the whole net. In our view, this is a too demanding request
in a global computing framework.

Finally, we want to mention some proposals for the Mobile Ambients calculus
and its variants, albeit their network models and mobility mechanisms are very dif-

3.5. RELATED WORK 77

ferent from those of µK. As an example, we want to mention some differences
between the mobility control in Ambient and in µK deriving from their dif-
ferent programming choices. Mobility in µK is, using Ambient terminology,
objective (in that the moving process is spawned by an external process), while
most of the work on Ambient–derived calculi uses subjective moves (explicitly
programmed in the moving entities). The mobility control defined in [105] for the
Safe Ambient Calculus (similar to that presented in [38] for the Mobile Ambient
calculus) consists in identifying those ambients, called immobile, that cannot be
opened and autonomously move, but can host local message exchanges and can
receive incoming ambients (that, however, cannot be opened therein). A somehow
similar behaviour can be implemented in µK by setting the policy of a node l
to be [l 7→ {r, i, o, e, n}]; however, this type cannot rule out remote communications
using l as the target node since l’s type cannot restrict actions remotely performed.
[69] extends [105] by introducing ambient security levels: the types used there rule
out the movement through (and the opening of) ambients of lower security levels.
We believe that this feature can be easily introduced in the µK setting.

78 CHAPTER 3. TYPES TO CONTROL PROCESS ACTIVITIES

Chapter 4

Types for Confining Data and
Processes

The major goal of language-based security is the design of languages that are flex-
ible, expressive and safe. Unfortunately, these are often contrasting requirements.
For example, mobile code deeply increases flexibility and thus expressiveness of
programming languages, but introduces new security problems related to unwanted
accesses to classified data. Standard security issues (like, e.g., secrecy and integrity
of data and program code) are complicated by the presence of code mobility: the
use of cryptography, that is one of the most diffused techniques for ensuring secu-
rity in distributed systems, must be strongly restricted in order to be safe. Indeed,
malicious nodes can attack a mobile process and compromise its integrity through
code modification or its secrecy through leakage of sensitive data. Similarly, mali-
cious mobile processes might attempt to access or forge private data of the network
nodes hosting them. Hence, we can hardly imagine to use mobile processes car-
rying confidential data (e.g. private keys) with them, or host nodes with classified
information accessible to all incoming processes (whatever their source node be).
Hence, the use of security mechanisms that back up and supplement cryptographic
mechanisms becomes a major issue when developing systems of distributed and
mobile processes where the compliance with some security policies must be guar-
anteed.

In this chapter, we define an approach that permits protecting the secrecy of
both data residing on hosting nodes and of data carried by mobile processes, by
relying on program annotation. Our approach is inspired by Confined-λ [98] and
relies on annotating data with sets of node addresses, called regions, that specify the
network nodes that can interact with them. Also nodes may have annotations that
specify which nodes can send data and spawn processes to them. Data annotations
enable programmers to control the set of nodes that can share specific data, and
permit shading them from other nodes. Node annotations, instead, enable node
administrators to control the set of data and processes each node can host; thus, the
node can refuse malicious processes and unwanted data.

79

80 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

The language semantics is then designed to guarantee that computations pro-
ceed while respecting the region constraints. For example, a process P can access
a datum d only if P’s execution does not export d outside its data region, say r,
i.e. if P only writes d in network nodes included in r or, similarly, if P only carries
d while migrating to nodes included in r. Enforcing similar constraints requires
a form of code inspection that is performed, as much as possible, statically. This
relieves the runtime semantics of the burden to make expensive checks and, then,
improves efficiency.

The approach we shall present here is largely independent of a specific model:
indeed, in [61] we adapted our approach to other two paradigmatic calculi for GC,
namely Dπ [90] and Mobile Ambients Calculus [41].

4.1 Controlling Data Movement via Types

We now set up a machinery based on typing that helps in protecting exchanged and
local data in global computing applications. To this aim, we suggest annotating
data with sets of network addresses, describing the sub-net where data can be used;
these sets will be called regions and are formally defined as follows.

Definition 4.1.1 (Regions) Regions, r, are either finite subsets of names or the
distinct element >, used to refer to the whole net. The set of all regions is R; it is
partially ordered by the subset inclusion relation ⊆ and has > as top element.

The syntax of Table 2.4 is changed as follows:

N ::= . . .
∣∣∣ l rd:: rp C

∣∣∣ . . .

t ::= [u]r

∣∣∣ . . .

The annotations allow programmers to fix the nodes that can share a given datum,
and to avoid that the datum is accessed by untrusted processes (from untrusted
nodes). Also network nodes are annotated with regions that specify the nodes that
can send data and those that can spawn processes to them. Thus, nodes are an-
notated with two regions, say rd and rp. We should have rp ⊆ rd since accepting
processes is, in general, more dangerous than accepting data; however, no restric-
tion on the model is imposed to deal with this issue. We shall assume that absence
of region annotations stands for >.

The language semantics guarantees that computations proceed according to
region constraints. This property, that we call safety, can be intuitively stated as “A
net N is safe if, for any datum d occurring in N associated to region r and for all
possible evolutions of N, it holds that d will only cross and reside at nodes whose
addresses are in r”.

To better understand the properties we want to model and the impact of our
approach on system security, we present a simple client/server example. Suppose
that a client C requires a service to a server S . Once S has verified the credentials of

4.2. STATIC INFERENCE AND CHECKING 81

C (e.g. its identity or its credit card information), it sends back a secret password,
that C can change. C could then access the service by using the last set password.
This protocol can be modelled by assuming two network addresses, lC and lS ,
hosting the processes PC and PS , respectively, defined as

PC , out(lC , [cc in f o]
{lC ,lS }

)@lS .in(!y)@lC .
< modi f y the password y and access the service >

PS , rec X.in(!x1, !x2)@lS .(X | < check the credit card in f o x2 > .

new(pwd).out([pwd]
{x1 ,lS }

)@x1.

< handle password modi f ications and provide the service >)

We marked the information on C’s credit card with region {lC , lS }with the intention
that only processes at the locations of C and S will be enabled to capture C’s
request. Thus, no attacks mounted from other nodes aimed at cancelling the request
can take place. Similar considerations do hold for the restricted name pwd that S
sends back to C (it represents a secret password shared between processes at C’s
and S ’s locations).

To make our theoretical framework properly working, we need to control the
processes arriving at C’s and S ’s locations; this is why our typing discipline re-
quires also nodes to be annotated with regions. Server S can then accept only
processes coming from trusted nodes, but it should accept data coming from any
user; this is necessary to model a setting where S accepts any service request, while
it supplies the service only to accredited users. Thus, lS ∈ rC

d and lC ∈ rS
d (usually,

rS
d = >), while rC

p = rS
p = ∅.

It has to be said that we are implicitly assuming the ability of determining the
origin (the source node) of data and processes. By relying on it, we can then check
compliance with region annotations.

4.2 Static Inference and Checking

The language presented in the previous section is a mean to program applications
where, during the computation, a datum can only appear in localities contained
in its region annotation. The runtime semantics can enforce this requirement by
performing appropriate checks. These (runtime) checks are necessary because the
pattern matching based communication does not permit making any static assump-
tion on the actual structure of tuples hosted by a tuple space (see the discussion
on this topic in the previous chapter). To make the semantics as efficient as possi-
ble, a preliminary typing phase is introduced. The typing of µK nets aims at
guaranteeing that:

1. a datum [l]r can be seen at (i.e. can cross) u if u ∈ r

2. a process retrieving a datum [l]r cannot exhibit l outside r.

82 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

(T-E)

0 � 0

(T-N)
N1 � N′1 N2 � N′2

N1 ‖ N2 � N′1 ‖ N′2

(T-R)

N � N′

(νl)N � (νl)N′

(T-N)

rd, rp ∈ {>} ∪ 2L ∅ ` P �l ∅ ` P′

l rd:: rp P � l rd:: rp P′

Table 4.1: Static Typing for Confining Data and Processes (Nets)

The typing phase performs check 1. statically and annotates bound names occur-
ring in templates with regions to enable efficient execution of check 2. at runtime.
To better distinguish the annotations put by the programmers/administrators from
those put by the type system, we shall write the latter ones as superscripts and the
former ones as subscripts. Hence, the syntax of templates from Table 2.4 becomes

T ::= u
∣∣∣ [! x]r

∣∣∣ T1,T2

Intuitively, [! x]r states that the datum replacing x will cross at most the localities
in r.

The typing procedure for µK nets is given in Table 4.1. Net typings are
written N � N′. The typing step includes a type checking phase, to verify that nets
are written according to the region annotations therein, and a type inference phase,
to annotate parameters occurring in templates. Intuitively, the inference phase takes
a net N and returns a net N′ obtained from N by annotating all the parameters with
a region containing the nodes that the received values will cross. E.g., in process
in(!x)@l.out([x]r)@l′ the declaration !x of variable x must be associated to region
r that, in turn, must contain l′ (and l, of course). The type checker verifies that each
process located at a node l contains only data that can be seen by l (this is done by
the judgement �l) and verifies that actions out and eval send data/code to nodes
where the data/code can appear without violating the region annotations.

Judgement � relies on an auxiliary procedure Γ ` P �u Γ
′ ` P′ defined in

Table 4.2, where the type environment Γ is a finite map from variables to regions.
The procedure Γ ` P �u Γ

′ ` P′ determines, for each parameter in P, a re-
gion annotation describing the use of that parameter in the continuation process
(i.e. where it will be sent); P′ is then obtained by decorating P with those annota-
tions. Such regions are determined by the type inference by considering the locality
where the process runs (the u decorating �u) and by examining the localities where
the variables can appear upon execution of actions out and/or eval.

Notice, however, that care is needed to avoid inconsistencies on names occur-
ring in a process. As an example, consider the nodes (both of them are legal)

l :: in(!x)@l′.in(!y)@l′′.out([x]
{l,y})@l (?)

l :: in(!y)@l′.out([y]
{l,y})@l (??)

4.2. STATIC INFERENCE AND CHECKING 83

(T-N)

Γ ` nil �u Γ ` nil

(T-P)
Γ ` C1 �u Γ

′ ` C′1 Γ′ ` C2 �u Γ
′′ ` C′2

Γ ` C1|C2 �u Γ
′′ ` C′1|C

′
2

(T-D)
u ∈ reg(t)

Γ ` 〈t〉 �u Γ ` 〈t〉

(T-R)

Γ ` P �u Γ
′ ` P′

Γ ` rec X.P �u Γ
′ ` rec X.P′

(T-V)

Γ ` X �u Γ ` X

(T-N)
Γ ` P �u Γ

′ ` P′

Γ ` new(l).P �u Γ
′ ↗{l} ` new(l).P′

(T-I)
Γ] {x : {u}}x ∈ bn(T) ` P �u Γ

′] {x : rx}x ∈ bn(T) ` P′

Γ ` in(T)@u′.P �u Γ
′↗bn(T) ` in(T ′)@u′.P′

(∗)

(T-R)
Γ] {x : {u}}x ∈ bn(T) ` P �u Γ

′] {x : rx}x ∈ bn(T) ` P′

Γ ` read(T)@u′.P �u Γ
′↗bn(T) ` read(T ′)@u′.P′

(∗)

(T-O)
{u, u′} ⊆ reg(t) = r Γ ` P �u Γ

′ ` P′

Γ ` out(t)@u′.P �u Γ
′ + {x : r}x ∈ fn(t) ` out(t)@u′.P′

(T-E)
u ∈ reg(P1) Γ ` P1 �u′ Γ

′ ` P′1 Γ′ ` P2 �u Γ
′′ ` P′2

Γ ` eval(P1)@u′.P2 �u Γ
′′ + {x : {u′}}x ∈ fn(P1) ` eval(P′1)@u′.P′2

(∗) is: T ′ obtained from T by replacing each !x with [! x]r′x ,

for r′x =

{
> if (rx − {x}) ∩ bn(T) = ∅
rx − {x} otherwise

Table 4.2: Static Typing for Confining Data and Processes (Components)

Blindly annotating these nodes would result in

l :: in([!x]{l,y})@l′.in([!y]{l})@l′′.out([x]
{l,y})@l

l :: in([!y]{l,y})@l′.out([y]
{l,y})@l

Here, the occurrence of y in the regions of !x and !y respectively escaped its binder;
thus, the y occurring in the annotations are not the same as the y bound in action
in. The solution we designed to accept (?) is to assign !x the region annotation >.
This is reasonable since in([!x]{l,y})@l′ means ‘retrieve a datum from l′ and share it

84 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

with a generic locality of the net’ (indeed y can be dynamically replaced with any
locality name). The solution we designed to accept (??) is to remove y from !y
region annotation and assume that a locality can always occur in the node having
that locality as address.

The anomaly (?) can also appear when using action new, e.g. in

l :: in(!x)@l′.new(l′′).out([x]{l,l′′ })@l

This would result in the annotated process

l :: in([!x]{l,l
′′ })@l′.new(l′′).out([x]{l,l′′})@l

where, again, the l′′ occurring in the annotation associated to !x by the inference
system escapes from the binder new that declares l′′. For the sake of simplicity, we
overcome this problem like before, i.e. by assigning > to the region annotation of
!x.

To rule out anomalies like (?), in Table 4.2 we use function Γ↗S , for S a finite
set of names, that is inductively defined as

∅ ↗S , ∅

(Γ] {x : r})↗S ,

{
Γ↗S] {x : >} if S ∩ r , ∅
Γ↗S] {x : r} otherwise

where] denotes union between environments with disjoint domains.
Function + extends the information of an environment through another envi-

ronment; formally

Γ + ∅ , Γ

Γ + {x : r} ,

{
Γ′] {x : r ∪ r′} if Γ = Γ′] {x : r′}
Γ otherwise

Γ + ({x : r}] Γ′) , (Γ + {x : r}) + Γ′

Notice that only the entries in the domain of Γ are considered for the extension.
Finally, we exploit the auxiliary function reg() that returns the intersection of

the data regions occurring in its argument. Its formal definition is

reg([u]r) , r

reg(t1, t2) , reg(t1) ∩ reg(t2)

reg(nil) = reg(X) , >

reg(new(l).P) , reg(P) − {l}

reg(out(t)@u.P) , reg(t) ∩ reg(P)

reg(in(T)@u.P) = reg(read(T)@u.P)

= reg(rec X.P) , reg(P)

reg(P1|P2) = reg(eval(P1)@u.P2) , reg(P1) ∩ reg(P2)

4.3. TYPED OPERATIONAL SEMANTICS 85

match(l, [l]r) = ε
r ⊆ r′

match([!x]r, [l]r′) = [l/x]

match(T1, t1) = σ1 match(T2, t2) = σ2

match((T1, T2), (t1, t2)) = σ1 ◦ σ2

Table 4.3: Pattern-matching for Confining Data and Processes

Before concluding this section, we briefly comment on some typing rules. It
can be easily seen that typing P1|P2 and P2|P1 yields the same typing; this relies
on commutativity of sets union, since Γ grows up by union of regions. In rule
(T-N), the resulting environment is Γ′↗{l} to rule out anomalies like (?). In
rules (T-I) and (T-R), the procedure should type P in the environment Γ
extended by associating each x ∈ bn(T) to region {u}. At the end of this typing
phase, the region annotation rx calculated for x is associated to the parameter !x.
Notice that x can occur in x’s region rx, generating anomalies like (??); to avoid
this, the annotation for x must be obtained from rx − {x}. Moreover, it is possible
that x occurs in region annotations for other names bound in the template or within
Γ′, because of anomalies like (?); thus, the environment resulting from this phase
must be Γ′↗bn(T) and the annotation for !x must be {x : (rx − {x})} ↗bn(T). In rule
(T-O), the type checker verifies that t can stay both in the hosting locality u and
in the target locality u′. The continuation process P is typed in the environment
Γ, thus obtaining the annotated process P′ and the environment Γ′. Hence, after
the typing, the environment must be Γ′ extended with the information that the
names occurring in t could be seen at reg(t). Similar observations also hold for
rule (T-E) too; in particular, the check that the process can cross the locality
where it is hosted is performed whenever the process is going to migrate.

We deem well-typed those nets that successfully passed a typing phase.

Definition 4.2.1 A net N is well-typed if there exists a net N ′ such that N′ � N.

4.3 Typed Operational Semantics

Like in the previous chapter, we shall only consider for execution well-formed
nets, i.e. nets where no node is cloned. Moreover, we need some run-time check to
confine data and process. Mainly, this is obtained by properly adapting the pattern-
matching function (see Table 4.3) and rules (R-O) and (R-E). The key
feature of the pattern-matching is to ensure that, when a name l associated to region
r′ has to be retrieved by means of a bound variable !x that will be used in r, it must
be that r ⊆ r′. This fact, together with the static inference, ensures that data are
properly used through the computation.

The structural congruence relation, ≡, is modified to include node annotations
and to remove rule (S-C), like in the previous chapter. The reduction relation

86 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

(R-O)
l ∈ r′d

l rd:: rp out(t)@l′.P ‖ l′ r′d
:: r′p C′ 7−→ l rd:: rp P ‖ l′ r′d

:: r′p C′ | 〈t〉

(R-E)
l ∈ r′p

l rd:: rp eval(Q)@l′.P ‖ l′ r′d
:: r′p C′ 7−→ l rd:: rp P ‖ l′ r′d

:: r′p C′ |Q

(R-I)
match(T, t) = σ

l rd:: rp in(T)@l′.P ‖ l′ r′d
:: r′p 〈t〉 7−→ l rd:: rp Pσ ‖ l′ r′d

:: r′p nil

(R-R)
match(T, t) = σ

l rd:: rp read(T)@l′.P ‖ l′ r′d
:: r′p 〈t〉 7−→ l rd:: rp Pσ ‖ l′ r′d

:: r′p 〈t〉

(R-N)

l rd:: rp new(l′).P 7−→ (νl′)(l rd∪{l′}:: rp∪{l′} P ‖ l′ rd∪{l′}:: rp∪{l′} nil)

(R-S)

l rd:: rp C1 ‖ l rd:: rp C2 ‖ N 7−→ (ν̃l)(l r′d
:: r′p C′1 ‖ l rd:: rp C′2 ‖ N′)

l rd:: rp C1 |C2 ‖ N 7−→ (ν̃l)(l r′d
:: r′p C′1 |C

′
2 ‖ N′)

with rules (R-P), (R-R) and (R-S) from Table 2.3

Table 4.4: Operational Semantics for Confining Data and Processes

adapts the rules of Table 2.5 as shown in Table 4.4; we only remark a few points.
In rules (R-O) and (R-E) a datum/process can be put at the target of the
out/eval only if such a node accepts the datum/process (i.e. l ∈ r ′d and l ∈ r′p). This
is necessary to prevent an untrusted node l to send data/code to l′. Again, notice
that no static check could enforce this property without loss of expressivity. Rules
(R-I) and (R-R) behave like before; just notice that the new definition of
the pattern-matching must be used and that the application of a substitution to a
process P also acts on the region annotations therein.

Like in the previous chapter, we can easily prove that the introduction of rule
(R-S) and the removal of rule (S-C) are enough to ensure that net well-
formedness is preserved along reductions (see Proposition 3.2.3 whose proof can
be easily adapted to the present setting).

To conclude, let us come back to the example presented in Section 4.1. By
reasonably assuming that the password modification is carried on by only involving
lC and lS , the inference system annotates PC as follows:

P′C , out(lC , [cc in f o]{lC ,lS })@lS .in([!y]{lC ,lS })@lC . · · ·

4.4. TYPE SOUNDNESS 87

Similarly, if we assume that credit card checking is performed locally by the server
and never used anymore, PS is annotated as:

P′S , rec X.in([!x1]{lS }, [!x2]{lS })@lS . · · · .new(p).out([p]{x1 ,lS }
)@x1. · · ·

Now, the dynamic checks of rule (R-I) are respected; thus, the resulting net can
evolve as expected:

lC rC
d
:: rC

p
P′C ‖ lS rS

d
:: rS

p
P′S

7−→ ∗ lC rC
d
:: rC

p
in([!y]{lC ,lS })@lC . · · · ‖

lS rS
d
:: rS

p
P′S | < check cc in f o > .new(p).out([p]

{lC ,lS }
)@lC . · · ·

7−→ ∗ lC rC
d
:: rC

p
< modi f y password p and access the service > ‖

lS rS
d
:: rS

p
P′S | < handle pwd modi f ications and

provide the service >

4.4 Type Soundness

Our main results state that well-typedness is preserved along reductions and that
well-typed nets do respect region annotations. The proof of the first result, i.e.
subject reduction, is similar to the corresponding proofs in the previous chapter;
thus, we only highlight the differences. About the second result, i.e. safety, we
need a more sophisticated theory that we shall discuss with some details later on.

Lemma 4.4.1 (Subject Congruence) If N is well-typed and N ≡ N ′ then N′ is
well-typed.

Lemma 4.4.2 (Substitutivity) If Γ] {xi : ri}i ∈ I ` P �u Γ
′] {xi : r′i }i ∈ I ` P′

and σ = [li/xi]i ∈ I , then Γσ ` Pσ �uσ Γ
′σ ` P′σ .

Proof: Notice that it suffices to prove the claim for |I| = 1; indeed, a straightfor-
ward induction on |I|, together with the fact that [li/xi]i=1,...,n = [l1/x1] ◦ . . . ◦ [ln/xn],
can cover the more general case.

Thus, we consider only Γ] {x : r} ` P �u Γ
′] {x : r′} ` P′ and we proceed

by induction on the length of the inference used to derive it. The base case is when
rules (T-N) or (T-D) are used: in both cases it is trivial to conclude. Let
us consider the inductive case and reason by case analysis on the last rule used to
infer the judgement. We explicitly show the most significant case, i.e. when using
(T-I); the remaining cases are similar or easier. By definition, P = in(T)@u′.Q
and P′ = in(T ′)@u′.Q′, where Γ] {x : r}] {y : {u}}y ∈ bn(T) ` Q �u Γ

′′] {x :
r′′′}] {y : r′′}y ∈ bn(T) ` Q′ and T ′ is defined by (∗) in Table 4.2. By hypothesis,
x < bn(T); thus, by induction,

Γσ] {y : {uσ}y ∈ bn(T)} ` Qσ �uσ Γ
′′σ] {y : r′′σ}y ∈ bn(T) ` Q′σ

88 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

Moreover, Γ′ = Γ′′↗bn(T) and thus Γ′σ = (Γ′′↗bn(T))σ = (Γ′′σ)↗bn(T). Hence, by
using rule (T-I), we can conclude.

Theorem 4.4.3 (Subject Reduction) If N is well-typed and N 7−→ N ′, then N′ is
well-typed.

Proof: The proof proceeds by induction on the length of the inference. We only
consider the most peculiar cases.

(R-O). By hypothesis, N = l rd:: rp out(t)@l′.P ‖ l′ r′d
:: r′p C′ and there exists a

net M such that M � N. By definition, M = l rd:: rp out(t)@l′.Q ‖ l′ r′d
:: r′p C′′

where ∅ ` out(t)@l′.Q �l ∅ ` out(t)@l′.P and ∅ ` C′′ �l′ ∅ ` C′ . By
the premises of rule (T-O), ∅ ` Q �l ∅ ` P and l′ ∈ r. This suffices to
conclude that N′ = l rd:: rp P ‖ l′ r′d

:: r′p P′ | 〈t〉 is well-typed.

(R-I). By hypothesis, N results from the typing of a net M = l rd :: rp

in(T)@l′.Q ‖ l′ r′d
:: r′p 〈t〉. By assuming that match(T, t) = σ, that must

hold because of the premise of rule (R-I), the main thing to prove is
that the well-typedness of l rd :: rp in(T)@l′.P implies the well-typedness of
l rd:: rp Pσ. By the premise of rule (T-I), it holds that

{x : {l}}x ∈ bn(T) ` Q �l {x : rx}x ∈ bn(T) ` P

Hence, by Lemma 4.4.2, ∅ ` Q σ �l ∅ ` P σ; this suffices to conclude.

(R-S). By hypothesis, we have that N = l rd :: rp C1|C2 ‖ N′′ results from
the typing of a net M = l rd :: rp D1|D2 ‖ M′′. In particular, ∅ ` D1|D2 �l

∅ ` C1|C2 that, by rule (T-P), implies that ∅ ` D1 �l Γ ` C1 and
Γ ` D2 �l ∅ ` C2 . However, Γ must be ∅ as well; indeed, it can be easily
checked that Γ1 ` C �l Γ2 ` C′ implies dom(Γ1) = dom(Γ2). Hence,
l rd:: rp C1 ‖ l rd:: rp C2 ‖ N′′ is well-typed and, by induction, (ν̃l)(l r′d

:: r′p C′1 ‖

l rd :: rp C′2 ‖ N′) is well-typed. This implies that (ν̃l)(l r′d
:: r′p C′1|C

′
2 ‖ N′) is

well-typed, as required.

We now turn to type safety. As we have already said, it states that well-
typedness guarantees absence of immediate violations of data regions. However,
the wanted safety property requires that data regions are respected along all pos-
sible computations. To properly formalise this property we need to define a finer
semantics. Indeed, deeming a net to be safe when “for any node l rd :: rp P it holds
that l occurs in the region of each datum in P” would not be satisfactory because the
regions annotating data disappear upon data withdrawal. Thus, it would become
impossible to formalise the requirement that the region specification associated to
a datum when it is produced is respected during all the datum life-time (i.e. also
after its retrieval). For example, consider the net

N = l rd:: rp in([!x]r′)@l′.P ‖ l′ r′d
:: r′p 〈[l

′′]r〉

4.4. TYPE SOUNDNESS 89

Upon execution of action in, the net becomes N ′ = l rd:: rp P′ ‖ l′ r′d
:: r′p nil, where

P′ = P[l
′′
/x]. Now, the new occurrences of l′′ in P′ are not annotated anymore with

region r. Hence, in N′ we have no mean to formalise the statement that l can use
l′′ by respecting the original annotation r.

To overcome this problem, we design a tagged language, where each occur-
rence of a locality in a process is tagged with a region determining its visibility. To
this aim, we slightly adapt the syntax of µK, by letting

u ::= [l]r

∣∣∣ x

We can now formalise when a net is safe. To this aim, we extend function reg
defined in Section 4.2 by taking into account also the locality tags when calculating
the region intersection. For example, reg(out([[l]r1

]r2
)@[l′]r3

.P) = r1 ∩ r2 ∩ r3 ∩

reg(P).

Definition 4.4.4 (Safety) A net N is safe if, for any l rd :: rp C in N, it holds that
l ∈ reg(C).

The tagged operational semantics generalises that in Table 4.4; indeed, pro-
cesses like out([[l]r1

]r2
)@[l′]r3

or in([l]r1
)@[l′]r2

can evolve. These terms may
arise upon application of substitutions that now map names into names tagged with
regions. We let the application of the substitution to a region to replace names with
plain names only (hence omitting their tags) thus ensuring that regions are still sets
of names. The reduction relation, however, ignores the tags and considers tagged
names as plain ones. This should have been somehow expected because, as we said
before, the only role of tags is to enable formalising and checking that a net is safe.
To avoid confusion, we use the arrow 7−→→ to relate tagged terms.

The typing procedure for tagged terms is denoted by �� and its most significant
rules are given in Table 4.5 (the other ones are smooth adaptations of those in
Table 4.2). We use functions pid(u) and reg(u) to denote, respectively, the plain
identifier and the region of the tagged identifier u. The intuition underlying �� is
that, whenever an identifier occurs at a locality, the locality must be included in the
region tagging the identifier.

Given a plain net N, we use tag(N) to denote the set containing all the well-
typed (w.r.t. ��) tagged nets obtained by tagging localities in N. Given a tagged
net N, we denote with untag(N) the plain net obtained from N by removing all the
locality tags. Notice that tag(N) is not empty because it contains at least the net
obtained by tagging each locality in N with >. We call the latter net the outset
tagging of N.

Predictably, the tagged language and the original one are strongly related.
Moreover, the typing of tagged terms is preserved along (tagged) reductions. The
following results formalise these properties.

90 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

pid(u) ∈ reg(u′) {pid(u), pid(u′)} ⊆ reg(t) = r Γ ` P ��u Γ
′ ` P′

Γ ` out(t)@u′.P ��u Γ
′ + {x : r}x ∈ fn(t) ` out(t)@u′.P′

pid(u) ∈ reg(u′) ∩ reg(P1) Γ ` P1 ��u′ Γ
′ ` P′1 Γ′ ` P2 ��u Γ

′′ ` P′2

Γ ` eval(P1)@u′.P2 ��u Γ
′′ + {x : {pid(u′)}}x ∈ fn(P1) ` eval(P′1)@u′.P′2

pid(u) ∈ reg(u′)

Γ] {x : {pid(u)}}x ∈ bn(T) ` P ��u Γ
′] {x : rx}x ∈ bn(T) ` P′

Γ ` in(T)@u′.P ��u Γ
′↗bn(T) ` in(T ′)@u′.P′

(∗)

pid(u) ∈ reg(u′)

Γ] {x : {pid(u)}}x ∈ bn(T) ` P ��u Γ
′] {x : rx}x ∈ bn(T) ` P′

Γ ` read(T)@u′.P ��u Γ
′↗bn(T) ` read(T ′)@u′.P′

(∗)

(∗) is defined like in Table 4.2

Table 4.5: Tagged Typing Rules

Proposition 4.4.5 1. If N �� M then untag(N) � untag(M).

2. If N � M, then for all M′ ∈ tag(M) there exists N′ ∈ tag(N) such that
N′ �� M′.

3. If N 7−→→ N′ then untag(N) 7−→ untag(N ′).

Proof: All properties easily follow from definitions of �� and 7−→→ .

Corollary 4.4.6 (Tagged Subject Reduction) If N is a well-typed tagged net and
N 7−→→ N′, then N′ is a well-typed (tagged) net.

Proof: By Propositions 4.4.5(1) and (3), it holds that untag(N) is well-typed
and that untag(N) 7−→ untag(N ′). Because of Theorem 4.4.3, this implies that
untag(N′) is well-typed and, by Proposition 4.4.5(2), we can conclude.

We are now ready to prove the type safety theorem.

Theorem 4.4.7 (Type Safety) If N is a well-typed tagged net then N is safe.

Proof: By definition, N is a well-typed (tagged) net if there exists a net M such that
M �� N. The proof proceeds by induction on the length of the inference leading
to this judgement and heavily relies on checking the premise pid(u) ∈ reg(u′)
contained in each rule of Table 4.5.

4.5. EXAMPLE: IMPLEMENTING A MULTIUSER SYSTEM 91

Corollary 4.4.8 (Type Soundness) Let N be a (plain) well-typed net and N ′ be its
outset tagging. Then N′ 7−→→∗ N′′ implies that N′′ is safe.

Proof: By Proposition 4.4.5(2) and by the fact that N ′ ∈ tag(N), it holds that N′

is a well-typed tagged net. We now proceed by induction on the length of 7−→→∗.
The base case is Theorem 4.4.7; the inductive case trivially follows by exploiting
Corollary 4.4.6.

The results given above can be generalised by requiring only a subnet of the
whole net to be well-typed. By using the convention that absence of a region
annotation means >, a not well-typed net can be executed according to the (tagged
versions of) rules in Table 4.4 by safely considering all its variable annotations as
>. We call r-subnet of N the net formed by all the nodes l rd :: rp P in N such that
{l}∪ rd ∪ rp ⊆ r. Notice that such a net is not necessarily defined for all r; of course
it is always defined for r = > and coincides with N (in this case Theorem 4.4.9
coincides with Corollary 4.4.8).

Theorem 4.4.9 (Localised Type Soundness) Let N be a plain net and N ′ be its
outset tagging. If the r-subnet of N ′ is defined and well-typed, and if N ′ 7−→→∗N′′,
then the r′-subnet of N′′ is defined and safe, where r′ = r ∪ L and L is the set of
node addresses created during the computation.

Proof: By exploiting Theorem 4.4.7, we only need to show that the r ′-subnet of
N′′ is defined and well-typed. We just consider the case for N ′ 7−→→ N′′; the more
general case is recovered by using an inductive argument similar to that in Corol-
lary 4.4.7. The proof proceeds like that of Theorem 4.4.3. Just notice that, when
the operational rule used to infer the reduction is (the tagged version of) (R-O)
or (R-E) resp., the premise l ∈ r′d or l ∈ r′p respectively turns out to be crucial
to maintain well-typedness. Moreover, the only non trivial case for establishing
if the r′-subnet is defined is when the operational rule used is (R-N). In this
case, the claim is easily proved since the new node is assigned the regions of the
creating one.

To conclude, we want to remark that the language can be easily extended to
enable explicit specification of the regions of the new nodes. In this case, existence
of the r′-subnet should be ensured by adding a premise to rule (R-N) requiring
that the regions of the new node are included in those of the creating node.

4.5 Example: Implementing a Multiuser System

In this section we use the framework presented so far to program a simple but
meaningful example. We present the behaviour of a simple UNIX-like multiuser
system, where users can login (exploiting a password-based approach) and use
the system functionalities, which consist in reading/writing files or executing pro-
grams. For the sake of presentation, we shall present the system in three steps and,

92 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

finally, we shall merge them together. Let lS be the address of the server, > be its
data trust region and ∅ be its process trust region (thus no user can spawn code to
lS).

User Identification. We start with programming the identification of different
users via passwords. Localities play the role of user IDs. Let lp be a private repos-
itory used by lS to record the registered users and their passwords. Thus, lp hosts
the tuples

〈l1, [pwd1]{l1,lp,lS }
〉 | . . . | 〈ln, [pwdn]{ln,lp,lS }

〉

Let l be a user wanting to log in lS . If l is already known to lS (i.e. it is one of
the lis), then l can use a process like

out(“login”, l, [pwd]{l,lS })@lS .in(“logged”)@lS

for communicating with the server process

Login(lp) , rec X.in(“login”, !u, !z)@lS .(X |
read(u, z)@lp.out([“logged”]

{lS ,u}
)@lS)

Intuitively, l requires a connection by sending its user ID (its locality) and its pass-
word; the server checks if this information is correct and sends back an ack, acti-
vating the continuation of the computation at l. Notice that the region annotations
of pwd and “logged” rule out attacks of a nasty intruder aimed at cancelling the
request of login or the corresponding ack, and preserve the secrecy of the password.

If the user is not registered at lS yet, he can send an “hello” request to the server
containing its address and wait for a password

out([“hello”]{l,lS }, l)@lS .in(“registered”, !pwd)@lS

The server then handles this request with the process

NewUser(lp) , rec X.in(“hello”, !u)@lS .(X |
new(pwd).out(u, [pwd]

{u,lS ,lp}
)@lp.

out(“registered”, [pwd]
{lS ,u}

)@lS)

Of course, a locality l′ different from l can send to lS a request for a new password
pretending to be l: the only difference with the “hello” message given above is that
the message now should contain also l′ in the data region. However, the server will
report the new password to l and the region associated to the password will ensure
that pwd will not leave l. Thus, l′ cannot withdraw pwd: it can only try to send a
process to l for acting at l with the new password. This can be possible only if l
trusts l′, implying that l accepts this ‘suspicious’ activity of l′.

We now show the use of our typing theory in the setting just presented. In
particular, we give evidence of how we can prevent attacks aimed at cancelling
messages and activities of malicious users pretending to play the role of other users.

4.5. EXAMPLE: IMPLEMENTING A MULTIUSER SYSTEM 93

• Let lcanc be a locality hosting a process that aims at interfering with the lo-
gin procedure above by performing action in(“hello”, !x)@lS . In this way,
it removes the hello message sent by an unregistered user l willing to be
connected with the server lS . The system is modelled as follows

lcanc :: in(“hello”, !x)@lS .DONE ‖ lS :: NewUser(lp)
‖ l :: out([“hello”]

{l,lS }
, l)@lS .in(“registered”, !pwd)@lS . · · ·

7−→ lcanc :: in(“hello”, !x)@lS .DONE
‖ l :: in(“registered”, !pwd)@lS . · · ·

‖ lS :: NewUser(lp) | 〈[“hello”]
{l,lS }
, l〉

7−→/ lcanc :: DONE ‖ l :: in(“registered”, !pwd)@lS . · · ·

‖ lS :: NewUser(lp)

Notice that the last transition cannot take place. As expected, the intruder
running at lcanc is not enabled to withdraw the tuple 〈[“hello”]

{l,lS }
, l〉 because

lcanc < {l, lS } (see the definition of pattern-matching in Table 4.3).

• Let now lpret be a locality pretending to act on behalf of l, by trying to acquire
a log to lS under the identity of l. Let us examine the possible evolutions of
the system:

lpret :: out(“hello”, l)@lS .in(“registered”, !pwd)@lS .DONE
‖ lS :: NewUser(lp)

7−→7−→7−→7−→ lpret :: in(“registered”, !pwd)@lS .DONE
‖ lS :: NewUser(lp)| 〈“registered”, [pwd]

{lS ,l}
〉

7−→/ lpret :: DONE ‖ lS :: NewUser(lp)

Again, the last reduction cannot take place because lpret < {lS , l}.
The only way for lpret to withdraw the tuple 〈“registered”, [pwd]

{lS ,l}
〉

is to spawn a process to l (if it exists in the net) executing action
in(“registered”, !pwd)@lS (that would be enabled, because l ∈ {lS , l}). Such
a migration, however, should be authorised by l (indeed, it can take place
only if lpret ∈ rl

p, where rl
p is the node region controlling migrations to l).

The File System. We now consider a server handling a file system where different
users can write/read data. Let l f be a private repository used by lS to store the files.
A file named N, whose content is the string S , that can be read by users in r and
written by users in r′, is stored in l f as the component

CN , 〈N , [“read”]r∪{lS ,l f}
, [“written”]r′∪{lS ,l f}

〉
∣∣∣ 〈N, S 〉

Intuitively, “read” and “written” are just dummy data used to properly store regions
r and r′. Then, the server handles requests for reading and writing files with the

94 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

following processes

Read(l f) , rec X.in(“read”, !u, !n)@lS .(X | read(n, !zr , !zw)@l f .

read(n, !z)@l f .out([zr]{l f ,lS ,u}
, n, z)@u)

Write(l f) , rec X.in(“write”, !u, !n, !z)@lS .(X | read(n, !zr , !zw)@l f .

in(n, !z′)@l f .out(n, z)@l f .out([zw]
{u,l f ,lS }

, n)@u)

Intuitively, the first action in collects the request for reading/writing the file named
n performed by locality u; then the following read action, once type checked,
verifies if the locality replacing u has the read/write privilege on file n (see below).
Finally, the required operation is performed (the content of the file is read or the
old content is replaced with the new one) and an acknowledgement (containing the
kind of operation performed, the name of the file and, in the “read” case, also its
content) is sent back to u.

We now show how our types can control read accesses to files. There are two
features devoted to this aim: the type inference phase carried on process Read(l f)
and the runtime checks of the operational semantics (in particular, the premise of
rules (R-I) and (R-R)). We first give the type inference; recall that absence
of region annotations stands for >.

{lS , u} ⊆ s Γ1 ` nil �lS Γ1 ` nil

Γ1 ` out ([zr]s, n, z)@u �lS Γ2 ` out ([zr]s, n, z)@u

Γ3 ` read (n, !z)@l f .out([zr]s, n, z)@u �lS
Γ4 ` read (n, [!z]s)@l f .out([zr]s, n, z)@u

Γ5 ` read (n, !zr, !zw)@l f .read(n, !z)@l f .out([zr]s, n, z)@u �lS
Γ6 ` read (n, [!zr]s, [!zw]{lS })@l f .read(n, [!z]s)@l f .out([zr]s, n, z)@u

∅ ` in (“read”, !u, !n)@l S .read(n, !zr, !zw)@l f .

read(n, !z)@l f .out([zr]s, n, z)@u
�lS ∅ ` in (“read”, [!u] {ls}, !n)@lS .read(n, [!zr]s, [!zw]{lS })@l f .

read(n, [!z]s)@l f .out([zr]s, n, z)@u

where we let s , {l f , lS , u} and

Γ1 , Γ3] {z : {lS }} Γ2 , Γ1 + {zr : s, n : s, z : s}
Γ3 , Γ5] {zr : {lS }, zw : {lS }} Γ4 , u : {lS }, n : s, zr : s, zw : {lS }
Γ5 , u : {lS }, n : {lS } Γ6 , u : {lS }, n : s

We now call TRead(l f) the process obtained from the typing inference above.
Let l be a user wanting to read a file named FILE associated to a read region
ρ = {l f , lS , l, . . .}. FILE is then stored at l f as the component

CFILE , 〈FILE , [“read”]ρ , [“written”]ρ′ 〉
∣∣∣ 〈FILE, content〉

4.5. EXAMPLE: IMPLEMENTING A MULTIUSER SYSTEM 95

The evolution of user l is

l :: out(“read”, l, FILE)@lS .in(“read”, FILE, !cont)@l.P
‖ l f :: CFILE ‖ lS :: TRead(l f)

7−→7−→ l :: in(“read”, FILE, !cont)@l.P ‖ l f :: CFILE

‖ lS :: TRead(l f) | read(FILE, [!zr]{l f ,lS ,l}, [!zw]{lS })@l f . · · ·

Now, action read(FILE, [!zr]{l f ,lS ,l}, [!zw]{lS })@l f is enabled, because {l f , lS , l} is a
subset of ρ; thus, the content of FILE will be transferred to l that, in turn, will
be enabled to retrieve it (by binding content to the variable cont) and use it in P.
Notice that, if a user l′ < ρ had tried to carry on the same task, these actions would
not have been enabled, since {l f , lS , l′} * ρ.

Executing Code-on-Demand. In this last setting, a user can dynamically down-
load some code from the server to perform a given task. The server stores all the
downloadable processes as executable (named) files in a private locality lc. For
each executable file named N, whose code is P and that is downloadable by nodes
in r, the server stores in lc the component

CN , 〈N, [“downloaded”]r∪{lS ,lc}
〉
∣∣∣

rec X.in(req,N, !u)@lc .(X | read(N, !ze)@lc.
eval(eval(out([ze]

{lc,lS ,u}
,N)@u.P)@u)@lS)

Then, when a user wants to download some code, the server handles its request
with the process

Execute(lc) , rec X.in(“execute”, !u, !n)@lS .out(req, n, u)@lc .X

Notice that lc cannot directly send P for execution to u because (the locality asso-
ciated to) u cannot have lc in its trust region (since lc is fresh). Thus, P must firstly
cross lS and then, if lS is in the process trust region of u (which we assume it is the
case), the code-on-demand procedure successfully terminates, by also reporting an
ack to the user.

The System. Finally, we can put together the activities shown so far to obtain the
implementation of the whole server. Thus, the (not yet typed) initial configuration
of lS would be

lS > :: ∅ new(lp).new(l f).new(lc) .
< set up lp with the identites and passwords o f the users > .
< set up l f with the data o f the f ile system > .
< set up lc with the downloadable processes > .
(NewUser(lp)

∣∣∣ Login(lp)
∣∣∣ Read(l f)

∣∣∣
Write(l f)

∣∣∣ Execute(lc))

Our example simplifies UNIX behaviour in two major aspects: first, we did not
require that a user must login before using the functionalities offered by the system;

96 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

second, the files/programs are put by the system and not by the users. Both these
choices were driven by the aim of simplifying the presentation, but our setting
could be easily enriched with more refined and realistic features.

Finally, we want to remark that, by exploiting the dummy data “downloaded”,
“read” and “written”, we have been able to enforce an access control policy by
only using region annotations. This confirms that, in spite of its simplicity, the
approach we have presented in this chapter is very powerful.

4.6 Discussion and Related Work

In this chapter, we presented a programming notation aiming at protecting the se-
crecy of both host and process data in global computing applications. By exploiting
a preliminary compilation and some (unavoidable) runtime checks, we ensured that
data can cross only nodes which are allowed to see them. The technique developed
is good enough to assume only a local knowledge of the net during the compilation
and work even when misbehaving entities are present in the system.

We want to remark that our theory permits to naturally implement a security
mechanism based on sandboxes. We already noticed that nodes can be seen as
logical partitions of a single physical machine. By exploiting this intuition, one can
split each machine into an appropriate number of nodes each with its own security
policy. In this way, fine grained security policies can be programmed to guarantee
that untrusted processes (e.g., coming from unchecked nodes) are accepted only
at dedicated nodes and that from these nodes remote operations and spawning of
threads are not permitted.

The system we presented here is quite simple and easily implementable (types
are just sets and operations on types are unions, intersections, subset inclusions,
...). Also its runtime semantics is reasonable, since it only involves efficiently
implementable operations on sets. Moreover, by accepting more runtime checks,
node regions could be handled more dynamically by defining primitives for adding
and removing nodes from regions (in this way, e.g., nodes could choose whether to
trust newly created ones). The problem is that, in this richer framework, none of
the two guarantees illustrated at the beginning of Section 4.2 could be issued after
static checks. The type system would then only permit inferring the regions of the
arguments of process actions, and render dynamic checks more efficient.

Related Work

Our work has been inspired by that on Confined-λ [98], a higher-order functional
language that supports distributed computing by allowing expressions at different
localities to communicate via channels. To limit the movement of values, program-
mers can assign a type (i.e. a region) to them; a type system is defined that guaran-
tees that each value can roam only within the allowed region. There are however
some differences with our approach. First of all, we consider tuple spaces, another

4.6. DISCUSSION AND RELATED WORK 97

communication media that require a more dynamic typing mechanism. Then, we
permit annotating only the relevant data while in [98] a programmer must declare
a type for any constant, function and channel. When typing a net, we do not rely
on any form of global knowledge of the system; only the annotations in the process
are considered. On the contrary, the type system in [98] assumes a global typing
environment for handling shared channels; this somehow conflicts with the features
of a global computing setting. Finally, we also give ‘localised’ formulations of the
soundness theorem stating that well-typedness of a given subnet is preserved also
in presence of untyped contexts. This is a crucial property for global computing
systems where little assumptions on the behaviour of the context can be made.

The group types, originally proposed for the Ambients calculus [38] and then
recast to the π-calculus [35], have purposes similar to our region annotations. A
group type is just a name that can be dynamically created but cannot be commu-
nicated (i.e. the scope of a group name cannot be extended). It permits to control
name visibility in different regions of a net: a fresh name belonging to a fresh
group can never be communicated to any process outside the scope of the group.
Group types can then be used to handle processes and ambients movements, and in
general to prevent accidental or malicious leakage of private names without using
more complex dependent types. However, differently from our approach, when
exploiting group types some global knowledge is still necessary for taking into
account the types of the names occurring free in a net.

Group types have also been used in region-based memory management where
the focus is on efficiency, rather than on distribution and mobility. For instance, in
[55] a connection between memory regions and group types is established and a
variant of the π-calculus equipped with group types is used as a device to simplify
the proof of correctness of dynamic memory management.

Finally, we want to consider a lower level approach to protect visibility of
data via encryption. Encrypted data can appear everywhere in the net, but can be
effectively used only by those users that know the decryption key. At an abstract
level, we can consider the content of an encrypted message to be visible only within
the region containing the nodes knowing the decryption key. Thus, it might appear
that our approach could be implemented by resorting to cryptographic primitives.
However, we would like to stress an important difference. When encryption is
used, the producer of encrypted data can control the access to (plain) data only
by controlling visibility of the decryption key. But this can be hardly controlled:
once a decryption key has been passed on, information leakage can reveal the key,
thus breaking the controllability of data. By exploiting our approach, the data
producer can decide in advance which are the users enabled to access the data; this
information is preserved during any evolution of the system. However, it should
be noticed that indirect information flows can be generated; for an account of these
problems and some possible solutions we refer the interested reader to [84, 89].

98 CHAPTER 4. TYPES FOR CONFINING DATA AND PROCESSES

Chapter 5

Behavioural Theories

Programming computational infrastructures available globally for offering uniform
services has become one of the main issues in computer science, as we have largely
argued in the Introduction. On the foundational side, the demand is on the devel-
opment of tools and techniques to build safer and trustworthy global systems, to
analyse their behaviour, and to demonstrate their conformance to given specifica-
tions. Indeed, theoretical models and calculi can provide a sound basis for building
systems which are “sound by construction” and which behave in a predictable and
analysable manner. The crux is to equip the abstractions for global computers with
effective tools to support development and certification of global computing appli-
cations.

Semantic theories, needed for stating and proving observable properties, should
reflect all (or most of) the distinctive features of global systems at user’s applica-
tion level; hence, they should ignore issues such as routing or network topology,
because they are hardly observable at the user level.

In this chapter, we define some sensible semantics theories for µK and de-
velop for them some tractable proof techniques. Given the direct correspondence
of µK with X-K, we believe that the tractable behavioural equivalences
we develop here provide powerful tools to write sound programs for global com-
puters. First, programs written in X-K are mapped down to µK; here they
are verified, by using behavioural equivalences to formalise and prove properties;
finally, they can run on an actual global computer, like the Internet, by exploiting
their Java-based translation [12].

We develop the semantic theories by defining behavioural equivalences over
terms as the maximal congruences induced by some basic observables that are
dictated by the relevant features of global computers. The approach can be sum-
marised as follows:

1. Define a set of observables (values, normal forms, actual communications,
. . .) to which a term can evaluate by means of successive reductions.

2. Define a basic equivalence over terms by stating that two terms are equivalent
if and only if they exhibit the same set of basic observables.

99

100 CHAPTER 5. BEHAVIOURAL THEORIES

3. Consider the largest congruence over the language induced by the basic
equivalence or by its co-inductive closure.

A similar approach has already been used to study models of concurrent systems
(e.g., CCS [115, 15] and π-calculus [133, 5]). Obviously, the designation of the
basic observables is critical. Thus, we draw inspiration from everyday experience:
a user can observe the behaviour of a global computer (at the application level) by
testing

i. whether a specific site is up and running (i.e., it provides some data of any
kind),

ii. whether a specific information is present in (at least) a site, or

iii. whether a specific information is present in a specific site.

Other calculi for global computers rely on (barbed) congruences induced by similar
observables: for example, Ambient [41] uses a barb that is somehow related to i.
above, while the barbs in Dπ-calculus [85] are strongly related to iii. .

A question that naturally arises is whether these observables yield ‘interesting’
congruences. The three basic observables, together with the discriminating power
provided by µK contexts, all yield the same congruence, when used similarly.
This is for us already an indication of the robustness of the resulting semantic the-
ories. Moreover, as we will show, the observables are still sufficiently powerful
to give rise to interesting semantic theories also when considering lower-level fea-
tures like, e.g., failures. Due to its intuitive appeal, in the rest of this chapter we
shall mainly use the first kind of observable.

A major drawback of the approach relying on basic observables and context
closures is that the resulting congruences are defined via universal quantification
over all language contexts, and this makes their checking very hard. It is then im-
portant to devise proof techniques that avoid such quantification. We shall define a
labelled transition system (with labels indicating the performed action) and exploit
the labels to avoid quantification over contexts. We shall present tractable charac-
terisations of two ‘touchstone’ congruences, namely barbed congruence and may
testing, in terms of (non-standard) labelled bisimilarity and trace equivalence, re-
spectively. In doing this, we have to face the problems raised by the presence of
explicit localities and by the fact that µK is asynchronous (both in the com-
munication and in the mobility paradigm) and higher-order (because processes can
migrate).

5.1 Touchstone Equivalences

In this section we present (weak) equivalences yielding sensible semantic theories
for µK. The approach we follow relies on the definition of an observation
(also called barb) that intuitively formalises the possible interactions of a process.

5.1. TOUCHSTONE EQUIVALENCES 101

We use observables to define equivalence relations that identify those nets that
cannot be taken apart by any basic observation after any reduction in any context.
Notationally, we shall use |=⇒ to denote the reflexive and transitive closure of 7−→.

Definition 5.1.1 (Barbs and Contexts)
Predicate N ↓ l holds true if and only if N ≡ (ν̃l)(N′ ‖ l :: 〈t〉) for some l̃, N′

and t such that l < l̃.
Predicate N ⇓ l holds true if and only if N |=⇒ N ′ for some N′ such that N′ ↓ l.
A context C[·] is a µK net with an occurrence of a hole [·] to be filled in

with any net. Formally,

C[·] ::= [·]
∣∣∣ N ‖ C[·]

∣∣∣ (νl)C[·]

We have chosen the basic observables by taking inspiration from those used for
the asynchronous π-calculus [5]. One may wonder if our choice is “correct” and
argue that there are other alternative notions of basic observables that seem quite
natural, as we have discussed before. A first alternative could be to consider as
equivalent two nets if they make available the same set of data, possibly in different
nodes (this choice can be defended as follows: when a user looks for a paper in the
web he may not be interested whether he finds the paper in author’s web pages or in
publisher’s one). A second alternative could be to consider as equivalent two nets if
they have exactly the same data at the same localities. Later on, we shall prove that
the congruences induced by these alternative observables do coincide. This means
that our results are quite independent from the observable chosen and vindicates
our choice. Moreover, notice that, by using other kinds of observation predicates,
more sophisticated equivalences should come into the picture. For example, in
[15] it is shown how must testing and fair testing can be obtained in CCS by only
changing the basic observable.

Now, we say that a binary relation < between nets is

• barb preserving, if N<M and N ⇓ l imply M ⇓ l;

• reduction closed, if N < M and N 7−→ N ′ imply M |=⇒ M′ and N′ < M′,
for some M′;

• context closed, if N < M implies C[N]< C[M] for every context C[·].

Our touchstone equivalences should at the very least relate nets with the same ob-
servable behaviour; thus, they must be barb preserving. However, an equivalence
defined only in terms of this property are too weak: indeed, the set of barbs changes
during computations or when interacting with an external environment. Moreover,
for the sake of compositionality, our touchstone equivalences should also be con-
gruences. These requirements lead us to the following definitions.

Definition 5.1.2 (May testing) ' is the largest symmetric, barb preserving and
context closed relation between nets.

102 CHAPTER 5. BEHAVIOURAL THEORIES

Definition 5.1.3 (Barbed congruence) � is the largest symmetric, barb preserv-
ing, reduction and context closed relation between nets.

We want to remark that the above definition of barbed congruence is the standard
one, see [96, 124]. May testing is, instead, usually defined in terms of observers,
experiments and possible successes of experiment [65]. However, if we let '′ de-
note the equivalence on µK nets defined a là [65], we can prove that the two
definitions do coincide. Moreover, the inclusions between our touchstone equiv-
alences reflect the inclusions that hold in the π-calculus. To define may testing
like in [65], we let test be a fresh and reserved name used to report success of
an experiment (i.e. a computation) of a net and an observer. The latter is a net
containing (i) a node whose address is test that can only host the datum 〈test〉,
and (ii) processes that may emit the datum 〈test〉 at test. A computation reports
success if, along its execution, a datum 〈test〉 at node test appears; this is written
OK
===⇒ .

Definition 5.1.4 N '′ M if, for any observer K, it holds that N ‖ K
OK
===⇒ if and

only if M ‖ K
OK
===⇒ .

Proposition 5.1.5 � ⊂ ' = '′.

Proof: That � is a sub-relation of ' trivially follows from their definitions.
The inclusion is strict because the latter equivalence abstracts from the branching
structure of the equated nets, while the former one does not (because of reduction
closure). This is standard in process calculi, e.g., in CCS and in π-calculus.

We start proving that ' ⊆ '′ . Let N ' M and pick up any observer K such that

N ‖ K
OK
===⇒ . Then, by contextuality, N ‖ K ' M ‖ K and, by barb preservation,

N ‖ K ⇓ test (that comes from N ‖ K
OK
===⇒) implies that M ‖ K ⇓ test.

Since test is a name occurring only in K (by definition of observers), it must be

M ‖ K
OK
===⇒ , as required.

Viceversa, we need to prove that '′ is barb preserving and context closed. Let
N '′ M.

Barb preservation. Let N ⇓ l, i.e. N |=⇒ (ν̃l)(N′ ‖ l :: 〈t〉) and consider K ,
test :: in(T)@l.out(test)@test, where T is a template matching against

t and such that fn(T) ∩ l̃ = ∅. Then, N ‖ K
OK
===⇒ that, by hypothesis, implies

M ‖ K
OK
===⇒ . Now, because of freshness of test, this is possible only if

M ⇓ l.

Context closure. The proof is by induction on the structure of the context C[·].
The base case is trivial. For the inductive case, we have two possibilities:

• C[·] , D[·] ‖ H. By induction, D[N] '′ D[M]; we pick up an

observer K and prove that C[N] ‖ K
OK
===⇒ implies C[M] ‖ K

OK
===⇒

5.1. TOUCHSTONE EQUIVALENCES 103

(by symmetry, this suffices). We now consider the observer H ‖ K; by

Definition 5.1.4, by induction and by the fact thatD[N] ‖ (H ‖ K)
OK
===⇒

we have that D[M] ‖ (H ‖ K)
OK
===⇒ . The thesis easily follows by rule

(S-PA) and because ≡ ⊆ '′.

• C[·] , (νl)D[·]. By induction, D[N] '′ D[M]; we pick up an observer

K and we prove that C[N] ‖ K
OK
===⇒ implies C[M] ‖ K

OK
===⇒ . Since

l is bound, we can assume, up-to alpha-equivalence, that l < fn(K); in

particular, l , test. Now, C[N] ‖ K
OK
===⇒ if and only if D[N] ‖

K
OK
===⇒ (and similarly when replacing N with M). This suffices to

conclude.

Traditionally [146, 147], barbed congruence and may testing are, respectively,
the bottom and the top element of the lattice induced by the subset inclusion be-
tween (weak) equivalences on a given process calculus. Practically all the inter-
esting weak equivalences that have been developed in process calculi fall between
these two kinds of equivalences. Moreover, a part from the theorical interest, it
is worth to study both these equivalences because the former one enjoys a more
effective proof technique, while the latter one often sufficies to express properties
of programs (mainly, those properties that can be expressed in terms of reachabil-
ity of a particular state). Hence, we do not have any preference among these two
equivalences and we consider both of them as a benchmark for µK.

The problem behind the definition of barbed congruence and may testing is that
context closure makes it hard to prove equivalences due to the universal quantifica-
tion over contexts. In the following sections, we shall provide two tractable char-
acterisations of these equivalences, as a bisimulation-based and as a trace-based
equivalence.

Before doing this, we show that we can change observables without changing
the congruences they induce; this proves the robustness of our touchstone equiv-
alences and supports our choice. Other two reasonable observables in a global
computing framework can be existence of a specific (visible) datum in some node
of a net, or existence of a specific datum in a specific node of a net.

Definition 5.1.6 (Alternative Touchstone Equivalences) Let �1, �2 '1 and '2

be the reduction barbed congruences and the may testing equivalences obtained
by replacing the observable of Definition 5.1.1, respectively, with the following
ones:

1. N ↓ 〈t〉 iff N ≡ (ν̃l)(N′ ‖ l :: 〈t〉) for some l and l̃ such that {l, t} ∩ l̃ = ∅

2. N ↓l 〈t〉 iff N ≡ (ν̃l)(N′ ‖ l :: 〈t〉) for some l̃ such that {l, t} ∩ l̃ = ∅

We now prove that, thanks to contextuality, �1 and �2 coincide with �, and that '1

and '2 coincide with '.

104 CHAPTER 5. BEHAVIOURAL THEORIES

Proposition 5.1.7 �1 = �2 = � and '1 = '2 = '.

Proof: Notice that we only need to consider barb preservation. Indeed, contex-
tuality and reduction closure (in the case of barbed congurence) are ensured by
definition. We just work with barbed congruences; the proofs for may testing can
be then extracted straightforwardly.

�2 ⊆ �1. Let N �2 M. Suppose that N ⇓ 〈t〉. This implies that ∃ l : N ⇓l 〈t〉.
Hence, by hypothesis, M ⇓l 〈t〉 that, by definition, implies M ⇓ 〈t〉.

�1 ⊆ �. Let N �1 M and N ⇓ l, i.e. N |=⇒ (ν̃l)(N′ ‖ l :: 〈t〉). Then M ⇓ l, otherwise
the context [·] ‖ l′ :: in(T)@l.out(l′)@l′ (for l′ fresh and T matching against
t such that fn(T) ∩ l̃ = ∅) would break �1.

� ⊆ �2. This case is similar.

5.2 Bisimulation Equivalence

To coinductively capture barbed congruence, we introduce a labelled transition
system (LTS) to make apparent the action a net is willing to perform in order to
evolve. For the sake of presentation, we introduce the syntactic category of inert
components

I ::= nil
∣∣∣ 〈t〉

for grouping those components that are unable to perform any basic operation. The

labelled transition relation,
α
−→ , is defined as the least relation over nets induced

by the inference rules in Table 3.8. Transition labels take the form

χ ::= τ
∣∣∣ (ν̃l) I @ l α ::= χ

∣∣∣ . l
∣∣∣ t / l

We will write bn(α) for l̃ if α = (ν̃l) I @ l and for ∅, otherwise; fn(α) is defined
accordingly.

Let us now briefly comment on some rules of the LTS; most of them are adapted
from the π-calculus [124]. Rule (LTS-E) signals existence of nodes (label
nil @ l) or of data (label 〈t〉 @ l). Rules (LTS-O) and (LTS-E) express the
intention of spawning a component and require the existence of the target node
to complete successfully (rule (LTS-S)). Similarly, rules (LTS-I) (given in
an early style) and (LTS-R) express the intention of performing an input; this
input is actually performed (rule (LTS-C)) only if the chosen datum is present
in the target node. Notice that, in the right hand side of these rules, existence of
the node target of the action can be assumed: indeed, if l provides datum 〈t〉, this
implies that l does exist. Rule (LTS-O) signals extrusion of bound names; as in
some presentation of the π-calculus, this rule is used to investigate the capability of
processes to export bound names, rather than to extend the scope of bound names.
To this last aim, law (S-E) is used; in fact, in rule (LTS-C) labels do not

5.2. BISIMULATION EQUIVALENCE 105

(LTS-O)

l :: out(t)@l′.P
. l′
−−→ l :: P ‖ l′ :: 〈t〉

(LTS-E)

l :: eval(Q)@l′.P
. l′
−−→ l :: P ‖ l′ :: Q

(LTS-I)
match(T, t) = σ

l :: in(T)@l′.P
t / l′
−−−→ l :: Pσ ‖ l′ :: nil

(LTS-R)
match(T, t) = σ

l :: read(T)@l′.P
t / l′
−−→ l :: Pσ ‖ l′ :: 〈t〉

(LTS-N)

l :: new(l′).P
τ
−→ (νl′)(l :: P ‖ l′ :: nil)

(LTS-E)

l :: I
I @ l
−−−→ l :: nil

(LTS-C)

N1
t / l′
−−−→ N′1 N2

〈t〉 @ l′
−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-S)

N1
. l
−→ N′1 N2

nil @ l
−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-R)

N
α
−→ N′ l < n(α)

(νl)N
α
−→ (νl)N′

(LTS-O)

N
(ν̃l) 〈t〉 @ l′

−−−−−−−→ N′ l ∈ fn(t) − {̃l, l′}

(νl)N
(ν̃l,l) 〈t〉 @ l′

−−−−−−−−→ N′

(LTS-P)

N1
α
−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α
−→ N2 ‖ N

(LTS-S)

N ≡ M
α
−→ M′ ≡ N′

N
α
−→ N′

Table 5.1: µK Labelled Transition System (LTS)

carry any restriction on names, whose scope must have been previously extended.
Rules (LTS-R), (LTS-P) and (LTS-S) are standard.

To simplify the proofs, we consider a slightly extended structural congruence:
it is defined like in Table 2.2 (with the obvious adaption of K nodes to µK
ones) plus the rule

(S-RN) (νl)N ≡ (νl)(N ‖ l :: nil)

saying that any restricted name can be used as the address of a node1. In what
follows, we shall only consider nets where each bound name is associated to a
node; by virtue of rule (S-RN) this is always possible. This is necessary,
otherwise our semantic theories would distinguish names restricted at the outset

1Restricted names can be thought of as private network addresses, whose corresponding nodes
can be activated when needed, and successively deactivated, by the owners of the resource (i.e. the
nodes included in the scope of the restriction).

Moreover, notice that we did not included this rule from the beginning (i.e., in Table 2.2) because
it would have created problems when dealing with types: the type of a restricted node derives from
the type of its creator and rule (S-RN) does not keep this information into account.

106 CHAPTER 5. BEHAVIOURAL THEORIES

from those created during computations: the former ones are not necessarily the
address of a node, while the latter ones are (see rules (R-N) and (LTS-N)).

Notation 5.2.1 We shall write N
α
−→ to mean that there exists a net N ′ such that

N
α
−→ N′. Alternatively, we could say that N can perform a α-step. Moreover, we

shall usually denote relation composition by juxtaposition; thus, e.g., N
α
−→
α′

−→ M

means that there exists a net N ′ such that N
α
−→ N′

α′

−→ M. We shall use the conven-
tion that putting a bar over a relation means that such a relation does not hold (e.g.

N 6
α
−→ N′ means that N cannot reduce to N ′ performing α). As usual, we let =⇒ to

stand for
τ
−→
∗
,
α
=⇒ to stand for =⇒

α
−→ =⇒ , and

α̂
=⇒ to stand for =⇒ , if α = τ, and

for
α
=⇒ , otherwise.

The LTS we have just defined is ‘correct’ w.r.t. the operational semantics of
µK, as stated by the following Proposition. Notice that 7−→ is the actual se-
mantics of µK; the LTS of Table 5.1 can be thought of as a technical device
deployed to give a tractable formulation of barbed congruence.

Proposition 5.2.2 N 7−→ M if and only if N
τ
−→ M.

Proof: Both the directions are proved by an easy induction on the lenght of the
shortest inference leading to the judgements.

Now, we prove some relationships between transitions of the LTS and the syntac-
tical form of the net performing them.

Proposition 5.2.3 The following facts hold:

1. N
nil @ l
−−−−−→ N′ if and only if N ≡ N′′ ‖ l :: nil; moreover, N′′ ≡ N′ ≡ N.

2. N
(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ if and only if N ≡ (ν̃l)(N′′ ‖ l :: 〈t〉) for l < l̃; moreover,

N′ ≡ N′′ ‖ l :: nil.

Proof: In both statements, the ‘if’ part is straightforward, by using (LTS-E)
and (LTS-S)/(LTS-P)/(LTS-O)/(LTS-R). For the converse, the first
claim is proved by a straightforward induction on the inference. The second claim
is proved in a slightly more elaborated way. Indeed, we need a double induction:
one on the cardinality of l̃, and the other on the inference length. We leave the
details to the reader.

We now characterise barbed congruence by using the labels of the LTS instead
of the universal quantification over all contexts. In this way, we obtain an alterna-
tive characterisation of � in terms of a labelled bisimilarity.

5.2. BISIMULATION EQUIVALENCE 107

Definition 5.2.4 (Bisimilarity) A symmetric relation < between µK nets is a
(weak) bisimulation if for each N < M it holds that:

1. if N
χ
−→ N′ then, for some M′, M

χ̂
=⇒ M′ and N′ < M′;

2. if N
. l
−→ N′ then, for some M′, M ‖ l :: nil =⇒ M′ and N′ < M′;

3. if N
t / l
−−→ N′ then, for some M′, M ‖ l :: 〈t〉 =⇒ M′ and N′ < M′.

Bisimilarity, ≈, is the largest bisimulation.

Our bisimulation is somehow inspired by that in [119]. The key idea is that,

since sending operations are asynchronous, the evolution N
. l
−→ N′ can be simu-

lated by a net M (in a context where locality l is present) through execution of
some internal actions that lead to M′. Indeed, since we want our bisimulation to be
a congruence, a context that provides the target locality of the sending action must
not tell apart N and M. Hence, for N ‖ l :: nil to be simulable by M ‖ l :: nil,
it must hold that, upon transitions, N ′ be simulable by M′. Similar considerations
hold also for input actions (third item of Definition 5.2.4), but the context now is
[·] ‖ l :: 〈t〉.

Remarkably, though µK is higher order (processes occur as arguments in
process actions, namely in the eval), the LTS and the bisimulation we developed
do not use labels containing processes. Thus, the bisimulation relies only on a
standard quantification over names (in the input case) and we strongly conjecture
that it is decidable, under proper assumptions: techniques similar to those in [116]
could be used here. Moreover, the presence of rule (LTS-S) in the LTS does
not compromise the tractability of ≈: as standard, (LTS-S) can be dropped,
once we accept to have more rules in the LTS.

5.2.1 Soundness w.r.t. Barbed Congruence

The key result of this subsection is Lemma 5.2.7 that will easily allow us to con-
clude that bisimilarity is a sound proof technique for barbed congruence. To prove
this result, we need some technical tools. First of all, we introduce the notion of
bisimulation up-to structural congruence: it is defined as a labelled bisimulation
except for the fact that the < in the consequents of Definition 5.2.4 is replaced by
the relation ≡ < ≡. Lemma 5.2.5 shows that a bisimulation up-to ≡ is a bisimula-
tion. Then, Lemma 5.2.6 characterises all the possible executions of the net C[N]
in terms of the evolutions of N and C[·] separately.

Lemma 5.2.5 If N ≈ M then for any nets N ′ and M′ such that N ≡ N′ and
M ≡ M′ it holds that N′ ≈ M′.

Proof: Let < , { (N1,N2) : Ni ≡ N′i and N′1 ≈ N′2 }. We shall prove that

< is a labelled bisimulation. Let N1
α
−→ M1; by (LTS-S) we have that N ′1 ≡

108 CHAPTER 5. BEHAVIOURAL THEORIES

N1
α
−→ M1. We only consider the case for α = χ; the other cases are similar. By

hypothesis, N′2
χ̂
−→ M2 for some M2 such that M1 ≈ M2. Then, N2 ≡ N′2

χ̂
=⇒ M2 and

(M1,M2) ∈ < because of reflexivity of ≡.

Lemma 5.2.6 C[N]
α
−→ N̄ if and only if one of the following conditions hold:

1. N
α
−→ N′ with n(α) ∩ bn(C[·]) = ∅, or

2. C[0]
α
−→ C′[0], or

3. N
(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ with α = (νl̃′, l̃) 〈t〉 @ l , C[·] , C1[(ν̃l′)C2[·]] and fn(α) ∩

bn(C1[·],C2[·]) = ∅, or

4. C[·] , C1[C2[·] ‖ H] with H
nil @ l
−−−−−→ H′, N

. l
−→ N′ and l < bn(C2[·]), or

5. C[·] , C1[C2[·] ‖ H] with H
. l
−→ H′, N

nil @ l
−−−−−→ N′ and l < bn(C2[·]), or

6. C[·] , C1[C2[·] ‖ H] with H
(ν̃l) 〈t〉 @ l
−−−−−−−→ H′, N

t / l
−−→ N′ and {l, t} ∩ bn(C2[·]) =

∅, or

7. C[·] , C1[C2[·] ‖ H] with H
t / l
−−→ H′, N

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ and l < bn(C2[·])

Moreover, the resulting net N̄ is, respectively, structurally equivalent to C[N ′], or
C′ [N], or C1[C2[N′]], or C[N′], or C1[C2[N] ‖ H′], or C1[(ν̃l)C2[N′ ‖ H′]] (cases
6 and 7.). Finally, α = τ in cases 4., 5., 6., and 7. .

Proof: The “if” part is trivial, by using the LTS of Table 5.1 and by observing that

M
α
−→ M′ with n(α) ∩ bn(D[·]) = ∅ implies D[M]

α
−→D[M′]. The “only if” part is

proved by induction on the length of the inference of
α
−→ . In the base case (length

1), it must be C[·] , [·]; hence, obviously C[N] , N
α
−→ N′ , C[N′] (and hence we

fall in case 1. of this Lemma). For the inductive step, we reason by case analysis
on the last rule applied in the inference:

(LTS-R). In this case, it must be

D[N]
α
−→ N̄′ l < n(α)

C[N] , (νl)D[N]
α
−→ (νl)N̄′

We can now apply induction and reason by analysis on the used case of this
lemma.

1. N
α
−→ N′, n(α) ∩ bn(D[·]) = ∅ and N̄′ ≡ D[N′]. Hence, we still fall in

case 1. by using the context C[·] , (νl)D[·].

2. D[0]
α
−→D′ [0] and N̄′ ≡ D′[N]. Hence, we still fall in case 2. with

contexts C[·] , (νl)D[·] and C′[·] , (νl)D′ [·].

5.2. BISIMULATION EQUIVALENCE 109

3. N
(ν̃l) 〈t〉 @ l′
−−−−−−−−→ N′, α , (νl̃′, l̃) 〈t〉@ l′ ,D[·] , D1[(ν̃l′)D2[·]] and n(α)∩

bn(D1[·],D2[·]) = ∅; moreover, N̄′ ≡ D1[D2[N′]]. Hence, we still fall
in case 3. by using the contexts C1[·] , (νl)D1[·] and C2[·] , D2[·].

4. D[·] , D1[D2[·] ‖ H] with H
nil @ l
−−−−−→ H′, N

. l
−→ N′ and l < bn(D2[·]);

moreover, D[N]
τ
−→D[N′]. Hence we still fall in case 4. by using the

contexts C1[·] , (νl)D1[·] and C2[·] , D2[·].

5. 6. and 7. are similar.

(LTS-O). In this case, it must be

D[N]
(ν̃l) 〈t〉 @ l
−−−−−−−→ N̄ l′ ∈ t − {̃l, l}

C[N] , (νl′)D[N]
(νl′ ,̃l) 〈t〉 @ l
−−−−−−−−−→ N̄

We can now apply induction and reason by analysis on the used case of this
lemma; we have to consider only the first three cases.

1. N
(ν̃l) 〈t〉 @ l
−−−−−−−→ N′, {l, t} ∩ bn(D[·]) = ∅ and N̄ , D[N′]. Hence, we fall in

case 3. by using the contexts C1[·] , [·] and C2[·] , D[·].

2. D[0]
(ν̃l) 〈t〉 @ l
−−−−−−−→D′ [0] and N̄ , D′[N]. Hence, we still fall in case 2.

with contexts C[·] , (νl2)D[·] and C′ [·] , D′ [·].

3. N
(ν̃l1) 〈t〉 @ l
−−−−−−−−→ N′, D[·] , D1[(ν̃l2)D2[·]], l̃ = l̃1, l̃2 and {t, l} ∩

bn(D1[·],D2[·]) = ∅; moreover, N̄ , D1[D2[N′]]. Hence, we still
fall in case 3. by using the contexts C1[·] , [·] and C2[·] , D[·].

(LTS-P). In this case, one of the following inferences should hold:

K
α
−→ K′ bn(α) ∩ n(D[N]) = ∅

C[N] , D[N] ‖ K
α
−→ D[N] ‖ K′

or
D[N]

α
−→ N̄′ bn(α) ∩ n(K) = ∅

C[N] , D[N] ‖ K
α
−→ N̄′ ‖ K

By using the first inference, we fall in case 2. with resulting context C′ [·] ,
D[·] ‖ K′. By using the second inference, we can apply inductive arguments
similar to those used in the (LTS-R) case, but now the context C[·] we
consider is D[·] ‖ K instead of (νl)D[·].

(LTS-S). In this case, one of the following inferences should hold:

K
. l
−→ K′ D[N]

nil @ l
−−−−−→D[N]

C[N] , D[N] ‖ K
τ
−→ D[N] ‖ K′

or
K

nil @ l
−−−−−→ K D[N]

. l
−→ N̄′

C[N] , D[N] ‖ K
τ
−→ N̄′ ‖ K

To apply induction, notice that we only have to consider the first two cases
of this lemma, since the actions fired by D[N] are different from τ and have
no restricted names. For the first reduction, we have the following cases.

110 CHAPTER 5. BEHAVIOURAL THEORIES

1. N
nil @ l
−−−−−→ N and l < bn(D[·]). Hence, we fall in case 5. by using

C1[·] , [·], C2[·] , D[·] and H , K.

2. D[0]
nil @ l
−−−−−→D[0]; hence, we still fall in case 2. with resulting context

C′[·] , D[·] ‖ K′.

For the second reduction, we have similar cases; we just list the differences.

1. N̄′ , D[N′] and we fall into case 4. .

2. N̄′ , D′ [N] and the resulting context is C′[·] , D′[·] ‖ K.

(LTS-C). In this case, one of the following inferences should hold:

D[N]
t / l
−−→ N̄′ K

〈t〉 @ l
−−−−−→ K′

C[N] , D[N] ‖ K
τ
−→ N̄′ ‖ K′

or K
t / l
−−→ K′ D[N]

〈t〉 @ l
−−−−−→ N̄′

C[N] , D[N] ‖ K
τ
−→ N̄′ ‖ K′

Like before, we just have two possible inductive cases for each reduction
(namely, the first two of this lemma). For the first reduction we have the
following cases.

1. N
t / l
−−→ N′, {l, t}∩bn(D[·]) = ∅ and N̄′ , D[N′]. Hence, we fall in case

6. by using C1[·] , [·], C2[·] , D[·] and H , K.

2. D[0]
t / l
−−→D′ [0] and N̄′ , D′ [N]. Hence, we still fall in case 2. with

resulting context C′[·] , D′ [·] ‖ K′.

For the second reduction, we have similar cases. The only difference is that
case 1. in the induction leads to case 7. in the conclusion.

(LTS-S). In this case, it must be

C[N] ≡ M1
α
−→ M2 ≡ N̄

C[N]
α
−→ N̄

We now proceed by induction on the structure of context C[·]. The base case
(for C[·] , [·]) trivially falls in case 1. of this Lemma. For the inductive
case, let us reason by case analysis on the structure of C[·]:

C[·] , (νl)D[·]. We furtherly identify three possible sub-cases:

• if M1 , (νl)M and l ∈ bn(α), for some M ≡ D[N], then we can

apply the structural induction to D[N]
α′

−→ M′, for some M′ ≡ M2

and α = (νl)α′, and fall in one of the first two cases of this Lemma.
By using rule (LTS-O), we can conclude that C[N]

α
−→ N̄ falls

in cases 2. or 3. of this Lemma.

5.2. BISIMULATION EQUIVALENCE 111

• if M1 , (νl)M and l < bn(α), for some M ≡ D[N], then we can
apply the structural induction to D[N]

α
−→ M′, for some M′ such

that M2 ≡ (νl)M′, falling in one of the cases of this Lemma. Then,

by using (LTS-R), we can conclude that C[N]
α
−→ N̄ falls in the

same case of this Lemma.
• otherwise, we can prove that C[N] ≡ M′1

α
−→ M2 such that M′1 ,

(νl)M by using a no longer inference (but possibly using more
structural laws). Hence, we can reduce this case to the previous
one.

C[·] , D[·] ‖ K. Because of the structure of C[·], it can be one of the fol-
lowing cases:

• K
α
−→ K′ and N̄ ≡ D[N] ‖ K′. In this case, we are trivially in case

2. of this Lemma.
• D[N]

α
−→ N̄′ and N̄ ≡ N̄′ ‖ K. In this case, we use the structural

induction.
• If α = τ then other four cases are possible:

– D[N]
. l
−→ N̄′, K

nil @ l
−−−−−→ K and N̄ ≡ N̄′ ‖ K. By structural

induction, it can be that either N
. l
−→ N′, or D[0]

. l
−→D′[0].

In both cases is easy to conclude.

– D[N]
(ν̃l) 〈t〉 @ l
−−−−−−−→ N̄′, K

t / l
−−→ K′ and N̄ ≡ (ν̃l)(N̄′ ‖ K′). This

case is similar to the previous one.

– D[N]
nil @ l
−−−−−→D[N], K

. l
−→ K′ and N̄ ≡ D[N] ‖ K′. By struc-

tural induction, it can be one of the first two cases of this
Lemma and we can easily conclude.

– D[N]
t / l
−−→ N̄′, K

(ν̃l) 〈t〉 @ l
−−−−−−−→ K′ and N̄ ≡ (ν̃l)(N̄′ ‖ K′). This

case is similar to the previous one.

Lemma 5.2.7 ≈ is a congruence relation.

Proof:
We start by proving that ≈ is substitutive w.r.t. to the net contexts C[·], namely

that N ≈ M implies C[N] ≈ C[M] for each C[·]. To this aim, we prove that

< , { (C[N],C[M]) : N ≈ M }

is a bisimulation up-to ≡. Let C[N]
α
−→ N̄; according to Lemma 5.2.6 we have to

examine seven cases.

1. N
α
−→ N′ for n(α) ∩ bn(C[·]) = ∅; we reason by case analysis on α.

α = χ. By hypothesis of bisimilarity, M
χ̂
=⇒ M′ and N′ ≈ M′. Hence,

trivially, C[M]
χ̂
=⇒ C[M′] and, by definition of <, it holds that

C[N′]< C[M′].

112 CHAPTER 5. BEHAVIOURAL THEORIES

α = . l . By hypothesis of bisimilarity, M ‖ l :: nil =⇒ M ′ and N′ ≈ M′.
Since l < bn(C[·]), we have that C[M] ‖ l :: nil ≡ C[M ‖ l ::
nil] =⇒C[M′] and C[N′]< C[M′] up-to structural equivalence.

α = t / l . By hypothesis, {l, t} ∩ bn(C[·]) = ∅; thus, C[M] ‖ l :: 〈t〉 ≡
C[M ‖ l :: 〈t〉]. By hypothesis of bisimilarity, M ‖ l :: 〈t〉 =⇒ M ′ and
N′ ≈ M′. Thus, C[M] ‖ l1 :: 〈l2〉 =⇒ C[M′] and C[N′] < C[M′] up-to
≡.

2. C[0]
α
−→ C′[0]; trivially, C[M]

α
−→ C′[M]. Moreover, by definition of <, we

have that

• if α = χ then C′[N]< C′[M].

• if α = . l , then C[M] ‖ l :: nil =⇒ C′[M] and C′[N]< C′[M].

• if α = t / l , then C[M] ‖ l :: 〈t〉 =⇒C′ [M] and C′[N]< C′[M]

3. N
(ν̃l) 〈t〉 @ l
−−−−−−−→ N′, α = (νl̃′, l̃) 〈t〉 @ l , C[·] , C1[(ν̃l′)C2[·]], for n(α) ∩

bn(C1[·],C2[·]), and N̄ , C1[C2[N′]]. By hypothesis of bisimilarity,

M
(ν̃l) 〈t〉 @ l
=========⇒ M′ and N′ ≈ M′; thus, C[M]

α
=⇒ C1[C2[M′]]. The thesis

easily follows.

4. By hypothesis, C[·] , C1[C2[·] ‖ H] with H
nil @ l
−−−−−→ H′, N

. l
−→ N′, for l <

bn(C2[·]), and N̄ ≡ C[N′]. By Proposition 5.2.3, H ≡ H′ ≡ H ‖ l :: nil; thus,
C[M] ≡ C[M ‖ l :: nil]. By hypothesis of bisimilarity, M ‖ l :: nil =⇒ M ′

and N′ ≈ M′. Hence, C[M] =⇒C[M′] and N̄ < M′ up-to ≡.

5. C[·] , C1[C2[·] ‖ H] with H
. l
−→ H′, N

nil @ l
−−−−−→ N′ and l < bn(C2[·]).

By hypothesis of bisimilarity, M
nil @ l
=======⇒ M and N′ ≈ M′. Hence,

C[M] =⇒C1[C2[M] ‖ H′]. The thesis easily follows.

6. C[·] , C1[C2[·] ‖ H] with H
(ν̃l) 〈t〉 @ l
−−−−−−−→ H′, N

t / l
−−→ N′, for {l, t} ∩ bn(C2[·]) =

∅, and N̄ ≡ C1[(ν̃l)(C2[N′] ‖ H′)]. By Proposition 5.2.3, H ≡ (ν̃l)(H′′ ‖ l ::
〈t〉) and H′ ≡ H′′ ‖ l :: nil; thus, C[M] ≡ C1[(ν̃l)(C2[M ‖ l :: 〈t〉] ‖ H′′)].
By hypothesis of bisimilarity, M ‖ l :: 〈t〉 =⇒ M ′ and N′ ≈ M′. Hence
C[M] =⇒C1[(ν̃l)(C2[M′] ‖ H′′)] and N̄ < C1[(ν̃l)(C2[M′] ‖ H′)] up-to ≡.

7. C[·] , C1[C2[·] ‖ H] with H
t / l
−−→ H′, N

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′, for

{l, t}∩bn(C2[·]) = ∅, and N̄ ≡ C1[(ν̃l)(C2[N′] ‖ H′)]. By hypothesis of bisim-

ilarity, M
(ν̃l) 〈t〉 @ l
=========⇒ M′ and N′ ≈ M′. Hence, C[M] =⇒C1[(ν̃l)C2[M′ ‖ H′]]

and N̄ < C1[(ν̃l)(C2[M′] ‖ H′)] up-to ≡.

We are left with proving that ≈ is an equivalence relation. Reflexivity and
symmetry follow by definition. To prove transitivity, we consider the relation < ,

5.2. BISIMULATION EQUIVALENCE 113

{ (N1,N2) : N1 ≈≈ N2} and prove that it is a bisimulation. Let N1 ≈ M ≈ N2,

N1
α
−→ N′1 and let us reason by case analysis on α:

α = χ. In this case, M
χ̂
=⇒ M′ for some M′ such that N′1 ≈ M′. If M′ ≡ M, then we

conclude up-to ≡. Otherwise, it must be that N2
χ̂
=⇒ N′2 and M′ ≈ N′2; hence

N′1 ≈≈ N′2 and N′1 < N′2.

α = . l . By hypothesis, M ‖ l :: nil =⇒ M′ and N′1 ≈ M′. By context closure, we
have that M ‖ l :: nil ≈ N2 ‖ l :: nil; hence, N2 ‖ l :: nil =⇒ N′2 and M′ ≈ N′2.
It is easy to conclude that N ′1 < N′2.

α = t / l . Similarly, M ‖ l :: 〈t〉 =⇒ M′ and N′1 ≈ M′. Moreover, N2 ‖ l ::
〈t〉 =⇒ N′2 and M′ ≈ N′2, that implies N′1 < N′2.

Theorem 5.2.8 (Soundness of ≈ w.r.t. �) If N ≈ M then N � M.

Proof: We shall now prove that ≈ is barb preserving, reduction closed and con-
textual. By definition, this implies that ≈ ⊆ �.

• If N ⇓ l then N
(ν̃l) 〈t〉 @ l
=========⇒ , for some t and l̃ such that l < l̃; hence, by

hypothesis of bisimilarity, M
(ν̃l) 〈t〉 @ l
=========⇒ and thus M ⇓ l (these implications

rely on Proposition 5.2.3 and Definition 5.2.4).

• By Proposition 5.2.2, N 7−→ N ′ implies that N
τ
−→ N′; this, in turn, implies,

by hypothesis of bisimilarity, that M =⇒ M ′ (and, again, by Proposition 5.2.2
this means M |=⇒ M′) and N′ ≈ M′.

• By Lemma 5.2.7, it holds that C[N] ≈ C[M], for all net contexts C[·].

5.2.2 Completeness w.r.t. Barbed Congruence

We now want to prove the converse, namely that all barbed congruent processes are
also bisimilar. To this aim, we need three technical results. The first one gives some
simple equations that hold true w.r.t. barbed congruence. The second result gives
an alternative characterisation of the contextuality property of Definition 5.1.3. The
third result states that we can throw away fresh localities hosting restricted data
without breaking barbed congruence.

Proposition 5.2.9 The following facts hold:

1. (νl′)(l :: in(T)@l′.P ‖ l′ :: 〈t〉) � (νl′)(l :: Pσ), whenever match(T, t) = σ

2. l :: out(t)@l′.P ‖ l′ :: nil � l :: P ‖ l′ :: 〈t〉

3. l :: eval(Q)@l′.P ‖ l′ :: nil � l :: P ‖ l′ :: Q

4. (νl)N � N whenever l < fn(N)

114 CHAPTER 5. BEHAVIOURAL THEORIES

Proof: The first three equations can be easily proved by providing a proper bisim-
ulation containing each of them; this fact, together with Theorem 5.2.8, proves part
(1)/(2)/(3). The last equation is proved by first observing that ≡ ⊆ � (this can be
easily proved). Then, (νl)N ≡ (νl)(N ‖ l :: nil) ≡ N ‖ (νl)(l :: nil) � N ‖ 0 ≡ N
(indeed, (νl)(l :: nil) � 0, as it can be easily verified). Thus, by inclusion of ≡ in �
and by transitivity of �, the claim holds.

Lemma 5.2.10 A relation < is contextual if and only if
1. N < M implies that N ‖ l :: P < M ‖ l :: P for any name l and process P,

and

2. N < M implies that (νl)N < (νl)M for any name l

Proof: It is trivial to prove that contextuality implies points (1) and (2) of this
Lemma. For the converse, let us assume N < M and pick up a context C[·]. We
now proceed by induction on the structure of C[·]. The base case is trivial. For the
inductive case, we identify two possibilities:

1. C[·] , D[·] ‖ K. By induction, we have that D[N] < D[M]. We now
proceed by induction on the structure of K. The base case is trivial, up-to ≡.
For the inductive case, it can be either K , l :: P ‖ K ′ or K , (νl)K′. In the
first case, by point (1) of this Lemma, it holds that D[N] ‖ l :: P<D[M] ‖
l :: P; then, by second induction, we can conclude C[N] < C[M]. In the
second case, we can always assume that l is fresh for D[·], N and M (this
is always possible, up-to alpha-equivalence). By second induction, we have
that D[N] ‖ K′ < D[M] ‖ K′ and, by point (2) of this Lemma, we can
conclude up-to ≡.

2. C[·] , (νl)D[·]. By induction we have that D[N] < D[M]; thus, by point
(2) of this Lemma, it holds that (νl)D[N] < (νl)D[M], i.e. C[N]< C[M].

Lemma 5.2.11 If (νl)(N ‖ l f :: 〈l〉) � (νl)(M ‖ l f :: 〈l〉) and l f is fresh for N and
M, then N � M.

Proof: It suffices to prove that

< , { (N,M) : l f < n(N,M) ∧ (νl)(N ‖ l f :: 〈l〉) � (νl)(M ‖ l f :: 〈l〉) }

is barb preserving, reduction closed and contextual. Let N < M.

Barb preservation. Let N ⇓ l′ for l′ , l. Then, it trivially holds that (νl)(N ‖
l f :: 〈l〉) ⇓ l′, (νl)(M ‖ l f :: 〈l〉) ⇓ l′ and M ⇓ l′ (indeed, l′ , l f because of
freshness of l f).

Now, let N ⇓ l, i.e. N
(ν̃l) 〈t〉 @ l
=========⇒ . We can consider the context C[·] ,

[·] ‖ l′f :: in(!x)@l f .in(T)@x.out()@l′f , where l′f is fresh and T has been

obtained from t by replacing therein each name of l̃ with !y (for some ỹ
fresh). Now, C[(νl)(N ‖ l f :: 〈l〉)] ⇓ l′f ; hence, by hypothesis, C[(νl)(M ‖

l f :: 〈l〉)] ⇓ l′f . Because of freshness of l f and l′f , it must be that M ⇓ l.

5.2. BISIMULATION EQUIVALENCE 115

Reduction closure. Let N 7−→ N ′; thus, (νl)(N ‖ l f :: 〈l〉) 7−→ (νl)(N′ ‖ l f ::
〈l〉). By hypothesis, this fact implies that (νl)(M ‖ l f :: 〈l〉) |=⇒ M̄ such that
(νl)(N′ ‖ l f :: 〈l〉) � M̄. Since l f < n(M), l f :: 〈l〉 is not involved in the
transition; thus it follows that M |=⇒ M ′ and M̄ ≡ (νl)(M′ ‖ l f :: 〈l〉). Thus,
the claim is proved up-to ≡.

Contextuality. According to Lemma 5.2.10, we have to prove just two cases.

1. For any l′ and P, it holds that N ‖ l′ :: P< M ‖ l′ :: P.

Let us first assume that l < fn(l′ :: P). In this case, it is easy to conclude
because (νl)(N ‖ l f :: 〈l〉) ‖ l′ :: P ≡ (νl)(N ‖ l′ :: P ‖ l f :: 〈l〉) (and
similarly when replacing N with M), by transitivity of � and because
≡ ⊆ �.

We now consider the case in which l ∈ fn(P) but l′ , l. We use the
context C[·] , (νl f)([·] ‖ l′ :: in(!x)@l f .out(x)@l′f .P[x/l] ‖ l′f :: nil),
where l′f is a fresh name. Then, C[(νl)(N ‖ l f :: 〈l〉)] � (νl f , l)(N ‖
l′ :: out(l)@l′f .P ‖ l′f :: nil) � (νl f , l)(N ‖ l′ :: P ‖ l′f :: 〈l〉) �
(νl)(N ‖ l′ :: P ‖ l′f :: 〈l〉). These equalities hold true by using, resp.,
Proposition 5.2.9(1), (2) and (4). Similarly, C[(νl)(M ‖ l f :: 〈l〉)] �
(νl)(M ‖ l′ :: P ‖ l′f :: 〈l〉). By transitivity, C[(νl)(N ‖ l f :: 〈l〉)] �
C[(νl)(M ‖ l f :: 〈l〉)] implies that (νl)(N ‖ l′ :: P ‖ l′f :: 〈l〉) � (νl)(M ‖
l′ :: P ‖ l′f :: 〈l〉) and thus N ‖ l′ :: P< M ‖ l′ :: P.

The case for l′ = l is dealt with similarly. It uses context C[·] ,
(νl f)([·] ‖ l′f :: in(!x)@l f .eval(P[x/l])@x.out(x)@l′f), where l′f is a
fresh name, and Proposition 5.2.9(3).

2. For any l′, it holds that (νl′)N < (νl′)M.

Let l′ , l, l f . Then (νl′, l)(N ‖ l f :: 〈l〉) ≡ (νl)((νl′)N ‖ l f :: 〈l〉) (and
similarly when replacing N with M). By transitivity of � and because
≡ ⊆ � we can easily conclude.

Let l′ = l , l f . Then we consider the context C[·] , (νl f)([·] ‖ l′f ::
in(!x)@l f .new(l′′).out(l′′)@l′f), for l′f and l′′ fresh. Then C[(νl)(N ‖
l f :: 〈l〉)] � (νl′′)((νl)N ‖ l′f :: 〈l′′〉) (and similarly when replacing
N with M). Thus, we can conclude that (νl′′)((νl)N ‖ l′f :: 〈l′′〉) �
(νl′′)((νl)M ‖ l′f :: 〈l′′〉) that implies (νl)N < (νl)M.

Finally, let l′ = l f , l. Then we consider the context C[·] ,
(νl f)([·] ‖ l′f :: in(!x)@l f .out(x)@l′f), for l′f fresh. Then C[(νl)(N ‖
l f :: 〈l〉)] � (νl)((νl f)N ‖ l′f :: 〈l〉) (and similarly when replacing N
with M). Thus, we can conclude.

Theorem 5.2.12 (Completeness of ≈ w.r.t. �) If N � M then N ≈ M.

Proof: It is enough to prove that � is a bisimulation. We now pick up a transition

N
α
−→ N′ and reason by case analysis on α.

116 CHAPTER 5. BEHAVIOURAL THEORIES

α = τ. This case is simple because of reduction closure.

α = (ν̃l) 〈t〉@ l . Let t = l1, · · · , ln and l̃ = {l′1, . . . , l
′
k}; then, we pick up k fresh

names {x1, . . . , xk} and we turn t into a template T where each l′i in t is re-
placed with !xi in T . Now, consider the context

C[·] , [·] ‖ l :: in(T)@l.Produce1
l1f
. · · · .Producen

lnf
‖

n
Π
i=1

lif :: nil

with the lif s fresh and

Producei
lif
,

new(l′′i).out(l′′i)@lif if li < l̃

out(li)@lif otherwise

where the l′′i s are all different (fresh) names. Hence, we have that

C[N] |=⇒ (νl̂1, . . . , l̂n)(N′ ‖
n
Π
i=1

lif :: 〈l̂i〉) , N̂

where

l̂i ,

{
l′′i if li < l̃
li otherwise

By contextuality and reduction closure, it must be that C[M] |=⇒ M̂ such
that N̂ � M̂. This implies that M̂ ⇓ lif , for each i; but this is possible only

if M
(ν̃l′) 〈t′〉 @ l
==========⇒ M′, for some t′ matching T . We are left with proving that

(ν̃l′)t′ =α (ν̃l)t and that N′ � M′.

By definition of T , each li < l̃ is the i-th field of T ; thus, it must also be the
i-th field of t′. We have two sub-cases:

• l̃ = ∅: this case is simple. Indeed, we have that (ν̃l′)t′ = t′ = t;
moreover, because of freshness of the li

f s and of the l′′i s, we can state

that M̂ ≡ (νl′′1 , . . . , l
′′
n)(M′ ‖

n
Π
i=1

lif :: 〈l′′i 〉). Thus, M
〈t〉 @ l
======⇒ M′ and, by

Lemma 5.2.11 iterated n times, N ′ � M′.

• l̃ , ∅: we now prove that the remaining fields of t′ must be bound. Let
li ∈ l̃ and, by contradiction, assume that the i-th field of t′, say l̄, is free.
By definition of Producei

lif
, we have that l̂i = li in N̂. This implies that

lif hosts in M̂ the (free) datum 〈l̄〉. But then the context

[·] ‖ l f :: in(l̄)@lif .out()@l f

for l f fresh, would falsify N̂ � M̂. Contradiction.

To conclude, we can rename the l̃′ to l̃ (this is possible since we are
assuming that bound names are pairwise distinct and different from the

5.3. TRACE EQUIVALENCE 117

free ones, and hence l̃ ∩ n(M) = ∅). Thus, M
(ν̃l) 〈t〉 @ l
=========⇒ M′′ and

N̂ � (νl̂1, . . . , l̂n)(M′′ ‖
n
Π
i=1

lif :: 〈l̂i〉); by Lemma 5.2.11 iterated n times,

we obtain N′ � M′′, as required.

α = nil @ l . We now consider the context C[·] , [·] ‖ l f :: eval(nil)@l.new(l′).
out(l′)@l f , for l f fresh, and the reduction C[N] |=⇒ (νl′)(N′ ‖ l f :: 〈l′〉). Like

before, we have that M
nil @ l
=======⇒ M′ and (νl′)(N′ ‖ l f :: 〈l′〉) � (νl′)(M′ ‖

l f :: 〈l′〉) that suffices to conclude.

α = . l . We consider the context [·] ‖ l :: nil and the reduction N ‖ l :: nil 7−→
N′. Then, by contextuality and reduction closure, M ‖ l :: nil |=⇒ M ′ and
N′ � M′. This suffices to conclude (see Definition 5.2.4.2).

α = t / l . This case is similar to the previous one; we just consider the context
[·] ‖ l :: 〈t〉 and the reduction N ‖ l :: 〈t〉 7−→ N ′.

Corollary 5.2.13 (Tractable Characterisation of Barbed Congruence) ≈ = � .

5.3 Trace Equivalence

In this section, we develop a tractable characterisation of may testing. For some
well-known process calculi, may testing coincides with trace equivalence [65, 14];
in this section, we show how a similar result is obtained also in the setting of
µK. To the best of our knowledge, this is the first tractable characterisation of
may testing for a distributed language with process mobility.

The idea behind trace equivalence is that N and M are related if and only if the
sets of their traces coincide. Put in another form, if N exhibits a sequence of visible
actions %, then M must exhibit % as well, and viceversa. In an asynchronous setting
[16, 48], this requirement must be properly weakened, since the discriminating
power of asynchronous contexts is weaker: in the asynchronous π-calculus, for
example, contexts cannot observe input actions.

To define a proper trace equivalence we slightly modify the LTS of Table 5.1
by adding the rule

(LTS-R)
N

t / l
−−→ N′ l̃ = t − fn(N)

N
(ν̃l) t / l
−−−−−→ N′ ‖Π

l′∈̃l
l′ :: nil

that permits distinguishing the reception of a free name from the reception of a
bound name (this is akin to the asynchronous π-calculus in [16]). In the latter
case, the received bound names l̃ must be fresh for the receiving net and, because
of law (S-RN), they can be considered as addresses of nodes; of course,
bn((ν̃l) t / l) = l̃. Notice that rule (LTS-R) is not needed by the bisimulation

118 CHAPTER 5. BEHAVIOURAL THEORIES

we introduced in the previous section to capture barbed congruence. Thus, the new
transition system exploits the following labels:

µ ::= τ
∣∣∣ φ φ ::= (ν̃l) I @ l

∣∣∣ . l
∣∣∣ (ν̃l) t / l

where φ collects together all the visible labels. Clearly, rules (LTS-R), (LTS-P)
and (LTS-S) from Table 5.1 must now exploit µ instead of α. Then, we define
a complementation function over the visible labels of the LTS. Formally,

. l = nil @ l nil @ l = . l

(ν̃l) t / l = (ν̃l) 〈t〉@ l (ν̃l) 〈t〉@ l = (ν̃l) t / l

We let % to range over (possibly empty) sequences of visible actions, i.e.

% ::= ε
∣∣∣ φ · %

where ε denotes the empty sequence of actions and ‘·’ represents concatena-

tion. As usual, N
ε
=⇒ denotes N =⇒ and N

φ·%
==⇒ denotes N

φ
=⇒

%
=⇒ . A

naive formulation of trace equivalence such as “N
%
=⇒ if and only if M

%
=⇒ ”

would be too strong in an asynchronous setting: for example, it would distinguish
N , l :: in(!x)@l1.in(!y)@l2 and M , l :: in(!y)@l2.in(!x)@l1, which are instead
may testing equivalent. Like in [16], a weaker trace equivalence can be defined as
follows.

Definition 5.3.1 (Trace Equivalence) � is the largest symmetric relation between

µK nets such that, whenever N � M, it holds that N
%
=⇒ implies M

%′

==⇒ , for
some %′ � %.

The crux is to identify a proper ordering on the traces such that may testing is
exactly captured by �. The ordering � is obtained as the reflexive and transitive
closure of the ordering �0 defined in Table 5.2. The intuition behind %′ � % is that,
if a context can interact with a net that exhibits %, then the context can interact with
any net that exhibits %′. The ordering �0 relies on the function (ν̃l)%, that is used
in laws (L1), (L2) and (L3) when moving/removing a label of the form (ν l̃) t / l .
In this case, the information that l̃ are fresh received names must be kept in the
remaining trace. The formal definition is by induction on l̃:

(ν∅)% , %

(νl′)% ,

% if l′ < fn(%)
%1 · (νl′) t′ / l′′ · %2 if % = %1 · (ν̃l′) t′ / l′′ · %2

and l′ ∈ t′ − fn(%1, l′′, l̃′)
⊥ otherwise

(νl1, l2, . . . , ln)% , (νl1)((νl2, . . . , ln)%)

5.3. TRACE EQUIVALENCE 119

(L1) % · (ν̃l)%′ �0 % · (ν̃l) • 4 l · %′ if (ν̃l)%′ , ⊥

(L2) % · (ν̃l)(φ · •4 l · %′) �0 % · (ν̃l) • 4 l · φ · %′

if (ν̃l)(φ · •4 l · %′) , ⊥

(L3) % · (ν̃l)%′ �0 % · (ν̃l) • 4 l · •4 l · %′ if (ν̃l)%′ , ⊥

(L4) % · . l · (ν̃l) • 4 l · %′ �0 % · (ν̃l) • 4 l · %′

(L5) % · . l′ · (ν̃l) I @ l · %′ �0 % · (ν̃l) I @ l · . l′ · %′ if l′ < l̃

where in laws (L1), (L2), (L3) and (L4), •4 l stands for either . l or t / l
(and hence •4 l in law (L3) stands for either nil @ l or 〈t〉@ l , resp.)

Table 5.2: The Ordering Relation on Traces

To better understand the motivations underlying this definition, consider the fol-
lowing example that justifies the side condition of law (L1) (similar arguments
also hold for laws (L2) and (L3)). In the trace (νl′) l′ / l · 〈l′〉@ l′′ performed
by a net N, the input action cannot be erased. Indeed, since l′ is fresh (see the
meaning of label (νl′) l′ / l), N cannot get knowledge of l′ without performing
the input and, consequently, cannot perform the action 〈l′〉 @ l′′ . On the other
hand, if N could receive l′ from a communication with another node l′′′ (thus, it
can perform action l′ / l′′′ after l′ / l), then the first input action can be erased
and (νl′) l′ / l′′′ · 〈l′〉@ l′′ �0 (νl′) l′ / l · l′ / l′′′ · 〈l′〉@ l′′ .

The intuition behind the rules in Table 5.2 now follows. The first three laws
have been inspired by [16], while the last three ones are strictly related to the dif-
ference between a ‘pure’ name and a name that is used as a node address. Law
(L1) states that an input, an output or a migration cannot be directly observed; at
most, the effect of an output can be observed (by accessing the datum produced by
the output). Law (L2) states that the execution of an input/output/migration can
be delayed along computations without being noticed by any observer. Law (L3)
states that two adjacent ‘complementary’ actions can be deleted (by using a termi-
nology burrowed from CCS [110], we say that φ and φ′ are complementary if they
can synchronise to yield a τ – see rules (LTS-C) and (LTS-S)). Law (L4)
states that an input from l always enables outputs/migrations to l; indeed, if a datum
from l has been retrieved, then l exists and any output/migration to it is enabled.
Of course, an output/migration to l always enables other outputs/migrations to l.
Similarly, law (L5) states that, if an output/migration to l′ is enabled after an action
φ of the form (ν̃l) I @ l , then the output/migration can be fired before φ, since l′

was already present. However, this is not possible if l′ has been created before φ
and φ extruded it (i.e., if l′ ∈ l̃).

Remarkably, may testing in the (synchronous/asynchronous) π-calculus [14,
16] cannot distinguish bound names from free ones; thus, a bound name can be
replaced with any name in a trace. This is not the case here: indeed, bound names

120 CHAPTER 5. BEHAVIOURAL THEORIES

can be always considered as addresses of nodes, while free names cannot. This
makes a difference for an external observer; thus, a law like

% · 〈l′′〉@ l · (%′[l
′′
/l′]) �0 % · (νl′)〈l′〉@ l · %′

(that, mutatis mutandis, holds for the asynchronous π-calculus [16]) does not hold
for µK.

5.3.1 Soundness w.r.t. May Testing

To prove that trace equivalence exactly captures may testing we rely on the classical
definition of the latter equivalence [65], as proposed in Definition 5.1.4. By using

the LTS,
OK
===⇒ corresponds to

〈test〉 @ test
=============⇒ ; when it is convenient, we still use

OK to denote label 〈test〉@ test . We start by extending the complementation
function of labels to traces as expected:

% =

{
ε if % = ε
φ · %′ if % = φ · %′

Remarkably, % = %. The first Lemma describes a sufficient and a necessary condi-
tion for the success of an experiment.

Lemma 5.3.2 Let N be a net and K be an observer. Then

1. N
%
=⇒ and K

% ·OK
=====⇒ imply that N ‖ K

OK
===⇒ ;

2. N ‖ K
OK
===⇒ implies that there exists a % such that N

%
=⇒ and K

% ·OK
=====⇒ .

Proof:

1. The proof is by induction on the length of %. The base step is trivial. For the
inductive step, we have that % = φ · %′ and we consider the possibilities for
φ. All the cases are trivial, except for the following two:

• φ = (ν̃l) t / l . Now, we have that N =⇒ N ′
(ν̃l) t / l
−−−−−→ N′′

%′

==⇒ , for

l̃ ∩ fn(N′) = ∅; moreover, K =⇒ K′
(ν̃l) 〈t〉 @ l
−−−−−−−→ K′′

%′·OK
=====⇒ . By induction,

N′′ ‖ K′′
OK
===⇒ . Now, by Proposition 5.2.3(2), K ′ ≡ (ν̃l)(K′′′ ‖ l ::

〈t〉) and K′′ ≡ K′′′ ‖ l :: nil; thus, N ‖ K =⇒ (ν̃l)(N′ ‖ K′′′ ‖ l ::

〈t〉)
τ
−→ (ν̃l)(N′′ ‖ K′′)

OK
===⇒ (indeed, since K is an observer, it can only

emit test at test; thus, test < l̃).

• φ = (ν̃l) 〈t〉@ l . This case is symmetric.

2. By definition, it must be that N ‖ K(
τ
−→)nH

OK
−→ ; the proof is by induction

on n. The base step is simple: % = ε. For the inductive step, we have two
sub-cases:

5.3. TRACE EQUIVALENCE 121

• N ‖ K
τ
−→ N′ ‖ K′(

τ
−→)n−1H. By induction, N′

%′

==⇒ and K′
%′·OK
=====⇒ , for

some %′. There are six possibilities for the first τ-step:

(a) N
τ
−→ N′ and K′ ≡ K: in this case, we can pick up % = %′.

(b) N′ ≡ N and K
τ
−→ K′: like before.

(c) N
. l
−→ N′ and K

nil @ l
−−−−−→ K′: we can pick up % = . l · %′.

(d) N
nil @ l
−−−−−→ N′ and K

. l
−→ K′: we can pick up % = nil @ l · %′.

(e) N
t / l
−−→ N′ and K

〈t〉 @ l
−−−−−→ K′: we can pick up % = t / l · %′.

(f) N
〈t〉 @ l
−−−−−→ N′ and K

t / l
−−→ K′: we can pick up % = 〈t〉@ l · %′.

• N ‖ K
τ
−→ (ν̃l)(N′ ‖ K′)(

τ
−→)n−1H, for l̃ , ∅. Since H ≡ (νl′)H′

for some H′ (indeed, τ-steps cannot remove restrictions), it must be

test < l̃. Thus, N′ ‖ K′(
τ
−→)n−1H′

OK
−→ and, by induction, N′

%′

==⇒ and

K′
%′·OK
=====⇒ , for some %′. There are only two possibilities for the first

τ-step:

(a) N
(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ and K

t / l
−−→ K′. By definition of the LTS, we have

to extend the scope of l̃ before passing it by using rule (S-E).
Thus, l̃ ∩ fn(K) = ∅ and, by rule (LTS-R), we have that

K
(ν̃l) t / l
−−−−−→ K′. Thus, we can pick up % = (ν̃l) 〈t〉@ l · %′.

(b) N
t / l
−−→ N′ and K

(ν̃l) 〈t〉 @ l
−−−−−−−→ K′: this case is symmetric.

The next Lemma states that the laws in Table 5.2 are ‘sound’, in the sense
that, if an observer can observe a trace % (i.e., that can provide %), then it can also
observe any trace %′ � %.

Lemma 5.3.3 Let %′ � % and N
%
=⇒ ; then, N

%′

==⇒ .

Proof: By definition, %′(�0)n%; we proceed by induction on n. The base step is
trivial, by reflexivity. For the inductive step, we let %′(�0)n−1%′′ �0 %; it suffices to

prove that N
%
=⇒ implies that N

%′′

==⇒ . Indeed, by induction, the latter judgement

implies that N
%′

==⇒ , as required. We reason by case analysis on the law in Table 5.2
used to infer %′′ �0 %. Notice that all the laws hide a double formulation that is
made explicit in this proof.

(L1).a: % , %1 · (ν̃l) t / l · %2 and %′′ , %1 · (ν̃l)%2. By definition,

N
%1
==⇒ N′

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′′

%2
==⇒ ; moreover, N′ ≡ (ν̃l)(N′′′ ‖ l :: 〈t〉) and

N′′ ≡ N′′′ ‖ l :: nil. Now, if l̃ = ∅ or l̃ < fn(%2), then it must be

that N′
%2
==⇒ and, hence, N

%′′

==⇒ . Otherwise, we only consider the case
for l̃ = {l′}; the more general case, where |̃l| > 1, is only notationally

122 CHAPTER 5. BEHAVIOURAL THEORIES

more complex and can be recovered with a straightforward induction. By
hypothesis, %2 , %3 · (ν̃l′) t′ / l′′ · %4 for l′ ∈ t′ − fn(%3, l′′, l̃′); thus,

N′′
%3
==⇒ N′′1

(ν̃l′) 〈t′〉 @ l′′
−−−−−−−−−→ N′′2

%4
==⇒ . Now, N′

%3
==⇒ (ν̃l′)(N′′1 ‖ l :: 〈t〉 ‖ l′′ :: 〈t′〉)

and hence N
%1·%3·(νl′,l̃′) 〈t′〉 @ l′′ ·%4
===================⇒ , i.e. N

%′′

==⇒ .

(L1).b: % , %1 · . l · %2 and %′′ , %1 · %2. By definition, N
%1
==⇒ N′

nil @ l
−−−−−→ N′′

%2
==⇒ ;

moreover, N′ ≡ N′′ and hence N
%1·%2
====⇒ , as required.

(L2).a: % , %1 · (ν̃l) t / l · φ · %2 and %′′ , %1 · (ν̃l)(φ · t / l · %2). By definition,

N
%1
==⇒ N′

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′′

φ
=⇒ N′′′

%2
==⇒ ; moreover, N′ ≡ (ν̃l)(N̂ ‖ l :: 〈t〉)

and N′′ ≡ N̂ ‖ l :: nil. Now, if l̃ = ∅ or l̃ ∩ fn(φ) = ∅, then it must be that

N′
φ·(ν̃l) 〈t〉 @ l ·%2
============⇒ and, hence, N

%′′

==⇒ . Otherwise, it must be φ = (ν̃l′) t′ / l′′ ;

thus, N′′
(ν̃l′) 〈t′〉 @ l′′

===========⇒ N′′′. Now, if we let l̃1 = l̃∩ (t′ − l̃′) and l̃2 = l̃− l̃1, we

have that N′
(νl̃1,l̃′) 〈t′〉 @ l′′

=============⇒ (ν̃l2)(N′′′ ‖ l :: 〈t〉)
(ν̃l2) 〈t〉 @ l
−−−−−−−−→ N′′′ ‖ l :: nil

%2
==⇒ ,

and hence N
%′′

==⇒ .

(L2).b: % , %1 · . l · φ · %2 and %′′ , %1 · φ · . l · %2. By definition,

N
%1
==⇒ N′

nil @ l
−−−−−→ N′′

φ
=⇒ N′′′

%2
==⇒ ; moreover, N′ ≡ N′′ ≡ N′′ ‖ l :: nil.

This implies that N′′′ ≡ N′′′ ‖ l :: nil (since nodes cannot disappear along

reductions) and N
%1·φ· nil @ l ··%2
=============⇒ , as required.

(L3).a: % , %1 · (ν̃l) t / l · 〈t〉 @ l · %2 and %′′ , %1 · (ν̃l)%2. By definition,

N
%1
==⇒ N′

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′1 =⇒ N′2

t / l
−−→ N′′

%2
==⇒ ; moreover, N′ ≡ (ν̃l)(N̂ ‖ l :: 〈t〉)

and N′1 ≡ N̂ ‖ l :: nil. Thus, N′ =⇒ (ν̃l)(N′2 ‖ l :: 〈t〉)
τ
−→ (ν̃l)(N′′ ‖ l ::

nil) , N3. Now, if l̃ = ∅ or l̃ ∩ fn(%2) = ∅, then N3
%2
==⇒ and, hence, N

%′′

==⇒ .

Otherwise, we reason like in case (L1).a to obtain that N3
(ν̃l)%2
====⇒ and, again,

N
%′′

==⇒ .

(L3).b: % , %1 · . l · nil @ l · %2 and %′′ , %1 · %2. By definition,

N
%1
==⇒ N′

nil @ l
−−−−−→ N′′

. l
===⇒ N′′′

%2
==⇒ ; moreover, N′ ≡ N′′ ‖ l :: nil. This

implies that N′ =⇒ N′′′ and we can easily conclude.

(L4).a: % , %1 · (ν̃l) t / l · %2 and %′′ , %1 · . l · (ν̃l) t / l · %2. By definition,

N
%1
==⇒ N′

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′′

%2
==⇒ ; moreover, N′ ≡ (ν̃l)(N′′′ ‖ l :: 〈t〉) and N′′ ≡

N′′′ ‖ l :: nil. Thus, easily, N
%1
==⇒ N′

nil @ l
−−−−−→

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′′

%2
==⇒ , as required.

(L4).b: % , %1 · . l · %2 and %′′ , %1 · . l · . l · %2. Similar to case (L4).a.

5.3. TRACE EQUIVALENCE 123

(L5).a: % , %1 · (ν̃l) 〈t〉 @ l · . l′ · %2 and %′′ , %1 · . l′ · (ν̃l) 〈t〉 @ l · %2, for

l′ < l̃. By definition, N
%1
==⇒ N1

(ν̃l) t / l
−−−−−→ N2 =⇒ N3

nil @ l′
−−−−−→ N4

%2
==⇒ ; moreover,

N3 ≡ N3 ‖ l′ :: nil ≡ N4. Since l′ < l̃, we have that l′ must be a node also
in N2 and in N1, i.e., N2 ≡ N2 ‖ l′ :: nil and N1 ≡ N1 ‖ l′ :: nil. Hence,

N
%1
==⇒ N1

nil @ l′
−−−−−→

(ν̃l) 〈t〉 @ l
−−−−−−−→ N2 =⇒ N4

%2
==⇒ , as required.

(L5).b: % , %1 · nil @ l · . l′ · %2 and %′′ , %1 · . l′ · nil @ l · %2. Similar to case
(L5).a.

Now, the main theorem follows.

Theorem 5.3.4 (Soundness of � w.r.t. ') If N � M then N ' M.

Proof: Let K be an observer such that N ‖ K
OK
===⇒ . By Lemma 5.3.2.2, there

exists % such that N
%
=⇒ and K

% ·OK
=====⇒ . By Definition 5.3.1, there exists %′ � %

such that M
%′

==⇒ . By suffix closure of � (that can be easily proved), we have that

%′ · test / test � % · test / test . By Lemma 5.3.3, K
%′ ·OK
=====⇒ . By

Lemma 5.3.2.1, M ‖ K
OK
===⇒ , as required by Definition 5.1.4. Thus, N '′ M that,

by Proposition 5.1.5, implies that N ' M.

5.3.2 Completeness w.r.t. May Testing

To start, we define the canonical observer of a trace %, written q(%), as

q(%) = C[test :: P]

where the actual observer process P and context C[·] enabling the observation are
returned by O∅(%) = 〈P;C[·]〉, which is inductively defined as follows

OL(ε) = 〈out(test)@test.nil; [·]〉

OL(nil @ l · %) = 〈eval(nil)@l.P;C[·]〉
where OL(%) = 〈P;C[·]〉

OL((νl1, . . . , ln) 〈t〉@ l · %) = 〈in(t{li ←!xi}i=1,...,n)@l.(P[x1/l1 , . . . ,
xn/ln]);C[·]〉

where OL∪{l1,...,ln}(%) = 〈P;C[·]〉, and
x1, . . . , xn are fresh names, and
t{li ←!xi}i=1,...,n is the template obtained

from t by replacing
each li with !xi

124 CHAPTER 5. BEHAVIOURAL THEORIES

OL(. l · %) =

〈P;C[·] ‖ l :: nil〉 if l < L

〈P;C[·]〉 otherwise

where OL(%) = 〈P;C[·]〉

OL((ν̃l) t / l · %) =

〈new(̃l).out(t)@l.P;C[·] ‖ l :: nil〉 if l < L

〈new(̃l).out(t)@l.P;C[·]〉 otherwise

where OL(%) = 〈P;C[·]〉

L is the (finite) set of names extruded by the trace, i.e. those names created by
the net that emitted % and offered as a datum in a visible location. We used the
convention that new(̃l).out(l′)@l stands for out(l′)@l whenever l̃ = ∅. The context
has only to provide localities where

• the observed net can place data/code (when % is of the form . l · %′)

• the observer process can place data that the observed net needs (when % is of
the form (ν̃l) t / l · %′).

However, the context should not provide a locality l′ whenever l′ ∈ L. In this case,
the observed net already provides l′; indeed, if l′ ∈ L, then l′ has been extruded by
an action (νl′, l̃) 〈t〉@ l in %.

The key property of the canonical observer for % is that it always reports success
when run in parallel with a net that offers %, as stated by the following Proposition.

Proposition 5.3.5 q(%)
%·OK
====⇒ .

Proof: The proof is by induction on |%| and easily follows by definition of canon-
ical observers.

Now, we distinguish the label . l generated by rule (LTS-O) from the same
label generated by rule (LTS-E). We shall write .� l the former and . l the latter.
This is needed for technical reasons (see the case (iv) in the proof of Lemma 5.3.7);
the two labels are exactly the same. We start by adapting Lemma 5.3.2(2) in order
to exclude labels of the form .� l.

Lemma 5.3.6 If N ‖ q(%)
OK
===⇒ , then there exists a %′ such that N

%′

==⇒ ,

q(%)
%′ ·OK
=====⇒ and %′ does not contain labels of the form .� l.

Proof: By Lemma 5.3.2(2), we know that there exists a trace %′′ such that N
%′′

==⇒

and q(%)
%′′ ·OK
======⇒ . The proof now proceeds by induction on the number of labels

of the form .� l (for a generic l) in %′′. The base step is trivial. For the inductive
step, we have that %′′ = %1 · .� l · %2 such that %1 does not contain labels of the form
.� . We consider two cases:

5.3. TRACE EQUIVALENCE 125

• There are no intruded names2 in %1. Thus, %1 does not contain labels of the

form (ν̃l) 〈t〉 @ l′′ , for l̃ , ∅. Let q(%) , C[test :: P]
%1
==⇒ C′[test ::

out(t)@l.P]
.� l
−→ C′[test :: P] ‖ l :: 〈t〉

%2
==⇒ . By definition of canoni-

cal observers, it must be that C′ [·] ≡ C′[·] ‖ l :: nil; indeed, for every
action out at l in a canonical observer, a node with address l is always pro-
vided, except when l is a name intruded by the observer (i.e., extruded by

the trace), that is not the case here. Thus, q(%)
%1·%2
====⇒ . On the other side,

N
%1
==⇒ N′

nil @ l
−−−−−→ N′′

%2
==⇒ , where N′ ≡ N′′; thus, N

%1·%2
====⇒ . The thesis holds

by induction on %1 · %2 that has one label of the form .� less than %′′.

• There are intruded names in %1 and these are {l1, . . . , lk}. If l < {l1, . . . , lk},
then the proof is like in the case above; otherwise, let l be li. Since li has been

intruded, it must be that q(%)
%3
==⇒ K

(νli ,̃l) t / l′′
−−−−−−−→ K′ ‖ li :: nil

%4
==⇒ C[test ::

out(t′)@li.P], where %1 = %3 · (νli, l̃) 〈t〉 @ l′′ · %4 and C[test :: P] ‖ li ::

〈t′〉
%2
==⇒ . Now, N

%3
==⇒ N1

(νli ,̃l) 〈t〉 @ l′′
−−−−−−−−−−→ N2

%4
==⇒ N3

nil @ li
−−−−−→ N4

%2
==⇒ , for some

N2 ≡ N2 ‖ li :: nil (this is always possible because in N1 name li is restricted
and can be used as address of a node, by using law (S-RN)). Moreover,
N3 ≡ N4; thus, since the node with address li in K′ ‖ li :: nil cannot disappear

during computations, it holds that q(%)
%3·(νli ,̃l) t / l′′ ·%4·%2
===============⇒ , i.e. q(%)

%1·%2
====⇒ ,

and correspondingly N
%1%2
===⇒ . Like before, we can apply induction to %1 · %2

and conclude.

The main Lemma to prove completeness of trace equivalence w.r.t. may testing
is the following one, stating that q(%) can report success only upon execution of a
trace %′ such that %′ � %.

Lemma 5.3.7 Letq(%)
%′ ·OK
=====⇒ , where test < n(%′) and %′ does not contain labels

of the form .� l. Then, %′ � %.

Proof: The proof is by induction on |%|. The base step is trivial. For the inductive
step, let % be φ · %′′; let us reason on the possibilities for φ.

(i) φ , nil @ l . By construction, q(%) , C[test :: eval(nil)@l.P], where

〈P;C[·]〉 = O∅(%′′). The trace q(%)
%′ ·OK
=====⇒ can be produced only in two

ways:

1. %′ , %1 · . l · %2, where C[0]
%1
==⇒ C′ [0] and C′[test :: P]

%2·OK
=====⇒ .

Thus, q(%′′) , C[test :: P]
%1·%2·OK
=======⇒ ; by induction, this implies that

%1 · %2 � %
′′. Now, % , φ · %′′ � φ · %1 · %2 � %1 · φ · %2 , %′, where

2By symmetry of denomination w.r.t. extruded names, we call intruded a name received via rule
(LTS-R), i.e. name l′ is intruded in % if % = %′ · (νl′, l̃) t / l · %′′.

126 CHAPTER 5. BEHAVIOURAL THEORIES

the first inequality holds by prefix closure of � (i.e., the inverse of �)
while the second inequality holds by repeated applications of law (L5).
Indeed, since C[·] is just a parallel of nodes with no components, %1

only contains labels of the form nil @ ; thus, %1 only contains labels
of the form . .

2. %′ , %1 · %2, where C[0]
%1· nil @ l
=========⇒ C′[0] and C′[test :: P]

%2·OK
=====⇒ .

Thus, q(%′′) , C[test :: P]
%1· nil @ l ·%2·OK
==============⇒ ; by induction, this im-

plies that %1 · . l · %2 � %
′′. Now, by prefix closure, by repeated

applications of law (L5) (like in the previous case) and by law (L3), we
have that % , φ · %′′ � φ · %1 · . l · %2 � %1 · . l · φ · %2 � %1 · %2 , %′,
as required.

(ii) φ , . l . By construction, q(%) , C[test :: P] ‖ l :: nil, where 〈P;C[·]〉 =

O∅(%′′). Now, we have that %′ , %1 · %2, where C[test :: P]
%1
==⇒ C′[test ::

P′] and C′ [test :: P′] ‖ l :: nil
%2·OK
=====⇒ . Now, q(%′′) , C[test ::

P]
%1·%

′
2·OK

=======⇒ , where %′2 is the trace obtained from %2 by removing all the la-
bels nil @ l from it and by possibly adding a label of the form . l . Indeed,
since it is not necessarily the case that C[·] ≡ . . . ‖ l :: nil, it can be that some
labels nil @ l cannot be generated by C′[test :: P′]; similarly, it could be
necessary to add a label . l if, in the production of %2, C′[test :: P′] needs
l to place some data/process. Hence, by induction, we have that %1 · %

′
2 � %

′′.

We now have the desired % � φ · %1 · %
′
2 � φ · %1 · %2 � %1 · %2. Notice that the

second inequality has been obtained by repeated applications of laws (L4)
and (L2) (as many times as the number of labels nil @ l removed from %2

to obtain %′2) and by possibly applying laws (L4), (L2) and (L3) (if a label
of the form . l has been introduced in %′2). The last inequality relies on law
(L1).

(iii) φ , (νl1, . . . , ln) 〈t〉@ l . By construction, q(%) , C[test :: in(t{li ←

!xi}i=1,...,n)@l.(P[x1/l1 , . . . ,
xn/ln])], where 〈P;C[·]〉 = O{l1,...,ln}(%

′′). Now, we

have that %′ , %1 · (νl1, . . . , ln) t / l ·%2, where q(%)
%1
==⇒C′[test :: in(t{li ←

!xi}i=1,...,n)@l.(P[x1/l1 , . . . ,
xn/ln])]

(νl1,...,ln) t / l
−−−−−−−−−→ C′ [test :: P] ‖ Π

i=1,...,n
li ::

nil
%2·OK
=====⇒ . Let us now pick up any l′ ∈ {l1, . . . , ln}; we say that l′ oc-

curs in target position in %′′ if %′′ contains labels of the form . l′ or / l′ .
By an easy inspection of the definition of canonical observers, it holds that
q(%′′) is structurally equivalent to C[test :: P] ‖ l′ :: nil, if l′ occurs in
target position in %′′, or to C[test :: P], otherwise.

We now proceed like in case (ii) above and let q(%′′)
%1·%

′
2·OK

=======⇒ where %′2 is
obtained from %2 by removing actions nil @ l′ and by possibly adding an
action . l′ , for each l′ occurring in target position in %′′. The proof is then

5.3. TRACE EQUIVALENCE 127

similar, but uses (L5) to place φ at its right place and needs to be iterated for
each l′ occurring in target position in %′′.

(iv) φ , (ν̃l) t / l . By construction, q(%) , C[test :: new(̃l).out(t)@l.P] ‖ l ::
nil, where 〈P;C[·]〉 = O∅(%′′). This case is the most tedious: q(%) has a
lot of possible evolutions and, thus, %′ can be of several forms. However,
by hypothesis %′ does not contain labels of the form .� ; in particular, it
does not contain .� l. Hence, the action out(t)@l does not generate any
visible action and forces q(%) to reduce to (ν̃l)(C[test :: P] ‖ l :: 〈t〉)
in order to report success. We have to keep into account whether and how
C[test :: P] and l :: 〈t〉 interact, and whether and how l̃ are extruded. We
have 6 possibilities in total.

1. l :: 〈t〉 is not involved in the generation of %′ and l̃′ ⊆ l̃ are extruded by
C[test :: P].

Remark: here and in the rest of this proof we shall always let
l̃′ be a single name l′. The case for l̃′ = ∅ is simpler, while the
case for |̃l′| > 1 is only notationally more complex.

In this case, we have that %′ , %1 · (νl′, l̃′′) 〈t′〉 @ l′′ · %2 and

q(%′′)
%1·(ν̃l′′) 〈t′〉 @ l′′ ·%2·OK
===================⇒ . By using induction and prefix closure,

we have that % � φ ·%1 · (ν̃l′′) t′ / l′′ ·%2 � %1 · (νl′, l̃′′) t′ / l′′ ·%2 , %′,
where the second inequality relies on law (L1) and the names in l̃− {l′}
disappear, since they are not extruded by %′ (and, thus, they do not
occur therein).

2. the first contribution of l :: 〈t〉 in %′ is with label nil @ l and l̃′ ⊆ l̃ are
extruded. We have three sub-cases.

(a) the datum 〈t〉 is not used: in this case, %′ , %1 · (νl′, l̃′′) 〈t′〉@ l′′ ·

%2 · nil @ l · %3 and q(%′′)
%1·(ν̃l′′) 〈t′〉 @ l′′ ·%2·%

′
3·OK

=====================⇒ , where %′3 has
been obtained from %3 like in (ii) before.
By induction and prefix closure, we can prove that % � φ · %1 ·

(ν̃l′′) t′ / l′′ · %2 · %
′
3 � . l · φ · %1 · (ν̃l′′) t′ / l′′ · %2 · %

′
3 � %1 ·

(νl′, l̃′′) t′ / l′′ ·%2 · . l ·%3 , %
′, where the second inequality holds

by law (L4), the third inequality holds by law (L1) and because l′

does not appear in what follows and the fourth one is obtained by
using (L2), (L3) and (L4) like in case (ii) above.

Remark: it could also be %′ , %1 · nil @ l · %2 ·

(νl′, l̃′′) 〈t′〉@ l′′ ·%3. This case can be easily adapted, by

considering q(%′′)
%1·%

′
2·(ν̃l

′′) 〈t′〉 @ l′′ ·%′3·OK
=====================⇒ , where %′i has

been obtained from %i like in (ii).

(b) it then offers the datum via a label (ν̃l1) 〈t〉 @ l , for l̃1 = l̃ − l̃′

and l̃′ have been previously extruded: in this case, %′ , %1 ·

128 CHAPTER 5. BEHAVIOURAL THEORIES

nil @ l · %2 · (νl′, l̃2) 〈t′〉 @ l′′ · %3 · (ν̃l1) 〈t〉 @ l · %4 and

q(%′′)
%1·%

′
2·(ν̃l2) 〈t′〉 @ l′′ ·%′3·%

′
4·OK

=======================⇒ , where the %′i s have been ob-
tained from the corresponding %is like in (ii) above. The proof
proceeds like in the previous cases, by using (L4), (L2) and (L3).
Moreover, like in case 2.(a), the proof is not radically changed if
we consider %′ , %1 ·(νl′, l̃2) 〈t′〉@ l′′ ·%2 · nil @ l ·%3 ·(ν̃l1) 〈t〉@ l ·
%4.

(c) the datum 〈t〉 is then passed to C[test :: P] with a communication
and l̃′ ⊆ l̃ are extruded: in this case, %′ , %1 · nil @ l · %2 ·

(νl′, l̃′′) 〈t′〉@ l′′ ·%3 ·%4 andq(%′′)
%1·%

′
2·(ν̃l

′′) 〈t′〉 @ l′′ ·%′3· t / l ·%′4·OK
============================⇒ ,

where the %′is have been obtained from the corresponding %is like

in (ii) above. Then, % � . l · φ · %1 · %
′
2 · (ν̃l

′′) 〈t′〉 @ l′′ · %′4 ·

〈t〉@ l · %′3 � %1 · . l · %2 · (νl′, l̃′′) 〈t′〉@ l′′ · φ · 〈t〉@ l · %4 �

%1 · . l · %2 · %3 · %4 , %′, where the first step relies on induction,
prefix closure and law (L4), the second step on laws (L2), (L4) and
(L3) used as needed, and the third one on rule (L3). The situation
in which the extrusion of l′ proceeds the label nil @ l is similar.

Remark: if l′ is extruded after the communication, %3 will
be of the form . . .· 〈l′〉@ l ′′ ·. . .; hence, %3 is .̄̄ .̄ .· l′ / l ′′ · .̄̄ .̄ . .
Now, (νl′)%3 = .̄̄ .̄ . · (νl′) l′ / l ′′ · .̄̄ .̄ . and the proof carries
on in the same way.

3. the first contribution of l :: 〈t〉 in %′ is with (ν̃l1) 〈t〉 @ l ,
where l̃1 = l̃ − l̃′ and l̃′ have been previously extruded: in this
case, %′ , %1 · (νl′, l̃′′) 〈t′〉 @ l′′ · %2 · (ν̃l1) 〈t〉 @ l · %3 and

q(%′′)
%1·(ν̃l′′) 〈t′〉 @ l′′ ·%2·%

′
3·OK

=====================⇒ , where %′3 has been obtained from %3

like in (ii). The thesis follows by induction, prefix closure, law (L2)
and by possibly repeated applications of laws (L4), (L2) and (L3).

4. the first contribution of l :: 〈t〉 to the production of %′ is by passing the
datum to C[test :: P] with a communication and l̃′ ⊆ l̃ are extruded:
the proof of this case can be adapted from case 2.(c) above.

Finally, we can prove that trace equivalence is a sound proof technique for may
testing (see Theorem 5.3.4) that exactly captures it.

Theorem 5.3.8 (Completeness of � w.r.t. ') If N ' M then N � M.

Proof: Let % be a trace of N, i.e. N
%
=⇒ . By Proposition 5.3.5, q(%)

% ·OK
=====⇒ ; thus,

by Lemma 5.3.2.1, N ‖ q(%)
OK
===⇒ . By Proposition 5.1.5 and Definition 5.1.4, it

holds that M ‖ q(%)
OK
===⇒ . By Lemma 5.3.6, there exists %′ such that M

%′

==⇒ ,

q(%)
%′ ·OK
=====⇒ and %′ does not contain labels of the form .� l. By Lemma 5.3.7

5.4. VERIFYING A PROTOCOL FOR THE DINING PHILOSOPHERS 129

(notice that, since test is fresh, it holds that test < n(%′)), %′ � % as required by
Definition 5.3.1; thus, N � M.

Corollary 5.3.9 (Tractable Characterisation of May Testing) � = ' .

5.4 Verifying a Protocol for the Dining Philosophers

We now use the proof techniques we have just presented to state and prove the prop-
erties of a ‘classical’ problem in distributed systems, namely the ‘Dining Philoso-
phers’.3 In what follows, we shall use bisimulation, that is finer but easier to prove.
All the work can be done with trace equivalence as well.

The problem. The dining philosophers is a “classical” synchronisation prob-
lem; its luck derives from the fact that it naturally models many synchronisation
problems arising when allocating resources in concurrent/distributed systems. The
problem can be described as follows. Some, say n, philosophers spend their lives
alternating between thinking and eating. They are seated around a circular table
and there is a fork placed between each pair of neighbouring philosophers. Each
philosopher has access to the forks at his left and right; if a philosopher wants to
eat, he has to acquire both the forks near to him (this is possible only if none of
his neighbours are using the forks); when done eating, the philosopher puts both
forks back down on the table and begins thinking. The challenge in the dining
philosophers problem is to design a protocol so that the philosophers do not dead-
lock (i.e. the entire set of philosophers does not stop and wait indefinitely), and
so that no philosopher starves (i.e. each philosopher eventually gets his hands on
a pair of forks). Additionally, the protocol should be as efficient as possible – in
other words, the time that philosophers spend waiting to eat should be minimised.

Our solution. We now propose a protocol in µK to solve the problem, in
the same spirit as Dijkstra’s solution. We shall associate each philosopher with a
distinct locality taken from the set {l1, . . . , ln}. We also use a restricted locality l
to record in a tuple of length n the allocation of the forks (i.e. the status of each
philosopher); more precisely, if the i-th component of this tuple is t then the i-th
philosopher is thinking, if it is e the i-th philosopher is eating. The access to such
a tuple will allow the processes to act on resources allocation in mutual exclusion.
The node li will then host the following process (implementing the behaviour of
the i-th philosopher):

rec X. think . in(Ti)@l.out(ti)@l . eat . in(T ′i)@l.out(t′i)@l.X

3Historically, the problem was first formulated and solved by Dijkstra in 1965 and was used to
motivate the use of semaphores.

130 CHAPTER 5. BEHAVIOURAL THEORIES

where

Ti ,

t, t, !x3, . . . , !xn−1, t

!x1, . . . , !xi−2, t, t, t, !xi+2, . . . , !xn

t, !x2, . . . , !xn−2, t, t

if i = 1
if 1 < i < n
if i = n

ti ,

e, t, x3, . . . , xn−1, t

x1, . . . , xi−2, t, e, t, xi+2, . . . , xn

t, x2, . . . , xn−2, t, e

if i = 1
if 1 < i < n
if i = n

T ′i ,

e, t, !y3, . . . , !yn−1, t

!y1, . . . , !yi−2, t, e, t, !yi+2, . . . , !yn

t, !y2, . . . , !yn−2, t, e

if i = 1
if 1 < i < n
if i = n

t′i ,

t, t, y3, . . . , yn−1, t

y1, . . . , yi−2, t, t, t, yi+2, . . . , yn

t, y2, . . . , yn−2, t, t

if i = 1
if 1 < i < n
if i = n

Intuitively, the first in action verifies that the neighbours of the i-th philosopher are
not eating and simultaneously acquires the lock on the tuple; then the out action
sets the status of the i-th philosopher to e, while releasing the lock. Then, the
following in and out actions release the resources used upon completion of the
eating phase and the protocol iterates.

For the sake of simplicity, we do not model the think phase, while the eat phase
is just an out action over some (fresh) locality l′. Hence, if the system starts with
all the philosophers in a thinking state, the net implementing the system is

N , (νl)(l :: 〈t, . . . , t〉 ‖
n
Π
i=1

li :: Pi)

Pi , rec X.in(Ti)@l.out(ti)@l.out(li)@l′.in(T ′i)@l.out(t′i)@l.X

Soundness of our solution. We shall now verify the correctness of our protocol,
namely that (1) no deadlock nor starvation ever occur, (2) resources are properly
used (namely, no neighbouring philosophers eat at the same time) and (3) the pro-
tocol enables the highest level of parallelism (i.e. it is possible for b n

2c philosophers
to eat together).

1. We shall prove that
N ‖ l′ :: nil ≈ N ‖ l′ :: 〈li〉 (5.1)

for each i = 1, . . . , n. Equation (5.1) can be proved by showing that the re-
lations <i

1 , { (N
′ , N′ ‖ l′ :: 〈li〉) : N ‖ l′ :: nil =⇒ N′ } ∪ Id are weak

bisimulations (up-to ≡); this can be done easily. This means that computa-
tions from N can never get stuck (hence deadlock will never occur) and that
each philosopher can eat an unbounded number of times (hence starvation
cannot occur).

Deadlock freedom: To prove it, we proceed by contradiction; hence, let us
suppose that there exists a computation from N leading to deadlock.

5.4. VERIFYING A PROTOCOL FOR THE DINING PHILOSOPHERS 131

Since the computation is finite, we can find an integer k which is an
upper bound to the number of steps performed by N before reaching
the deadlock. But then, we can iterate k + 1 times Equation (5.1) and

Theorem 5.2.7 to obtain that N ‖ l′ :: nil ≈ N ‖
k+1
Π
j=1

l′ :: 〈li〉. This

equivalence is however contradicted by letting N ‖ l′ :: nil to follow the
computation leading to deadlock. Indeed, since N ‖ l′ :: nil performs
at most k steps in such computation, it is impossible for it to produce
k + 1 data in l′ (recall that l′ is fresh for N); on the other hand, no com-

putation from N ‖
k+1
Π
j=1

l′ :: 〈li〉 will ever remove data from l′ (because l′

has been chosen fresh for N). Thus, the resulting nets exhibit different
data in l′ and cannot be equivalent.

Starvation freedom: The proof is similar. Indeed, if there exists a computa-
tion from N starving philosopher i by letting him to eat at most k times,

then such a computation contradicts N ‖ l′ :: nil ≈ N ‖
k+1
Π
j=1

l′ :: 〈li〉.

2. Let l′′ be a fresh locality. We define

M , l :: 〈t, . . . , t〉 ‖
n
Π
i=1

li :: Pi

C[·] , l′′ :: nil ‖ (νl, l′)[·]
D[·] , l′′ :: nil ‖ (νl, l′)([·] ‖ l :: in(e, e, !x3, . . . , !xn)@l.out()@l′′

| in(!x1, e, e, !x4, . . . , !xn)@l.out()@l′′

| . . .

| in(e, !x2, . . . , !xn−1, e)@l.out()@l′′)

Notice that N , (νl)M and hence C[M] , l′′ :: nil ‖ (νl′)N. We have
restricted node l′ because we are not interested in observing who is eating
(and because this simplifies the formulation of Equation (5.2) below); we
later show that this fact implies that N must access resources properly. We
want to prove that

C[M] ≈ D[M] (5.2)

i.e. D[M] will never produce data at l′′ (since C[M] cannot). Intuitively,
D[M] can produce a datum at l′′ if it happens that two adjacent philosophers
eat simultaneously; hence Equation (5.2) implies that no resource is ever
misused. The above equation can be proved by showing that the relation
<2 , { (C[M′] , D[M′]) : C[M] =⇒ C[M′] } is a bisimulation; again, this is
an easy task.

Now, suppose that there exists a computation from N misusing the

resources; this means that N
α1
−→ . . .

αk
−→ N′ and N′ is a net where two

adjacent philosophers are eating simultaneously. Thus N ′ , (νl)(l ::
〈. . . , e, e, . . .〉 ‖ . . .) where the two e are adjacent modulo n. But then

D[M]
α′1
−→ . . .

α′k
−→ D[M′] where N′ , (νl)M′, α′i = αi if l′ is not the target of

132 CHAPTER 5. BEHAVIOURAL THEORIES

αi, and α′i = τ otherwise. Hence, D[M′]
τ
−→

τ
−→

〈〉 @ l′′
−−−−−→ , thus contradicting

Equation (5.2).

3. The easiest way to prove that b n
2c philosophers can eat simultaneously is to

show a computation from N leading to a tuple in l with exactly b n
2c items of

kind e, while respecting the correct use of resources. The wanted reduction
is obtained by letting the even philosophers accessing in turn the status tu-
ple. This is always possible since an even philosopher is always surrounded
(modulo n) by two, not eating, odd philosophers. Hence we have that

N
τ
−→

τ
−→ l :: 〈t, e, t, t, . . . , t〉 ‖

i,2
Π

i=1,...,n
li :: Pi ‖

l2 :: out(l2)@l′.in(T ′2)@l.out(t′2)@l.P2
τ
−→

τ
−→ l :: 〈t, e, t, e, t, t, . . . , t〉 ‖

i,2,4
Π

i=1,...,n
li :: Pi ‖

l2 :: out(l2)@l′.in(T ′2)@l.out(t′2)@l.P2 ‖

l4 :: out(l4)@l′.in(T ′4)@l.out(t′4)@l.P4

. . .
τ
−→

τ
−→ l :: 〈t, e, t, e, . . .〉 ‖

i odd
Π

i=1,...,n
li :: Pi ‖

i even
Π

i=1,...,n
li :: out(li)@l′.in(T ′i)@l.out(t′i)@l.Pi

5.5 Equational Laws and the Impact of Richer Contexts

In this section, we want to discuss some equational laws that can be easily proved
by exploiting both bisimulation and trace equivalence. We concentrate on bisim-
ulation that is finer (by virtue of Proposition 5.1.5 and Theorems 5.2.8 and 5.3.8).
The first law is inspired by the asynchronous π-calculus [5]

l′ :: rec X.in(!x)@l.out(x)@l.X ≈ l′ :: nil

and states that (repeatedly) accessing a datum and putting it back in its original
location is observationally equivalent to performing no operation. Of course, this
heavily exploits the fact that communication in µK is asynchronous.

We have also the following four significant laws (the last one can be easily
derived from the second and the third one):

l :: out(t)@l′.P ‖ l′ :: nil ≈ l :: P ‖ l′ :: 〈t〉 (5.3)

l :: eval(Q)@l′.P ‖ l′ :: nil ≈ l :: P ‖ l′ :: Q (5.4)

l :: P|Q ‖ l′ :: nil ≈ l :: P ‖ l′ :: Q (5.5)

l :: eval(Q)@l′.P ‖ l′ :: nil ≈ l :: P|Q ‖ l′ :: nil (5.6)

Laws 5.3 and 5.4 state that it is impossible to know when data and processes have
been allocated – either at the outset or during computations. Law 5.5 states that,

5.5. EQUATIONAL LAWS AND THE IMPACT OF RICHER CONTEXTS 133

once the net is fixed, the actual distribution of processes is irrelevant, while law 5.6
states that remotely executing a process is observationally equivalent to executing
the process locally. At a first sight, these laws could be quite surprising and seem
to contradict the design principles at the basis of µK. However, they can be
explained by observing the net at a very high level, namely at the level of the user
applications. Indeed, we are observing the functionalities a net offers to a terminal
user. Therefore, the allocation of processes cannot be observed (law 5.5) and the
advantages of exploiting mobile processes (e.g. efficiency, reduced network load,
support for disconnected operations) cannot be perceived at all (law 5.6).

In many circumstances this level of abstraction is exactly what we need. For
example, when we studied the ‘Dining philosophers’, we were interested in the
overall behaviour of the system and in the properties it enjoyed; thus, we could
ignore the implementation details and take into account only the functional aspects
of the protocol. If we want more details on the distributed environment underlying
a µK application, we have to refine the observational level. Consequently,
to study lower-level aspects like, e.g., routing problems or failures, we have to
adapt the language and the semantic theories we developed in this chapter. To this
aim, we have studied three variants of µK where (i) communication can only
take place locally, (ii) failures (of both components and nodes) can occur, and (iii)
dynamically evolving connections between nodes are explicitly modelled. Later
on, we shall give some hints on the first two variants and leave the more elaborated
treatment of the third scenario for [63]. Predictably, laws 5.5 and 5.6 do not hold
in these lower-level settings.

Local Communications. In the setting of K the above rules do not hold.
Indeed, by letting 'l be may testing in K, it is very easy to check that

l :: P ‖ l′ :: nil 6'l l :: nil ‖ l′ :: P
l :: eval(Q)@l′.P ‖ l′ :: nil 6'l l :: P|Q ‖ l′ :: nil

This is reasonable because, since communications are local, by moving a process
we also change its execution environment. Thus, at the very least, its observable
behaviour will change according to the node where it runs. Notice that, in order to
disprove laws 5.5 and 5.6 we have used may testing; because of Proposition 5.1.5
(that holds also for K), 6'l implies 6�l.

Failures. Now, we consider another setting and enrich µKwith a mechanism
for modelling various forms of failures. This is achieved by adding the following
rules to the definition of the reduction relation and of the LTS:

(R-F) l :: C 7−→ 0 (LTS-F) l :: C
τ
−→ 0

These rules model corruption of data (message omission) if C , 〈t1〉| . . . |〈tn〉, node
(fail-silent) failure if l :: C collects all the components located at l, and abnormal

134 CHAPTER 5. BEHAVIOURAL THEORIES

termination of some processes running at l otherwise. In this way, we model fail-
ures as disappearance of a resource (a datum, a process or a whole node). This is a
simple, but realistic, way of representing failures, specifically fail-silent and mes-
sage omission, in a global computing scenario [34]. Indeed, while the presence
of data/nodes can be ascertained, their absence cannot because in such a scenario
there is no practical upper bound to communication delays. Thus, failures cannot
be distinguished from long delays and should be modelled as totally asynchronous
and undetectable events.

Again, it is easy to prove that laws 5.5 and 5.6 given for µK do not hold
anymore in this more concrete setting. Indeed, the failure of l′ can easily mod-
ify the overall behaviour of the equated nets. We now examine what happens to
the characterisation of barbed congruence and may testing in this new framework.
The definition of the bisimulation equivalence does not need to be modified to
exactly capture barbed congruence. Indeed, the recursive closure of both barbed
congruence and bisimulation already forces the corruption of the same data and
the failure of the same nodes to take place at the same time; as regards process
abnormal termination, it will be the evolution of the involved nets that will affect
the equivalence. About trace equivalence, the characterisation breaks down: trace
equivalence is only a sound (but not complete) proof technique for may testing.
The problem is that Lemmas 5.3.6 and 5.3.7 do not hold anymore in the lower-
level setting. This does not mean that trace equivalence is strictly finer than may
testing, even if we believe this; it only means that the proof of Theorem 5.3.8 must
be carefully re-examined. A more precise statement on this aspect is left for future
work.

If we let ≈ f , � f , � f and ' f denote labelled bisimilarity, barbed congruence,
trace equivalence and may testing for the calculus with failures, we have

Theorem 5.5.1 ≈ f = � f and � f ⊆ ' f .

Proof: The proof is formally identical to those of Theorems 5.2.8, 5.2.12
and 5.3.4, but now a τ-step or a reduction can be also generated by applying rule
(LTS-F) and (R-F) respectively.

5.6 Related Work

We conclude by reviewing related work on observational equivalences for calculi
with process distribution and mobility (many of them are surveyed in [46]). In
the nineties, many CCS-like process calculi have been enriched with localities to
explicitly describe the distribution of processes. The aim was mainly to provide
these calculi with non interleaving semantics or, at least, to differentiate processes’
parallel components (thus obtaining more inspective semantics than the interleav-
ing ones). This line of research is far from the one in which µK falls, where
localities are used as a mean to make processes network aware thus enabling them

5.6. RELATED WORK 135

to refer to the network locations as target of remote communication or as desti-
nation of migrations. Localities are not only considered as units of distribution
but, according to the case, as units of mobility, of communication, of failure or of
security.

[130] and [4] extend, resp., CCS and π-calculus with process distribution and
mobility. In both cases, processes run over the nodes of an explicit, flat and dy-
namically evolving net architecture. Nodes can fail thus causing loss of all hosted
processes. There are explicit operations to kill nodes and to query the status of
a node. Failures can be detected, which is suitable for distributed computing but
clashes with the assumptions underlying global computing. In both papers, a la-
belled bisimulation (akin to the bisimulation in the CCS and π-calculus) is given to
capture a standardly defined barbed congruence.

Another distributed version of the π-calculus is presented in [85]; the result-
ing calculus contains primitives for code movement and creation of new locali-
ties/channels in a net with a flat architecture. Over the LTS defining the semantics
of the calculus, a typed bisimulation (with a tractable formulation) is defined that
exactly capture typed barbed equivalence. The use of types illustrates the impor-
tance of having the rights to observe a given behaviour: indeed, different typings
(i.e. observation rights) generate different bisimulations, that are finer as long as
the typing is less restrictive. Clearly, typed equivalences can be also introduced
in the framework of µK. This would result in a very powerful and interesting
formalism, considering the impact that the types presented in Chapter 3 have in the
semantics of the calculus. We leave this aspect for a future work; nevertheless, we
strongly conjecture that this could be done without too many problems, by merging
together the theory presented in this chapter with the ideas put forward in [85].

In the Distributed Join calculus [71], located mobile processes are hierarchi-
cally structured and form a tree-like structure evolving during the computation.
Entire subtrees, not only single processes, can move). Technically, nets are flat
collections of named nodes, where the name of a node indicates the nesting path of
the node; e.g., a node whose name is l1. · · · .lk.l represents a node referrable to via
the unique name l and that is contained in lk, that is a node contained in lk−1 and so
on. Communication in DJoin takes place in two steps: firstly, the sending process
sends a message on a channel; then, the ether (i.e. the environment containing all
the nodes) delivers the message to the (unique) process that can receive on that
channel. The fact that in the whole net there is a unique process capable to receive
at a given channel makes DJoin communication somehow similar to µK one,
in that DJoin channels have a role similar to that of µK localities. Failures are
modelled by tagging locality names: e.g. the (compound) name · · · .lΩi . · · · .l states
that l is a node contained in a failed node li and, thus, l itself is failed. The Ω at li

has been caused by execution of the primitive halt by a process running at l i. Fail-
ures can be detected by using the primitive f ail. Failed nodes cannot host running
computations but can receive data/code/sublocations that, however, once arrived in
the failed node, become definitely stuck. Some interesting laws and properties are
proved using a contextual barbed equivalence, but no tractable characterisation of

136 CHAPTER 5. BEHAVIOURAL THEORIES

the equivalence is given and it is not even obvious how to extend the characteri-
sation of barbed bisimulation for the (non-distributed) Join calculus introduced in
[72] to account for distribution and agent mobility.

The Ambient calculus [41] is an elegant notation to model hierarchically struc-
tured distributed applications. Though the definition of its reduction semantics
is very simple, the formulation of a reasonable, possibly tractable, observational
equivalence is a very hard task. The calculus is centred around the notion of con-
nections between ambients, that are containers of processes and data. Each prim-
itive can be executed only if the ambient hierarchy is structured in a precise way;
e.g., an ambient n can enter an ambient m only if n and m are sibling, i.e. they are
both contained in the same ambient. This fact greatly complicates the definition
of a tractable equivalence. Recently, in [108], a bisimulation capturing Ambient’s
barbed congruence has been defined. This has been done by structuring the syn-
tax into two levels, namely processes and nets (where the latter ones are particular
cases of the former ones), and by exploiting an involved LTS (using three different
kinds of labels some of which containing process contexts). However, the defined
bisimulation is not standard and suffers from a quantification over all the possible
processes (to fill in the ‘holes’ generated by the operational semantics).

Similar bisimulations have also been developed for calculi derived from Am-
bient, like, e.g., Safe Ambients [107], Boxed Ambients [28], the Seal Calculus
[44] and the calculus of Mobile Resources [77]. Moreover, in the last three papers,
bisimulation is only a sound but not complete proof technique for barbed congru-
ence.

To conclude, we want to remark that, to the best of our knowledge, no charac-
terisation of may testing in terms of trace equivalence has even been given for an
asynchronous, distributed language with process mobility. In [142], a theory for
may testing (and the corresponding characterisation) is developed for the Actors
Model [3]. However, the work is done by reducing Actors to a typed asynchronous
π-calculus and the trace-based characterisation follows [16].

Chapter 6

Expressiveness of the Languages

To conclude this thesis, we now try to assess the expressive power of tuple based
communications and to evaluate the theoretical impact of the linguistic primitives
proposed for the language K. This task is performed by studying the possibility
of encoding each of the calculi presented in Chapter 2 in a more basilar one. A tight
comparison between these calculi and the asynchronous π-calculus [93, 19], named
πa-calculus, is also provided. At the end of this chapter, we shall use these results
to justify the use of µK throughout the previous chapters of the thesis. For the
moment, we just say that it represents a good compromise between the expressive
power of K and that of the πa-calculus.

To assess the quality of our encodings, we shall use some well-established
criteria (see, e.g., [119]), namely full abstraction and semantical equivalence. To
this aim, we assume a family of equivalences EQ.

Full Abstraction w.r.t. EQ: An encoding enc(·) of language X into language Y
satisfies this property if for every pair of X-terms T1 and T2 it holds that
T1 EQX T2 if and only if enc(T1) EQY enc(T2).

Semantical Equivalence w.r.t. EQ: An encoding enc(·) of language X into lan-
guage Y satisfies this property if for every X-term T it holds that
T EQZ enc(T), for some language Z containing both X and Y.

In the above definitions, EQ is not a precise equivalence but a family of equiva-
lences in that it has to be properly instantiated to the various languages considered,
yielding EQX, EQY and EQZ. The stronger the equivalence the better the encod-
ing, in that it more strongly attests that the target language has similar expressive
power to the source one. Moreover, we have that if an encoding is semantical
equivalent w.r.t. EQ then it is also fully abstract w.r.t. the same equivalence. Thus,
an encoding enjoying semantical equivalence is ‘better’ then an encoding enjoying
fully abstraction. Finally, if we want to establish semantical equivalence between
a language Y that is a sub-language of X, then the natural choice forZ is X itself.

137

138 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

The equivalences we use in this chapter are barbed bisimilarity and barbed
congruence; these are uniformly defined equivalences on process calculi often con-
sidered their ‘touchstone’ semantic theories. Barbed bisimilarity equates two terms
that offer the same observable behaviour along all possible computations, while
barbed congruence is obtained by closing the former under all possible language
contexts. As usual, see e.g. [138], barbed bisimilarity is coarser then barbed con-
gruence. It often turns out that a ‘half-way’ solution between the two notions above
is the appropriate one; it relies on what we call translated barbed congruence, writ-
ten �tr. We say that an encoding enc(·) from language X to language Y is fully
abstract w.r.t. �tr whenever the set of contexts in Y considered for context clo-
sure is formed by using only the translation via enc(·) of contexts in X. Indeed,
if we consider the encoding as a protocol (i.e. a precise sequence of message ex-
changes), translated contexts represent opponents conforming to the protocol. To
assess the expressiveness of languages, this result suffices since it precisely says
that the source language can be faithfully compiled in the target one.

6.1 Technical Preliminaries

In this section, we list all the technical tools we need to carry on the proofs in this
chapter. We start by presenting all the machineries for µK; the corresponding
notions for K and K are derived easily and are postponed to the end of
this section.

As we already said, we shall assess the quality of our encodings by using a
notion of translated barbed congruence. Once fixed an encoding enc(·) from a
certain languageZ into µK, this equivalence is defined like barbed congruence
but it only consider those contexts that are the encoding (via enc) of a source one.
By following [13], we shall denote this barbed congruence as �tr

µK (because the
contexts considered are always translated, via enc). However, in the proofs, it will
be convenient to keep track of the number of τ-steps that a net requires to simulate
the other while establishing barbed congruence. This gives rise to a preorder on

nets that we call barbed expansion. Recall from Notation 5.2.1 that N
τ̂
−→ N′ stands

for either N ≡ N′ or N
τ
−→ N′.

Definition 6.1.1 (Barbed Expansion Preorder) A preorder < between µK
nets is a barbed expansion if, for each N1<N2, it holds that:

1. if N1 ↓ l then N2 ⇓ l;

2. if N2 ↓ l then N1 ↓ l;

3. if N1
τ
−→ N′1 then N2

τ
=⇒ N′2 and N′1<N′2, for some N′2;

4. if N2
τ
−→ N′2 then N1

τ̂
−→ N′1 and N′1<N′2, for some N′1;

5. C[N1] < C[N2], for every context C[·].

The expansion preorder, .µK , is the largest barbed expansion (when notationally
useful, we write N.µK M as M&µKN).

6.1. TECHNICAL PRELIMINARIES 139

Like barbed congruence, barbed expansion can be defined by requiring closure
only under a subset of language contexts. In particular, once fixed an encoding
enc(·) from a certain languageZ into µK, we define .tr

µK , the translated barbed
expansion, to be the largest relation defined like .µK , but where context closure
only consider those contexts C[·] such that C[·] = enc(D[·]) and D[·] is a Z-
context. We let enc(D[·]) be defined as a standard net encoding that replaces [·]
with [·]. We now establish an ordering among the relations introduced so far.

Proposition 6.1.2 ≡ ⊂ .µK ⊂ �µK and ≡ ⊂ .tr
µK ⊂ �tr

µK .

Proof: We just prove the first statement; the second one is similar. The inclusion
≡ ⊂ .µK is simple: proving ‘⊆’ is straightforward, while the first four statements
of Proposition 6.1.6 can be used to prove that the reverse inclusion does not hold.
The inclusion .µK ⊂�µK holds by definition.

In what follows, we shall use some well-established proof techniques, namely
up-to expansion techniques. We say that < is a barbed congruence up-to .µK if it
is defined like in Definition 5.1.3 but reduction and context closure are weakened
and consider &µK<.µK (instead of <) in the closure. The translated versions of
barbed congruence and expansion are modified similarly. Formally, we have the
following definitions.

Definition 6.1.3 (Barbed Congruence up-to .µK) A symmetric relation between
µK nets < is a barbed congruence up-to .µK if, whenever N1 < N2, it holds
that:

• if N1 ↓ l then N2 ⇓ l;

• if N1
τ
−→ N′1 then there exists N′2 such that N2 =⇒ N′2 and N′1 &µK<.µK N′2;

• for every context C[·], it holds that C[N1] &µK<.µK C[N2].

Definition 6.1.4 (Translated Barbed Congruence up-to .tr
µK) A symmetric re-

lation between µK nets < is a translated barbed congruence up-to .tr
µK if,

whenever N1 < N2, it holds that:

• if N1 ↓ l then N2 ⇓ l;

• if N1
τ
−→ N′1 then there exists N′2 such that N2 =⇒ N′2 and N′1 &

tr
µK<.

tr
µK N′2;

• C[N1] &tr
µK<.

tr
µK C[N2], for every translated context C[·].

Proposition 6.1.5 (Up-to Techniques) The following facts hold:

1. if< is a barbed congruence up-to .µK , then< ⊆ �µK .

2. if< is a translated barbed congruence up-to .tr
µK , then < ⊆ �tr

µK .

140 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

Proof: The proofs of the two claims are similar; we just show the first one. It
suffices to prove that = , {(N,M) : N&µK<.µK M} is barb preserving, reduction
closed and closed under translated contexts. We consider N&µKN1 < M1.µK M.

Let N
τ
−→ N′. Then, by hypothesis, N1

τ̂
−→ N2 and N′&µKN2. Now, if N1 ≡ N2,

we can state that N′&µKN1; hence, M =⇒ M and N′ = M. On the other hand, if

N1
τ
−→ N2 then M1

τ̂
=⇒ M2 and N2 &µK<.µK M2. Then, M

τ̂
=⇒ M′ and M2.µK M′;

hence, by transitivity of .µK (that can be easily proved), we obtain N ′ < M′, as
required. Now, let N ↓ l; then, N1 ↓ l. Then, M1 ⇓ l, i.e. M1 =⇒ M2 ↓ l. Now,
M =⇒ M′ and M2 .µK M′; thus, M′ ⇓ l and, hence, M ⇓ l, as required. Finally,
context closure holds by definition.

We now give some simple laws that greatly simplify our proofs.

Proposition 6.1.6 The following facts hold:

1. (νl′)(l :: Pσ ‖ l′ :: nil) .µK (νl′)(l :: in(T)@l′.P ‖ l′ :: 〈t〉) whenever
match(T, t) = σ

2. l :: P ‖ l′ :: 〈t〉 .µK l :: out(t)@l′.P ‖ l′ :: nil

3. l :: P ‖ l′ :: Q .µK l :: eval(Q)@l′.P ‖ l′ :: nil

4. (νl′)(l :: P ‖ l′ :: nil) .µK l :: new(l′).P

5. (νl)(l :: I) .µK 0 .µK (νl)(l :: I).

Technicalities for K and K. Most of the theory presented for µK
can be easily adapted to K and K. In particular, an LTS for K can
be obtained from the rules in Table 3.8 by removing the rule for action read and
by only considering monadic tuples/templates. The LTS for K is furtherly
obtained by replacing the rules of K for actions out and in with the following
ones:

l :: out(l′).P
τ
−→ l :: P | 〈l′〉

match(T, l′) = σ

l :: in(T).P
l′ / l
−−−→ l :: Pσ

Then, we denote with �cK the restriction of �µK to K nets; clearly, �cK ⊆

�µK . Relations .cK , �tr
cK and �tr

cK are defined similarly. Finally, we define similar
relations .lcK and �lcK for K. Clearly, all the properties stated and proved
in this section for µK can be faithfully rephrased to deal with the sub-relations
containing only K or K nets.

6.2 K vs µK

Intuitions There are two differences between K and µK: pres-
ence/absence of allocation environments and presence/absence of higher-order

6.2. KLAIM VS µKLAIM 141

communications. Intuitively, allocation environments are translated into tuples of
the TS allocated at a reserved locality env. If the allocation environment ρ of l
maps x to l′, then a tuple 〈l, x, l′〉 is stored at env. Hence, when performing an ac-
tion out/in/read, all the (originally) free variables occurring in the tuple/template
must be translated according to the current allocation environment. This is made
possible by adding a sequence of actions read to properly translate the free vari-
ables. Notice, however, that a renaming of the free variables with fresh ones is
necessary not to capture occurrences of the same variables within the scope of pre-
fixed actions eval (this is necessary to correctly implement the dynamic binding of
these variables). Informally, the K node

l1 ::ρ1 P

with
P , out(x, l′)@y.eval(out(x, l′)@y)@x (6.1)

and ρ1 such that ρ1(x) = l1 and ρ1(y) = l2, is translated into the µK net

l1 :: P′ ‖ env :: 〈l, x, l1〉 | 〈l, y, l2〉 | . . .

where
P′ , read(l, x, !x′)@env.read(l, y, !y′)@env.

out(x′, l′)@y′.eval(out(x, l′)@y)@x′
(6.2)

Since the name binding discipline implemented for actions out is static, the
theory developed for the higher-order π-calculus [134] by means of triggers can be
smoothly integrated to the present setting. In loc.cit., a HOπ-calculus process

ā〈p〉 | a(X).X

is translated to
(νc)(ā〈c〉 | !c().p′) | a(x). x̄〈〉

where ā〈p〉 sends process p on channel a and p′ is the translation of p (for a more
precise syntax and semantics of the π-calculus see Section 6.5.1). The idea of this
encoding is to assign a fresh pointer c to p and distribute it in place of p. Such
pointer is then used by the interested processes to activate as many copies of p as
needed. This idea can be faithfully adapted to K. For example, the net

l1 ::ρ1 out(P)@l1 ‖ l2 ::ρ2 in(!X)@l1.X

where P is defined like in (6.1), is translated into

l1 :: new(l).eval(Pl)@l.out(l)@l1 ‖ l2 :: in(!x)@l1.out(l2)@x ‖ env :: . . .

where
Pl , rec X.in(!z)@l.(X | eval(P′)@z)

and P′ is defined like in (6.2).

142 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

As this intuitive discussion should have clarified, name translation and handling
of higher-order data are compatible issues. In particular, the full abstraction result
of [134] can be established in our framework as well. Nevertheless, a formal pre-
sentation of the complete encoding turns out to be notationally overcomplicated.
Thus, from now on, we only consider the first-order fragment of K, i.e. those
K nets that do not contain processes in tuple fields.

Formal development We now formalise the way in which we can simulate in
µK the translation via allocation environments of free variables to locality
names. This is done by the encoding presented in Table 6.1, where env is a re-
served name.

As already said, env’s TS collects tuples of the form 〈l, x, l′〉 to properly record
the associations in l’s allocation environment. Moreover, node env also contains
another kind of tuples, i.e. pairs 〈l′, l〉 stating that the allocation environment of l′

coincides with l’s one, except for the self entry. This is useful when l′ is a node
created by l. Indeed, we do not duplicate the allocation environment of l in env for
l′, but we just put a “link” to the original environment; we shall say that l is an alias
for l′. Clearly, this solution imposes the special handling of variable self, that is
not implemented as the other entries of an allocation environment but is automati-
cally resolved by the encoding (see the second case for the encoding of action eval
and the side conditions (∗∗) and (∗ ∗ ∗) for actions out, in and read). Moreover, if l
created l′ that, in turn, created l′′, then env contains the tuples 〈l′, l〉 and 〈l′′, l〉 (see
the encoding of action new). This is necessary because the allocation environment
of l′ is, in fact, the environment of l. Thus, when performing an action out/in/read,
the translation of the (originally) free variables must be preceded by an action read
that retrieves the link to the proper allocation environment.

Notice that, when a locality l is present in N, its allocation environment is
explicitly stored in env and l is clearly linked to itself (i.e., the tuple 〈l, l〉 is stored
in env). Notice also that, by definition of 〈(0)〉, the tuple space of env is never
empty. This will turn out to be fundamental in order to obtain a fully abstraction
result. Moreover, notice that structurally equivalent nets (like 0 and 0 ‖ 0) may
have different encodings. Nevertheless, this is not a problem, since we work with
translated barbed congruence, that ignores this fact.

The main encoding relies on an auxiliary encoding for node components. Then,
the component C located in l is encoded as 〈(C)〉l;fv(C). This encoding uses env for
operations related to environments, keeps track of the locality where the component
is located (to statically resolve occurrences of variable self and to dynamically
enable the encoded term to properly translate the free variables occurring in actions
out/in/read) and records the originally free variables occurring in C. This last
information is necessary because the encoding proceeds compositionally; thus, it
is necessary to distinguish which variables were free ‘at the beginning’ from those
that are temporarily free but will be bound by a binding prefix during the encoding

6.2. KLAIM VS µKLAIM 143

Encoding Nets (where env is a reserved name):

〈(0)〉 , env :: 〈〉

〈(N1 ‖ N2)〉 , 〈(N1)〉 ‖ 〈(N2)〉

〈((νl)N)〉 , (νl)〈(N)〉

〈(l ::ρ C)〉 , l :: 〈(C)〉l;fv(C) ‖ env :: 〈l, l〉 |
x,self
Π

(x,l′)∈ρ
〈l, x, l′〉

Encoding Components:

〈(〈t〉)〉u;V , 〈t〉

〈(C1|C2)〉u;V , 〈(C1)〉u;V | 〈(C2)〉u;V

〈(nil)〉u;V , nil

〈(X)〉u;V , X

〈(rec X.P)〉u;V , rec X.〈(P)〉u;V

〈(new(l).P)〉u;V , new(l).read(u, !y)@env.out(l, y)@env.〈(P)〉u;V y is fresh

〈(eval(Q)@v.P)〉u;V ,

eval(〈(Q)〉v;V)@v.〈(P)〉u;V

eval(〈(Q)〉u;V)@u.〈(P)〉u;V

read(u, !y)@env.read(y, v, !z)@env.
eval(〈(Q)〉z;V)@z.〈(P)〉u;V

if v ∈ L

if v = self

if (∗)

〈(out(t)@v.P)〉u;V , read(u, !y)@env.read(y, x1, !y1)@env. · · · where (∗∗)
· · · .read(y, xn, !yn)@env.out(t′)@v′.〈(P)〉u;V

〈(in(T)@v.P)〉u;V , read(u, !y)@env.read(y, x1, !y1)@env. · · · where (∗ ∗ ∗)
· · · .read(y, xn, !yn)@env.in(T ′)@v′.〈(P)〉u;V

〈(read(T)@v.P)〉u;V , read(u, !y)@env.read(y, x1, !y1)@env. · · · where (∗ ∗ ∗)
· · · .read(y, xn, !yn)@env.read(T ′)@v′.〈(P)〉u;V

(∗) v ∈ V − {self} and y, z are fresh

(∗∗) {x1, · · · , xn} = (fv(t, v) − {self}) ∩ V and y, y1, · · · , yn are fresh and
t′ = t[u, y1, · · · , yn/self, x1, · · · , xn] and v′ = v[u, y1, · · · , yn/self, x1, · · · , xn]

(∗ ∗ ∗) {x1, · · · , xn} = (fv(T, v) − {self}) ∩ V and y, y1, · · · , yn are fresh and
T ′ = T [u, y1, · · · , yn/self, x1, · · · , xn] and v′ = v[u, y1, · · · , yn/self, x1, · · · , xn]

Table 6.1: Encoding K into µK

144 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

phase. To clarify this point, consider the following process

P , in(!x1)@l.out(x1, x2)@l

located at l′. In this process, only x2 is (originally) free. But to encode P, we need
to first encode the (sub)process out(x1, x2)@l that has two free variables: x1 and
x2. Hence, if we encode such a process as

read(l′, !y)@env.read(y, x1, !y1)@env.read(y, x2, !y2)@env.out(y1, y2)@l

we would change the overall behaviour. Indeed, the binding of the first argument
of action out to the argument of action in (programmed in P) would be lost. The
right solution is

read(l′, !y)@env.read(y, x2, !y2)@env.out(x1, y2)@l

that, once prefixed by (the encoding of) action in(!x1)@l, properly binds variable
x1.

To prove properties of this encoding, we first introduce a notion of normal form
of an encoding 〈(N)〉, written 〈〈(N)〉〉. Essentially, the normal form of an encoding is
the net resulting from the execution of (what we can call) administrative τ-steps.
Informally, these are the τ-steps introduced by the encoding and that do not corre-
spond to any τ-step in the source net. Normal forms enjoy the desirable property
of being prompt, i.e. any top-level action they intend to perform corresponds to an
analogous action in the source term. This fact will greatly simplify our proofs.

Intuitively, 〈〈(N)〉〉 is obtained from 〈(N)〉 by firing as many top-level ‘administra-
tive’ actions read (introduced to implement allocation environments) as possible.
For example, if ρ is the allocation environment of l and the side condition (∗ ∗ ∗) of
Table 6.1 holds, we let

〈〈(read(T)@v.P)〉〉l;V , read(l′, xk, !yk)@env. · · · .read(l′, xn, !yn)@env.
read(T ′)@v′.〈(P)〉l;V

where l′ is the alias for l, {x1, · · · , xk−1} ⊆ dom(ρ) and xk < dom(ρ). The idea
underlying this normalisation is that, if 〈〈(read(T)@v.P)〉〉l;V has a top-level action
of the form read(·, x, !y)@env, then there exists a variable in (fv(T, v)−{self})∩V
that cannot be resolved in ρ; thus, the original action read(T)@v gets stuck. Hence,
as expected, also its encoding gets stuck when it tries to resolve variable x.

The above definition can be made more formal; however, for the sake of sim-
plicity, we think that this intuitive presentation suffices. Just notice that the normal-
isation procedure behaves similarly when the translated action is a in/out/eval, and
it extends homomorphically to complex processes and nets. The following result
states that the reduction to normal forms is performed while respecting & tr

µK .

Lemma 6.2.1 〈(N)〉 &tr
µK 〈〈(N)〉〉.

6.2. KLAIM VS µKLAIM 145

Proof: To prove the thesis, we need to show that

< , { (C[H],C[K]) : 〈(N)〉 (
· / env
−−−−−→)∗ H (

· / env
−−−−−→)∗ K (

· / env
−−−−−→)∗ 〈〈(N)〉〉

∧ C[·] is a context translated via 〈(·)〉 }

is contained in &tr
µK . Let us pick up a pair (C[H],C[K]) ∈ < and prove that it

satisfies the requirements of the definition of &tr
µK .

Let C[H]
χ
−→ H̄ and let us reason by case analysis on χ.

χ = nil @ l . In this case, H̄ ≡ C[H]; moreover, since H and K have the same

addresses, it trivially holds that C[K]
χ
−→ C[K] and the thesis follows up-to

≡.

χ = (ν̃l) 〈t〉@ l . If the datum is provided by the context, then the thesis is easy

to prove. Otherwise, suppose that H
(ν̃l′) 〈t〉 @ l
−−−−−−−−→ H′ and let l̃ be obtained

from l̃′ by adding some names l̃′′ bound by C[·]. Then, by definition of

the encoding and of relation <, it must be that N
(ν̃l′) 〈t〉 @ l
−−−−−−−−→ N′ and that

〈(N′)〉 (
· / env
−−−−−→)∗ H′ (

· / env
−−−−−→)∗ K′ (

· / env
−−−−−→)∗ 〈〈(N′)〉〉, where K

(ν̃l′) 〈t〉 @ l
−−−−−−−−→ K′.

In conclusion, C[H] ≡ (ν̃l′′)C1[H]
χ
−→ C1[H′], where C1[·] is still a translated

context; moreover, C[K]
χ
−→ C1[K′] and C1[H′]< C1[K′], as required.

χ = τ. According to Lemma 5.2.6, we have six possible sub-cases, that we now
examine separately.

1. H
τ
−→ H′ and H̄ ≡ C[H′]. There are two possibilities for this τ-step: it

can be either generated by an action read over env or not.

(a) In the first case, by construction, it can be that K has
been obtained from H by firing also such an action read;

hence, C[K]
ε
−→ C[K] and C[H′] < C[K]. Otherwise,

K can mimic this τ-step and reduce to a K ′ such that

〈(N)〉 (
· / env
−−−−−→)∗ H′ (

· / env
−−−−−→)∗ K′ (

· / env
−−−−−→)∗ 〈〈(N)〉〉 and the thesis

follows.

(b) On the other hand, if the τ-step of H did not involved any exchange
over env, it must be that K can perform the same action. Indeed,
actions not involving env can only increase while passing from
H to K (no action over a locality different from env is touched
and some new action over a locality different from env could be
enabled by the removal of some prefixing read over env). Thus,

K
τ
−→ K′ such that H′ (

· / env
−−−−−→)∗ K′. We can conclude, once we

prove that there exists a K net M such that 〈(M)〉 (
· / env
−−−−−→)∗ H′

and K′(
· / env
−−−−−→)∗ 〈〈(M)〉〉. But this is not difficult: if H performs

a τ-step without involving env, this means that N (that exists by

146 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

definition of<) can perform a top-level τ-step over l, see the defi-
nition of the encoding in Table 6.1. Then, the M we were looking
for is the τ-reduct of N obtained from firing the action whose en-
coding has been fired by H.

2. C[·]
τ
−→ C′[·] and H̄ ≡ C′[H]. This case is trivial.

3. H
. l
−→ H′, C[·] ≡ C[· ‖ l :: nil] and H̄ ≡ C[H′]. Clearly, l , env,

otherwise H could have performed the τ-step without the contribution
of the context. By definition of the normalisation and of the relation
<, K has as many sending actions as H (possibly, it has some more
sending action resulting from the removal of some prefix read); thus,

K
. l
−→ K′ such that H′(

· / env
−−−−−→)∗ K′ and hence C[K]

τ
−→ C[K′]. Like in

case 1.(b) above, we can find a net M such that 〈(M)〉 (
· / env
−−−−−→)∗ H′ and

K′(
· / env
−−−−−→)∗ 〈〈(M)〉〉: indeed, it is the . l -reduct of N obtained from

firing the action whose encoding has been fired by H.

4. H
nil @ l
−−−−−→ H′, C[·] ≡ C′[· ‖ L], L

. l
−→ L′ and H̄ ≡ C′ [H ‖ L′]. This case

is simpler.

5. H
t / l
−−→ H′, C[·] ≡ C′[· ‖ l :: 〈t〉] and H̄ ≡ C′[H′]. Again, l , env,

otherwise H could have performed the τ-step without the contribution
of the context. The proof is like in case 3. above.

6. H
(ν̃l) 〈t〉 @ l
−−−−−−−→ H′, C[·] ≡ C′[· ‖ L], L

t / l
−−→ L′ and H̄ ≡ C′[(ν̃l)(H′ ‖ L′)].

Like before.

The converse, i.e. that each χ-move of C[K] can be properly replied to by
C[H], can be proved similarly. To prove closeness under translated contexts, let
D[·] be a translated context; we have to prove that D[C[H]] < D[C[K]], but
this holds by definition of <, once we consider the context D[C[·]] that is still a
translated context.

Now, we can consider the operational correspondence. Through this proof, we
shall write ENVρl to indicate the tuples allocated at env to implement the allocation

environment ρ of node l, i.e. 〈l, l〉 |
x,self
Π

(x,l′)∈ρ
〈l, x, l′〉. To better understand the fol-

lowing proofs, notice that translated contexts comply with the expected interaction
protocol with env. In particular, they cannot count how many times a given datum
appears in env and cannot tell env :: ENVρl | 〈l

′, l〉 and env :: ENVρl | ENVρl′ apart.

Lemma 6.2.2 (Operational Correspondence) Let N be a K net. Then

1. N 7−→ N′ implies that 〈〈(N)〉〉 7−→ ∗&tr
µK 〈〈(N

′)〉〉

2. 〈〈(N)〉〉 7−→ N′ implies that N 7−→ N′′ and N′ &tr
µK 〈(N

′′)〉

6.2. KLAIM VS µKLAIM 147

Proof:

1. The proof is by induction on the length of the inference for N 7−→ N ′. For
the base case, we just consider two representative cases, i.e. when N evolves
by exploiting rules (R-I) and (R-N); the other ones are similar or
easier.

In the first case, we have that N , l ::ρ in(T)@u.P ‖ l′ ::ρ′ 〈t〉, and we
let V = fv(in(T)@u.P). By hypothesis, ρ(u) = l′ and E[[T]]ρ is defined and
yields T ′; thus, fv(T, u) ⊆ dom(ρ). By construction, we have that

〈〈(N)〉〉 , l :: in(T ′)@l′.〈(P)〉l;V ‖ l′ :: 〈t〉 ‖ env :: ENVρl | ENVρ
′

l′

Moreover, we also know that match(T ′, t) = σ. By using Lemma 6.2.1, we
can conclude that 〈〈(N)〉〉 7−→ 〈(l ::ρ Pσ ‖ l′ ::ρ′ nil)〉 , 〈(N′)〉 &tr

µK 〈〈(N
′)〉〉, as

required.

When N evolves exploiting rule (R-N), then N , l ::ρ new(l′).P and
N′ , (νl′)(l ::ρ P ‖ l′ ::ρ[l′/self] nil). It is easy to show that

〈〈(N)〉〉 7−→∗ (νl′)(l :: 〈(P)〉l,fv(P) ‖ l′ :: nil ‖ env :: ENVρl | 〈l
′, l〉)

&tr
µK (νl′)(l :: 〈(P)〉l,fv(P) ‖ l′ :: nil ‖ env :: ENVρl | ENVρl′) &

tr
µK 〈〈(N

′)〉〉

We now consider the inductive step; we only discuss the case in which
the last rule applied is (R-S). In this case, N 7−→ N ′ because
N ≡ M, M 7−→ M′ and M′ ≡ N′. It is easy to see that structurally
equivalent nets have encodings related by .tr

µK; thus, 〈〈(N)〉〉 &tr
µK 〈〈(M)〉〉 and

〈〈(M′)〉〉 &tr
µK 〈〈(N

′)〉〉. By induction, we know that 〈〈(M)〉〉 7−→∗ M′′ &tr
µK 〈〈(M′)〉〉,

for some M′′. These two facts together imply that 〈〈(N)〉〉 7−→∗ N̄ for some N̄
such that N̄ &tr

µK M′′. By transitivity of &tr
µK , we can conclude.

2. The proof is by induction on the length of the inference for 〈〈(N)〉〉 7−→ N ′.
We only examine the base cases for (R-I) and (R-N). The key obser-
vation is that, because of normalisation, 〈〈(N)〉〉 can evolve via rule (R-I)
only if

〈〈(N)〉〉 , l :: in(T ′)@l′.〈(P)〉l;V ‖ l′ :: 〈t〉 ‖ env :: ENVρl | ENVρ
′

l′

where V = fv(in(T ′)@l′.P) and match(T ′, t) = σ; moreover, we also have
that

N′ ≡ l :: 〈(Pσ)〉l;V ‖ l′ :: nil ‖ env :: ENVρl | ENVρ
′

l′

Now, it must be that N , l ::ρ in(T)@u.P ‖ l′ ::ρ′ 〈t〉, where ρ(u) = l′ and
E[[T]]ρ = T ′. This suffices to infer N 7−→ l ::ρ Pσ ‖ l′ ::ρ′ nil , N′′ and
N′ ≡ 〈(N′′)〉.

The case for (R-N) is proved like before. Indeed, N , l ::ρ new(l′).P,
〈〈(N)〉〉 , 〈(N)〉 and N′ ≡ l :: read(l, !y)@env.out(l′, y)@env.〈(P)〉l,fv(P) ‖ l′ ::

148 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

nil ‖ env :: ENVρl | 〈l
′, l〉. Thus, N 7−→ (νl′)(l ::ρ P ‖ l′ ::ρ[l′/self] nil) , N′′

and

N′ &tr
µK (νl′)(l :: 〈(P)〉l,fv(P) ‖ l′ :: nil ‖ env :: ENVρl | 〈l

′, l〉)

&tr
µK (νl′)(l :: 〈(P)〉l,fv(P) ‖ l′ :: nil ‖ env :: ENVρl | ENVρ

′

l′) , 〈(N′′)〉

that can be easily proved.

Theorem 6.2.3 (Full Abstraction w.r.t. Translated Barbed Congruence)
N �K M if and only if 〈(N)〉 �tr

µK 〈(M)〉.

Proof: We start with the ‘if’ part and prove that < , {(N,M) :
〈〈(N)〉〉 �tr

µK 〈〈(M)〉〉} is barb preserving, reduction closed and contextual. Indeed, by
Lemma 6.2.1, 〈(·)〉 &tr

µK 〈〈(·)〉〉; hence, the hypothesis 〈(N)〉 �tr
µK 〈(M)〉 implies that

〈〈(N)〉〉 �tr
µK 〈〈(M)〉〉, as needed.

• Let N ↓ l; since the encoding and the normalisation preserve the barbs
(this can be easily seen by the definitions of 〈(·)〉 and 〈〈(·)〉〉), we have that
〈〈(N)〉〉 ↓ l. Then, by hypothesis, 〈〈(M)〉〉 ⇓ l, i.e. 〈〈(M)〉〉 7−→∗ M′ ↓ l.
Now, by Lemmas 6.2.2.2 and 6.2.1, we have that there exists a net M ′′ such
that M 7−→∗ M′′ and M′ &tr

µK 〈〈(M′′)〉〉. By Definition 5.1.1 and Proposi-
tion 5.2.3.2/.3, we can conclude that M ′′ ↓ l and hence M ⇓ l.

• Let N 7−→ N′; by Lemma 6.2.2.1 this implies that 〈〈(N)〉〉 7−→∗ &tr
µK 〈〈(N

′)〉〉.
By hypothesis, we have that 〈〈(M)〉〉 7−→∗ &tr

µK M′, for some M′ such that
〈〈(N′)〉〉 �tr

µK M′. By Lemmas 6.2.2.2 and 6.2.1, we have that there exists
a net M′′ such that M 7−→∗ M′′ and M′ &tr

µK 〈〈(M′′)〉〉. Now, since .tr
µK ⊆

�
tr
µK (that can be easily verified) and by transitivity of �tr

µK , we have that
〈〈(N′)〉〉 �tr

µK 〈〈(M′′)〉〉; thus, N′ < M′′, as required.

• Let us pick up a translated context C[·]; this means that C[·] , 〈(D[·])〉.
Now, if either D[N] or D[M] are undefined (i.e. they give rise to a ill-
defined net) then we do not have to consider D[·] for context closure of
<. Otherwise, we have to prove that D[N] < D[M] by knowing that
C[〈〈(N)〉〉] �tr

µK C[〈〈(M)〉〉]. By Lemma 6.2.1 (that can be easily extended
to contexts) we have that C[·] &tr

µK 〈〈(D[·])〉〉 and hence C[·] &tr
µK 〈〈(D)〉〉[·];

thus, 〈〈(D)〉〉[〈〈(N)〉〉] �tr
µK 〈〈(D)〉〉[〈〈(M)〉〉], i.e. 〈〈(D[N])〉〉 �tr

µK 〈〈(D[M])〉〉. By
definition, we obtain the required D[N]<D[M].

Conversely, we can similarly prove that < , {(〈〈(N)〉〉, 〈〈(M)〉〉) : N �K M} is
barb preserving, reduction closed and contextual. We omit the details, since they
are an easy adaption of the above steps. The only tricky part is barb preservation
when 〈〈(N)〉〉 ↓ env; however, since 〈〈(M)〉〉 always has at least one (possibly useless)
datum at env, we also have that 〈〈(M)〉〉 ↓ env, as required.

6.3. µKLAIM VS CKLAIM 149

To conclude this section, we want to stress that we need env not to be empty
to preserve, e.g., the equivalence 0 �K (νl)(l ::[self 7→l] nil). Once translated, these
two nets become env :: 〈〉 and (νl)(l :: nil ‖ env :: 〈l, l〉), respectively, that are
equivalent w.r.t. �tr

µK exactly because translated contexts cannot tell tuples 〈〉 and
〈l, l〉 apart when located at env.

6.3 µK vs K

As we already said, there are two main differences between µK and K:
presence/absence of action read and polyadic/monadic communications. In this
section we prove that action read and polyadic exchanges are not essential features
of the paradigm; to the best of our knowledge, our work is the first result of this
kind in a L-based setting.

We start with the easier task: proving that read actions can be implemented in
K. Essentially, read behaves like in except for the fact that it does not remove
the accessed datum. It is easy to prove that

l :: read(T)@l′.P �µK l :: in(T)@l′.out(T̂)@l′.P

where l̂ , l, !̂x , x and T̂1,T2 , T̂1, T̂2. This implementation of action read can
be extended to complex nets in the obvious way, i.e. structurally; it can be then
easily proved that the resulting encoding enjoys semantical equivalence w.r.t. �µK .
We omit the details on this aspect to leave space to the second difference between
µK and K, namely the use of polyadic/monadic data.

To softly introduce the reader to our encoding, first let us examine Mil-
ner’s well-known encoding of polyadic into monadic communications for the syn-
chronous π-calculus [112]. We have that:

ā〈b, c〉 | a(x, y)

becomes
(νn) ā〈n〉. n̄〈b〉. n̄〈c〉 | a(n).n(x).n(y)

with n fresh. Hence, a fresh name (n) is exchanged by exploiting a common chan-
nel (a); n is then used to pass the sequence of values. In the asynchronous π-
calculus [93], Honda and Tokoro propose a slightly more complex encoding:

ā〈b, c〉 | a(x, y)

is rendered as

(νn)(ā〈n〉 | n(n1).(n̄1〈b〉 | n(n2). n̄2〈c〉))
| a(n).(νn1, n2)(n̄〈n1〉 | n1(x).(n̄〈n2〉 | n2(y)))

The schema is similar to the one for the synchronous calculus. However, since
output sequentialisation is not possible, different channels are needed to send the
different values in the sequence.

150 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

Our encoding somehow refines Honda’s one because it also has to consider
the presence of pattern-matching. Hence, when encoding a polyadic communica-
tion (of µK) into a monadic one (of K) we are faced with the problem of
starting to access a tuple and, while scanning it, finding out that it does not match
with the specified template. The solution is to then put back the part of the tu-
ple retrieved and restart the process; of course, this introduces divergence in the
encoding. The full encoding is given in Table 6.2.

Remark. The encoding in Table 6.2 is defined only for nets in which each tuple
is located alone on a different clone of the node hosting it (thus, for example,
〈|l :: 〈t1〉|〈t2〉|〉 is not defined). To overcome this problem and let the encoding easy,
we let 〈|N|〉 to be 〈|N′|〉 where N′ ≡ N but 〈|N′|〉 is defined. Notice that such N ′

can be always found for each N by only using rule (S-C), but is not unique,
in general (indeed, we can also split processes located at the same locality). To
overcome this fact, we can consider the N ′ (unique up-to rearrangements of parallel
components) obtained from N by only using (S-C) to isolate located data.

The focus of the encoding is in the implementation of tuples and in the trans-
lation of actions in/out. A tuple 〈t〉 is translated into a (monadic) reference to a
fresh locality l where a process, Rl(t), sequentially produces the fields of the tuple
and the length of the tuple plus one (this is used to properly implement the pattern
matching mechanism). The fields are requested sequentially by the (translation of
a) in action by using localities 1, 2, . . . , n, . . .; this is necessary to maintain the order
of the data in the tuple, since our calculus is asynchronous. Once the process R l(t)
has accepted the request for the i-th field, it produces such a field together with an
acknowledgement implemented via the reserved locality go.

Once the process translating an in action acquires the reference to (the locality
hosting the process handling) a tuple, it first verifies whether the accessed tuple
and the template used to retrieve it have the same number of fields. If it is the case,
it sequentially asks for all the fields of the tuple. For the i-th tuple field u i, the
encoding of the input non-deterministically chooses whether accepting u i (because
it matches the i-th template parameter T i), thus proceeding with the tuple scanning,
or refusing it and re-establishing the original scenario (with the reference put back
in its original location and the process handling the tuple rolled back). In the latter
case, notice that the input has not been fired and hence the process implementing
it recursively starts back its task. Clearly, this protocol is not divergent free; the
intuition underlying it is illustrated in Table 6.3.

We now prove some interesting properties of 〈|·|〉. In particular, we prove that
a polyadic net N and its encoding are semantical equivalent w.r.t. barbed bisimu-
lation (clearly, they cannot be equivalent w.r.t. any equivalence that is a congru-
ence). We also prove that the encoding is adequate w.r.t. barbed congruence, but
it is not fully abstract (at least, when considering all the possible monadic con-

6.3. µKLAIM VS CKLAIM 151

Encoding Nets:

〈|0|〉 , 0

〈|l :: C|〉 ,

{
(νl′)(l :: 〈l′〉 ‖ l′ :: Rl′ (t)) if C , 〈t〉 and l′ is fresh
l :: 〈|P|〉 if C = P

〈|N1 ‖ N2|〉 , 〈|N1|〉 ‖ 〈|N2|〉

〈|(νl)N|〉 , (νl)〈|N|〉

Encoding Processes:

〈|nil|〉 , nil

〈|X|〉 , X

〈|rec X.P|〉 , rec X.〈|P|〉

〈|P1|P2|〉 , 〈|P1|〉 | 〈|P2|〉

〈|new(l).P|〉 , new(l).〈|P|〉

〈|eval(Q)@l.P|〉 , eval(〈|Q|〉)@l.〈|P|〉

〈|out(t)@l.P|〉 , eval(nil)@l.new(l′).out(l′)@l.eval(Rl′ (t))@l′.〈|P|〉 l′ fresh

〈|in(T)@l.P|〉 , rec X.in(!x)@l.Q0
l,x,X(T ; P) x, X fresh

where

• Rl(u1, . . . , un) , S l(u1, . . . , un) | Ln
l

• S l(u1, . . . , un) ,
n
Π
i=1

in(i)@l.new(li).out(go)@l.out(li)@l.out(ui)@li li fresh

• Ln
l , in(len)@l.new(llen).out(go)@l.out(llen)@l.out(n + 1)@llen llen fresh

• Qk
l,x,X(T1, . . . , Tn; P) ,

out(len)@x.in(go)@x.in(!xlen)@x.(if k = 0
in(n + 1)@xlen.Q1

l,x,X(T1, . . . , Tn; P)
| in(!y)@xlen.eval(Ln

l)@x.out(x)@l.X)

out(k)@x.in(go)@x.in(!xk)@x.(if 1 ≤ k ≤ n
in(Tk)@xk.Qk+1

l,x,X(T1, . . . , Tn; P)

| in(!y)@xk.eval(Ln
x | S x(T̂1, . . . , T̂k))@x.out(x)@l.X)

〈|P|〉 if k = n + 1

with xlen, y and xk fresh variables

• T̂ ,

{
u if T = u
x if T = !x

• len, go, 1, . . . , n, . . . are pairwise distinct reserved localities

Table 6.2: Encoding The Polyadic Calculus into the Monadic Calculus

152 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

Tuple Consumer (with template T) Tuple Handler (for tuple t)

Acquire the lock over a tuple

Ask for t’s length −−−−−−−−→

←−−−−−−−− Provide t’s length k
If k = |T | then proceed,

otherwise release the lock
and roll back the tuple handler

Ask for t’s first field −−−−−−−−→

←−−−−−−−− Provide t’s first field f1
If the first field of T matches f1 and an ack go

then proceed, otherwise release the lock
and roll back the tuple handler

.

Ask for t’s last field −−−−−−−−→

←−−−−−−−− Provide t’s the last field fk
If the last field of T matches fk and an ack go

then FINISH, otherwise release the lock
and roll back the tuple handler

Table 6.3: The Protocol to Encode Polyadic Communications

texts in the context closure). Like for the π-calculus,1 a fully abstract encoding
seems very hard to achieve. The problem is that putting two encoded terms in
a generic context (i.e., a context not necessarily corresponding to the encoding
of any term) can break the equivalence. In our setting, consider the polyadic net
N , l :: in(!x)@l.out(x)@l; in Chapter 5 (Section 5) we proved that N �µK l :: nil.
However, 〈|N|〉 6�cK 〈|l :: nil|〉 because of, e.g., context [] ‖ l :: 〈l〉|〈2〉 that provides
a link to an ‘unfair’ tuple handler (actually, it provides a non-restricted locality and
the handler only provides the length of a tuple but not its fields). Indeed, the pro-
tocol of Table 6.3 cannot succeed because N gets blocked in Q1

... since no go will
be ever produced at l.

We believe that, by relying on sophisticated typing theories (like, e.g., in [152])
to consider in the context closure only those contexts that do not violate the ex-
change protocol implemented by the encoding, a (restricted) fully abstraction result
does hold. However, as we have already said in Chapter 3, it seems us unreason-
able for a tuple-based language to assume that the repository of a node contains
only data (i.e. tuples) of the same kind (i.e. with the same shape). So, even if
theoretically possible, fully abstraction (w.r.t. an equivalence that is a congruence)
would be in contrast with the principles underlying the tuple-space paradigm.

We now give the theoretical results. They rely on some preliminary steps,

1[152] shows that Milner’s encoding (sketched before) is not fully abstract w.r.t. bisimulation.

6.3. µKLAIM VS CKLAIM 153

describing the operational correspondence between polyadic nets and their encoded
monadic nets.

Proposition 6.3.1 The following facts hold.

1. If N
nil @ l
−−−−−→ N′ then 〈|N|〉

nil @ l
−−−−−→ 〈|N′|〉; viceversa, if 〈|N|〉

nil @ l
−−−−−→ M then

N
nil @ l
−−−−−→ N′ and M , 〈|N′|〉.

2. If N
(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ then 〈|N|〉

(νl′) 〈l′〉 @ l
−−−−−−−−→ (ν̃l)(〈|N′|〉 ‖ l :: nil ‖ l′ :: Rl′ (t)); vicev-

ersa, if 〈|N|〉
(νl′) 〈l′〉 @ l
−−−−−−−−→ M then N

(ν̃l) 〈t〉 @ l
−−−−−−−→ N′ and M ≡ (ν̃l)(〈|N′|〉 ‖ l :: nil ‖

l′ :: Rl′ (t)).

3. If N
. l
−→ N′ then 〈|N|〉

. l
===⇒ 〈|N′|〉. Viceversa, if 〈|N|〉

. l
−→ M, then N

. l
−→ N′ and

M &cK 〈|N′|〉.

4. If N
t / l
−−→ N′ then 〈|N|〉

l′ / l
−−−→ 〈|C|〉[l′′ :: Q0

l,l′,X(T ; P)[in(!x)@l.Q0
l,x,X(T ; P)/X]],

where N ≡ C[l′′ :: in(T)@l.P] for some C[·], l′′, T and P such that fn(l, t) ∩
bn(C[·]) = ∅ and match(T, t) = σ.

Viceversa, if 〈|N|〉
l′ / l
−−−→ N1 then N ≡ C[l′′ :: in(T)@l.P] for some C[·], l′′,

T , and P such that l < bn(C[·]). Moreover, for every t s.t. fn(t)∩bn(C[·]) = ∅

and match(T, t) = σ, it holds that N
t / l
−−→ C[l′′ :: Pσ].

Proof: All the statements can be proved by induction on the inference length. The
proof is long and standard, thus we omit it.

Lemma 6.3.2 (Preservation of Execution Steps) If N is a polyadic net and

N
τ
−→ N′ then 〈|N|〉 =⇒ &cK〈|N′|〉.

Proof: The proof is by induction on the length of the inference for
τ
−→ . There are

three base cases: when using (LTS-N), (LTS-S) and (LTS-C). The first
one is straightforward; we now inspect the other cases.

(LTS-S). We have that N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′ because N1

. l
−→ N′1 and

N2
nil @ l
−−−−−→ N′2. In this case, we use Proposition 6.3.1.1 and .3 to conclude

that 〈|N|〉 =⇒ 〈|N′1|〉 ‖ 〈|N
′
2|〉 ‖ l :: 〈|P|〉 ≡ 〈|N′|〉.

(LTS-C). We have that N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′ because N1

〈t〉 / l
−−−−→ N′1

and N2
〈t〉 @ l
−−−−−→ N′2. Then, by using Proposition 6.3.1.2 and .4 and Proposi-

tion 6.1.6.5, we can say that 〈|N|〉 =⇒ (νl′)(〈|N′|〉 ‖ l′ :: nil) &cK〈|N′|〉 because
l′ < n(N) and, thus, l′ < n(〈|N′|〉).

For the inductive case, we analyse the last rule used, namely (LTS-P), (LTS-R)
and (LTS-S). All the cases are easy.

154 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

Let us now consider the converse; to this aim, we need a slightly more involved.
We start with a definition needed to consider the intermediate states in the execution
of a communication. Recall that l ∈ fl(N) if and only if N ≡ N ′ ‖ l :: nil.

Definition 6.3.3

1. A K net M is a partial reduct of a µK net N whenever N ≡ l1 ::

in(T)@l2.P ‖ l2 :: 〈t〉 and 〈|N|〉
τ
=⇒ M

τ
=⇒&cK 〈|N|〉.

2. A K net M is a partial state of a µK net N whenever N ≡ (ν l̃)(N1 ‖

· · · ‖ Nn ‖ N̄), M ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖ 〈|N̄|〉) and for all i it holds that
fl(Ni) ⊆ fl(N̄) and that Mi is a partial reduct of Ni.

A pleasant property of partial reducts (that turns out to be crucial for the proof of
Theorem 6.3.7) now follows.

Lemma 6.3.4 If M is a partial reduct of N ≡ l1 :: in(T)@l2.P ‖ l2 :: 〈t〉 and

M
τ
−→ M′, then either M′ is a partial reduct of N, or M′ &cK 〈|N|〉, or M′ &cK l1 ::

〈|Pσ|〉 ‖ l2 :: nil, where σ = match(T, t).

Proof: By Definition 6.3.3.1 and by inspection on the possible reductions.

Lemma 6.3.5 (Reflection of Execution Steps) If N is a polyadic net and

〈|N|〉
τ
−→ M then either N

τ
−→ N′ and M &cK 〈|N′|〉, or M is a partial state of N.

Proof: The proof is by induction on the length of the inference for 〈|N|〉
τ
−→ M

having τ as label. There are three base cases:

(LTS-S). In this case it holds that 〈|N|〉 , 〈|N1|〉 ‖ 〈|N2|〉
τ
−→ M. Then, by def-

inition, 〈|N1|〉
. l
−→ M1, 〈|N2|〉

nil @ l
−−−−−→ M2 and M , M1 ‖ M2. By Proposi-

tion 6.3.1.3, we know that N1
. l
−→ N′1 and M1 &cK 〈|N′1|〉. Thus, N

τ
−→ N′1 ‖

N2 , N′ and M &cK 〈|N′|〉.

(LTS-C). In this case it holds that 〈|N|〉 , 〈|N1|〉 ‖ 〈|N2|〉
τ
−→ M1 ‖ M2 , M

because 〈|N1|〉
l′ / l
−−−→ M1 and 〈|N2|〉

〈l′〉 @ l
−−−−−→ M2. This case is not possible, since

no encoding of a net can directly offer a non-restricted datum.

(LTS-N). This case trivially falls in the first possibility of this Lemma.

For the inductive case, we reason on the last rule used in the inference.

(LTS-P). In this case it holds that 〈|N|〉 , 〈|N1|〉 ‖ 〈|N2|〉
τ
−→ M′ ‖ 〈|N2|〉 , M be-

cause 〈|N1|〉
τ
−→ M′. By induction, either N1

τ
−→ N′1 and M′ &cK 〈|N′1|〉, or M′ is

a partial state of N1. In the first case, we have that N
τ
−→ N′1 ‖ N2 , N′ and

M &cK 〈|N′|〉. In the second case, M is a partial state of N, by definition.

(LTS-R). We now identify two possible sub-cases:

6.3. µKLAIM VS CKLAIM 155

• 〈|N|〉 , 〈|(νl)N1 |〉 , (νl)〈|N1|〉
τ
−→ (νl)M1 , M because 〈|N1|〉

τ
−→ M1. This

case easily follows by induction.

• 〈|N|〉 , (νl)M1
τ
−→ (νl)M2 , M because M1

τ
−→ M2 but M1 is not the

encoding of any polyadic net. In this case, locality l is fresh for N and
has been introduced by the encoding. It is then easy to see that l is the
reference for a datum located in a node of N, i.e. M1 , l1 :: 〈l〉 ‖ l ::
Rl(t), and N , l1 :: 〈t〉. But then no τ-step can be performed by M1

(LTS-S). In this case we have that 〈|N|〉 ≡ M1
τ
−→ M2 ≡ M. Let AN ,

bn(〈|N|〉) − n(N) be the (restricted) names introduced by the encoding; we
then proceed by induction on k, the number of names in AN touched by rules
(S-RC) and (S-E) in deriving 〈|N|〉 ≡ M1. We shall refer to this lat-
ter induction as the internal induction, while the induction on the number of
rules used to infer

τ
−→ will be called the external one.

Base. If k = 0, then we can claim that M1 , 〈|N′′|〉 for some N′′ ≡ N (this
can be proved by an easy induction on the length of 〈|N|〉 ≡ M1). The
thesis holds by using this fact and a straightforward external induction.

Induction. Let l ∈ AN . Then 〈|N|〉 , C[(νl)(l′ :: 〈l〉 ‖ l :: Rl(t))] for some t
and l′. By using Lemma 5.2.6 and a simple analysis over the definition
of the involved processes, it can only be one of the following cases:

• C[0]
τ
−→ C′[0] and M ≡ C′[(νl)(l′ :: 〈l〉 ‖ l :: Rl(t))]. But then

〈|N|〉 , C[(νl)(l′ :: 〈l〉 ‖ l :: Rl(t))]
τ
−→ M can be inferred without

touching l with rules (S-RC) and (S-E) Hence, by inter-
nal induction, we can conclude.

• C[·] , C1[C2[·] ‖ H] where H
. l′
−−→ H′, l′ < bn(C2[·]) and

M ≡ C1[(ν̃l)(C2[l′ :: 〈l〉 ‖ l :: Rl(t)] ‖ H′)]. Like in the previ-

ous case, 〈|N|〉 , C[(νl)(l′ :: 〈l〉 ‖ l :: Rl(t))]
τ
−→ M can be inferred

without touching l with rules (S-RC) and (S-E) Hence,
by internal induction, we can conclude.

• C[·] , C1[C2[·] ‖ H] where H
l / l′
−−−→ H′ and M ≡ C1[C2[(νl)(l′ ::

nil ‖ l :: Rl(t)] ‖ H′)]. By Proposition 6.3.1.4, H , E[l′′ ::
rec X.in(!x)@l′.Q0

l′,x,X(T ; P)], for some E[·], l′′, T and P, where
context E[·] does not bind l and l′; moreover, H′ ≡ E[l′′ :: P′],
where P′ , Q0

l′,l,X(T ; P)[rec X.in(!x)@l′.Q0
l′ ,x,X(T ; P)/X]. Thus,

M ≡ C1[C2[(νl)(l′ :: nil ‖ l :: Rl(t))]
‖ l′′ :: P′ ‖ l′ :: nil ‖ E[l′′ :: nil]]

Now, we have that

N ≡ D[(l′ :: 〈t〉 ‖ l′′ :: in(T)@l′.P) ‖ l′ :: nil ‖ F[l′′ :: nil]]
for E[·] , 〈|F[·]|〉 and C1[C2[·]] , 〈|D|〉[·]. By definition, we have
that M is a partial state of N.

156 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

We then need a Lemma that relates the behaviour (both the barbs and the re-
ductions) of a partial state M of N to the behaviour of the encoding of N.

Lemma 6.3.6 Let M be a partial state of N.

1. If N ↓ l then M ⇓ l; moreover, if N
τ
−→ N′ then M =⇒ 〈|N′|〉.

2. If M ↓ l then N ↓ l.

3. If M
τ
−→ M′, then N

τ̂
−→ N′ for some N′ such that M′ &tr

cK M′′, where M′′ is a
partial state of N′.

Proof:

1. By exploiting Proposition 6.3.1.3 and Lemma 6.3.2 respectively, this case is
simple, once noticed that M =⇒&cK 〈|N|〉 (by definition of partial states).

2. By definition, N ≡ (ν̃l)(N1 ‖ · · · ‖ Nn ‖ N̄) and M ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖

〈|N̄|〉), where Mi is a partial reduct of Ni. By construction, we know that Mi

can only host data on restricted locations; thus, Mi 6↓ l. This implies that
〈|N̄|〉 ↓ l and l < l̃; because of Proposition 6.3.1.2, N̄ ↓ l and hence N ↓ l.

3. We know that N ≡ (ν̃l)(N1 ‖ · · · ‖ Nn ‖ N̄), M ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖ 〈|N̄|〉),
and for all i = 1, . . . , n it holds that fl(Ni) ⊆ fl(N̄) and that Mi is a partial
reduct of Ni. The crucial observation is that there are only two possible
cases:

Mi
τ
−→ M′i and M′ ≡ (ν̃l)(M1 ‖ · · · ‖ Mi−1 ‖ M′i ‖ Mi+1 ‖ · · · ‖ Mn ‖ 〈|N̄|〉).

By Lemma 6.3.4 we have three possible sub-cases:

(a) M′i is a partial reduct of Ni: in this case, M′ is still a partial state
of N. By construction, (N,M′) ∈ <.

(b) M′i &cK 〈|Ni|〉: by contextuality of .cK , it holds that

M′ &cK (ν̃l)(M1 ‖ · · · ‖ Mi−1 ‖ Mi+1 ‖ · · · ‖ Mn ‖ 〈|Ni ‖ N̄|〉) , M′′.
Now, M′′ is a partial state of N and, hence, (N,M ′) ∈ < up-to
.µK .

(c) Ni ≡ l1 :: in(T)@l2.P ‖ l2 :: 〈t〉 and M′i &cK l1 :: 〈|Pσ|〉 ‖ l2 ::
nil , N′, where σ = match(T, t): in this case, we can consider
Ni

τ
−→ l1 :: Pσ ‖ l2 :: nil , N′i and have that M′i &cK 〈|N′|〉.

Thus, N
τ
−→ (ν̃l)(N1 ‖ Ni−1 ‖ Ni+1 ‖ · · · ‖ Nn ‖ N′i ‖ N̄) and

M′ &cK (ν̃l)(M1 ‖ · · · ‖ Mi−1 ‖ Mi+1 ‖ · · · ‖ Mn ‖ 〈|N′i ‖ N̄ |〉) , M′′.
Since M′′ is a partial state for N′, we have that (N′,M′) ∈ < up-to
.µK .

〈|N̄|〉
τ
−→ M̄ and M′ ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖ M̄).
By Lemma 6.3.5, we have two possible sub-cases:

6.3. µKLAIM VS CKLAIM 157

(a) N̄
τ
−→ N̄′ and M̄ &cK N̄′: in this case, N

τ
−→ (ν̃l)(N1 ‖ · · · ‖ Nn ‖

N̄′) , N′ and M′ &cK (ν̃l)(M1 ‖ · · · ‖ Mn ‖ 〈|N̄′|〉); thus, (N′,M′) ∈
< up-to .µK .

(b) M̄ is a partial state of N̄: by definition, we have that N̄ ≡ (ν̃l′)(H1 ‖

· · · ‖ Hh ‖ H̄), M̄ ≡ (ν̃l′)(K1 ‖ · · · ‖ Kh ‖ 〈|H̄|〉), and for all
j = 1, . . . , h it holds that fl(H j) ⊆ fl(H̄) and that K j is a partial
reduct of H j. Thus, N ≡ (ν̃l, l′)(N1 ‖ · · · ‖ Nn ‖ H1 ‖ · · · ‖ Hh ‖

H̄) and M′ ≡ (ν̃l, l′)(M1 ‖ · · · ‖ Mn ‖ K1 ‖ · · · ‖ Kh ‖ 〈|H̄|〉),
where Mi is a partial reduct of Ni and K j is a partial reduct of
H j. Moreover, we also have that fl(H j) ⊆ fl(H̄) (by definition) and
that fl(Ni) ⊆ fl(H̄) (this easily follows from fl(Ni) ⊆ fl(N̄) and by
definition of N̄). Thus, M′ is a partial state of N; this suffices to
conclude (N,M′) ∈ <.

To conclude this section, we can formulate a restricted full abstraction result,
by following [13]. In particular, we shall consider for full abstraction the translated
barbed congruence.

Theorem 6.3.7 (Full Abstraction w.r.t. Translated Barbed Congruence)
N �µK M if and only if 〈|N|〉 �tr

cK 〈|M|〉.

Proof: For the ‘if’ direction, it suffices to prove that relation< defined as follows

< , <1 ∪ <2 ∪ <3

<1 , {(N,M) : 〈|N|〉 �cK 〈|M|〉}
<2 , {(N,M) : ∃M̄. 〈|N|〉 �cK M̄ ∧ M̄ partial state of M}
<3 , {(N,M) : ∃N̄. N̄ �cK 〈|M|〉 ∧ N̄ partial state of N}

is barb preserving, reduction closed (up-to .tr
cK) and closed under translated con-

texts (again, up-to .tr
cK). Notice that<1 is symmetric, while<2 and<3 are mutu-

ally symmetric; thus, < is symmetric. We pick up (N,M) ∈ < and reason by case
analysis on whether (N,M) ∈ <1, (N,M) ∈ <2 or (N,M) ∈ <3.

1. Let N ↓ l (the case for M ↓ l is similar). By definition and Proposi-
tion 6.3.1.2, we have that 〈|N|〉 ↓ l that implies 〈|M|〉 ⇓ l, i.e. 〈|M|〉 7−→∗ M′ ↓ l.
According to Lemma 6.3.5, we have two possibilities:

(a) M 7−→∗ M′′ and M′ &tr
cK 〈|M

′′|〉. In this case, by definition of &tr
cK , we

have that 〈|M′′|〉 ↓ l and hence M ⇓ l.

(b) M′ is a partial reduct of M. By Lemma 6.3.6.2, M ↓ l.

Now, let N 7−→ N′; then, 〈|N|〉 7−→∗ N̄ &tr
cK 〈|N

′|〉. By definition of reduction
closure, 〈|M|〉 7−→∗ M̄ and N̄ �

tr
cK M̄. According to Lemma 6.3.5, we have

two possibilities:

158 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

(a) M 7−→∗ M′ and M̄ &tr
cK 〈|M

′|〉. In this case is simple: because of Propo-
sition 6.1.2 and by transitivity, we can obtain 〈|N ′|〉 �trcK 〈|M′|〉 and,
hence, (N′,M′) ∈ <1.

(b) M′ is a partial reduct of M. By construction, (N ′,M) ∈ <2 (notice that,
if the starting move was from M instead of being from N, the inclusion
would have been in<3).

We are left with context closure; this case is simple because, if we take
any µK context C[·], by definition of<1 and because 〈|C|〉[〈|·|〉] = 〈|C[·]|〉,
we have that (C[N],C[M]) ∈ <1.

2. Let (N,M) ∈ <2; by definition, there exists a partial reduct of M, M̄, such
that 〈|N|〉 �cK M̄. Let us start with N ↓ l; hence, M̄ ⇓ l, i.e. M̄ 7−→∗ M̄′ ↓ l.
Now, by using Lemma 6.3.6.3, we have that M 7−→∗ M′ for some M′ such
that M̄′ &tr

cK M̄′′, where M̄′′ is a partial state of M′. By definition of .tr
cK , we

have M̄′′ ↓ l and, by Lemma 6.3.6.2, M′ ↓ l; this suffices to conclude M ⇓ l.

Now, let N 7−→ N′; then, by Lemma 6.3.2, 〈|N|〉 7−→∗ N̄ &tr
cK 〈|N

′|〉. By
reduction closure, M̄ 7−→∗ M̄′ and N̄ �

tr
cK M̄′, that implies 〈|N′|〉 �trcK M̄′.

By Lemma 6.3.6.3, M 7−→∗ M′ and M̄′ is an expansion of a partial state
of M′, say M̄′′. By Proposition 6.1.2 and transitivity, 〈|N ′|〉 �trcK M̄′′; this
suffices to conclude that (N ′,M′) ∈ <2.

We are left with dealing with context closure; by definition, we have that
〈|C|〉[M̄] �trcK 〈|C[N]|〉. If we prove that 〈|C|〉[M̄] is a partial state of C[M],
we can conclude the desired (C[N],C[M]) ∈ <2. Since M̄ is a partial state
of M, we have that M ≡ (ν̃l)(M1 ‖ · · · ‖ Mn ‖ M̂), M̄ ≡ (ν̃l)(M̄1 ‖ · · · ‖

M̄n ‖ 〈|M̂|〉), and for all i = 1, . . . , n it holds that fl(Mi) ⊆ fl(M̂) and that M̄i is
a partial reduct of Mi. Let l̃′ = bn(〈|C|〉[·]) ∩ fn(M̄1, . . . , M̄n) = bn(C[·]) ∩
fn(M1, . . . ,Mn); then, C[·] ≡ (ν̃l′)D[·] and 〈|C|〉[·] ≡ (ν̃l′)〈|D|〉[·]. Thus,
C[M] ≡ (ν̃l′)(M1 ‖ · · · ‖ Mn ‖ D[M̂]) and 〈|C|〉[M̄] ≡ (ν̃l′)(M̄1 ‖ · · · ‖ M̄n ‖

〈|D|〉[M̄]); clearly, 〈|C|〉[M̄] is a partial state of C[M].

3. Finally, let (N,M) ∈ <3; by definition, there exists a partial reduct of N, N̄,
such that 〈|M|〉 �cK N̄. Let us start with barb preservation and let N ↓ l; by
Lemma 6.3.6.1, N̄ ⇓ l, i.e. N̄ 7−→∗ N̄′ ↓ l. Now, 〈|M|〉 ⇓ l that, like in case 1.
above, implies M ⇓ l, as required.

Now, let N 7−→ N′; then, Lemma 6.3.6.1, N̄ 7−→∗ N̄′ &tr
cK 〈|N

′|〉. By
reduction closure, 〈|M|〉 7−→∗ M̄ and N̄′ �trcK M̄, that implies 〈|N′|〉 �trcK M̄.
By Lemma 6.3.5, we have two possibilities:

(a) M 7−→∗ M′ and M̄ &tr
cK 〈|M

′|〉. By Proposition 6.1.2 and transitivity, we
can conclude that (N′,M′) ∈ <1.

(b) M 7−→∗ M′ and M̄ is a partial state of M′. By construction, (N′,M′) ∈
<2.

Context closure is proved like in case 2. above.

6.4. CKLAIM VS LCKLAIM 159

Encoding Nets:

{[0]} , 0 {[(νl)N]} , (νl){[N]}

{[N1 ‖ N2]} , {[N1]} ‖ {[N2]} {[l :: C]} , l :: {[C]}l

Encoding Components:

{[〈l′〉]}u , 〈l′〉 {[C1 | C2]}u , {[C1]}u | {[C2]}u

{[nil]}u , nil {[X]}u , X

{[eval(Q)@u′.P]}u , eval({[Q]}u′)@u′.{[P]}u {[rec X.P]}u , rec X.{[P]}u

{[out(u2)@u1.P]}u , eval(out(u2))@u1.{[P]}u {[new(l).P]}u , new(l).{[P]}u

{[in(T)@u′.P]}u , eval(in(T).eval({[P]}u)@u)@u′

Table 6.4: Encoding K in K

We are left with the ‘only if’ direction; this can be done similarly to the ‘if’
direction. We leave the details to the reader.

6.4 K vs K

The encoding of K into K is given in Table 6.4. The only relevant
cases are those for the translation of actions in and out of K. In the first case,
a remote action out is replaced with a migration to the target locality and a local
action. In the second case, a remote action in is replaced with a migration to the
target locality, a local in and a migration back to the original node. The subscript u
in {[·]}u is needed to keep track of the original node where the result of the (remote)
action will be sent back.

To the best of our knowledge, this is the first result clearly showing that remote
(input and output) operations do not add expressiveness to a distributed language
with code mobility. Having remote operations simplifies programming. Having
only migrations allows for finer dynamic checks against incoming agents (see, e.g.,
[129] or the theory presented in Chapters 3 and 4).

In order to carry on the proofs, we introduce an auxiliary notion. We define
a function between K nets, nrmL(·), called the normalisation w.r.t. a set of
localities L, as follows

nrmL(N1 ‖ N2) , nrmL(N1) ‖ nrmL(N2)

nrmL((νl)N) , nrmL∪{l}(N)

nrmL(l :: C1 | C2) , nrmL(l :: C1) ‖ nrmL(l :: C2)

nrmL(l :: 〈·〉) , l :: 〈·〉

160 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

nrmL(l :: P) ,

l :: P′ ‖ l′ :: Q if P = a.P′ and a = eval(Q)@l′ and l′ ∈ L
and Q = in(T).eval({[P]}l)@l

l :: P if P , |

Essentially, the normalisation of an encoding replaces all the encodings of actions
in occurring at top level (i.e., as the first action of a process) with the net resulting
from the execution of their first actions (i.e., the migration over the locality target
of the in), provided that this execution is possible (i.e., the target locality of the
input exists in the net).

Now, it is easy to prove the following Proposition. For the sake of readability,
we write nrmL({[N]}) as {{[N]}}L and {{[N]}}fl(N) as {{[N]}}.

Proposition 6.4.1 Let N be a K net and M be a K net. Then

1. fl(M) = fl({{[M]}}L), whenever L ⊆ fl(M)

2. M &lcK nrmL(M), whenever L ⊆ fl(M)

3. {{[N]}}L ‖ l :: nil &lcK {{[N]}}L∪{l} ‖ l :: nil

4. {[N]} &lcK {{[N]}}

Lemma 6.4.2 Let N be a K net and fl(N) ⊆ L. Then

1. if N
(ν̃l) I @ l
−−−−−−→ N′ then {{[N]}}L

(ν̃l) I @ l
========⇒ {{[N′]}}L∪{̃l}

2. if N
. l
−→ N′ then {{[N]}}L

. l
===⇒ {{[N′]}}L

3. if N
l2 / l1
−−−−→ N′ then either {{[N]}}L

l2 / l1
======⇒ {{[N′]}}L, or {{[N]}}L ≡ C[l ::

eval(in(T).eval({[P]}l)@l)@l1] where match(T, l2) = σ, l1 < L, {l1, l2} ∩
bn(C[·]) = ∅ and {{[N′]}}L ≡ nrmL(C[l :: {[Pσ]}l])

4. if {{[N]}}L
(ν̃l) I @ l
−−−−−−→ N′, then N

(ν̃l) I @ l
−−−−−−→ N′′ and N′ &lcK {{[N′′]}}L∪{̃l}

5. if {{[N]}}L
l2 / l1
−−−−→ N′, then N

l2 / l1
−−−−→ N′′ and N′ &lcK {{[N′′]}}L

6. if {{[N]}}L
. l
−→ N′ then

(a) either N
. l
−→ N′′ and N′ &lcK {{[N′′]}}L

(b) or N ≡ C[l′ :: in(T)@l.Q] for l < bn(C[·]) ∪ L and N ′ ≡
{{[C[l′ :: nil ‖ l :: in(T).eval({[P]}l)@l]]}}L

Proof: All the statements are proved by induction over the length of the inference
used to derive the transition; the proof is standard.

6.4. CKLAIM VS LCKLAIM 161

Lemma 6.4.3 (Operational Correspondence) Let N be a K net. Then

1. if N
τ
−→ N′, then {{[N]}} =⇒&lcK {{[N′]}}

2. if {{[N]}}
τ
−→ N′, then N

τ
−→ N′′ and N′ &lcK {{[N′′]}}

Proof: Both the claims are proved by induction on the inference length. The
inductive steps are easy: they rely on the fact that .lcK is a pre-congruence and on
the observation that N ≡ M implies {{[N]}} ≡ {{[M]}}. Thus, we only present the base
cases for both the claims.

In the first claim, the τ-step can be inferred by using rules (LTS-N),
(LTS-S) or (LTS-C). The first case is simple; hence, let us consider the
other two.

(LTS-S): in this case, N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′, where N1

. l
−→ N′1 and

N2
nil @ l
−−−−−→ N′2. The key observation is that fl(Ni) ⊆ fl(N) = fl(N′1 ‖ N′2) =

fl(N′); let us call L the set fl(N). By Lemma 6.4.2.1 and .2, we have that

{{[N2]}}L
nil @ l
=======⇒ {{[N′2]}}L and {{[N1]}}L

. l
−→ {{[N′1]}}L. Thus, {{[N]}} =⇒ {{[N′1 ‖ N′2]}} ,

{{[N′]}}.

(LTS-C): in this case, N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′, where N1

l2 / l1
−−−−→ N′1

and N2
〈l2〉 @ l1
−−−−−−→ N′2. Again, we have that fl(Ni) ⊆ fl(N) = fl(N′); let us call

L the set fl(N). By Lemma 6.4.2.1 we have that {{[N2]}}L
〈l2〉 @ l1
========⇒ {{[N′2]}}L.

Moreover, according to Lemma 6.4.2.3, we have two cases. The case

for {{[N1]}}L
l2 / l1
======⇒ {{[N′1]}}L is simple. The case when {{[N1]}}L ≡ C[l ::

eval(in(T).eval({[P]}l)@l)@l1] cannot occur. Otherwise, we would have that
l1 < L; but this cannot be the case since, by Proposition 5.2.3.2, we know
that N2 ≡ N′2 ‖ l1 :: 〈l2〉. Hence l1 ∈ fl(N2) ⊆ fl(N) , L.

The second claim is similar. We reason by case analysis on the possible base
cases. The case for rule (LTS-N) is simple and we only inspect the other two
ones. In what follows, we let L to be fl(N).

(LTS-S): in this case, {{[N]}} , M1 ‖ M2
τ
−→ N′1 ‖ N′2 , N′, where M1 ,

{{[N1]}}L
. l
−→ N′1 and M2 , {{[N2]}}L

nil @ l
−−−−−→ N′2. By Lemma 6.4.2.1 we have that

N2
nil @ l
−−−−−→ N′′2 and N′2 &lcK {{[N′′2]}}L. We now identify two possible sub-cases:

(a) C = {[P]}l. Then, by Lemma 6.4.2.6(a) we have that N1
. l
−→ N′′1 and

N′1 &lcK {{[N′′1]}}L. Thus, N , N1 ‖ N2
τ
−→ N′1 ‖ N′2 , N′′ and

N′ &lcK {{[N′′1 ‖ N′′2]}} , {{[N′′]}}.

(b) C , in(T).eval({[Q]}l′)@l′. By Lemma 6.4.2.6(b) we know that N1 ≡

C[l′ :: in(T)@l.Q], with l < bn(C[·]) ∩ L. This case cannot occur
because, by By Proposition 5.2.3.1, we know that N2 ≡ N′2 ‖ l :: nil;
hence, l ∈ L.

162 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

(LTS-C): in this case, {{[N]}} , M1 ‖ M2
τ
−→ N′1 ‖ N′2 , N′, where M1 ,

{{[N1]}}L
l2 / l1
−−−−→ N′1 and M2 , {{[N2]}}L

〈l2〉 @ l1
−−−−−−→ N′2. By Lemma 6.4.2.4 we have

that N2
〈l2〉 @ l1
−−−−−−→ N′′2 and N′2 &lcK {{[N′′2]}}L; by Lemma 6.4.2.5 we have that

N1
l2 / l1
−−−−→ N′′1 and N′1 &lcK {{[N′′1]}}L. Thus, N , N1 ‖ N2

τ
−→ N′′1 ‖ N′′2 , N′′

and N′ &lcK {{[N′′1]}}L ‖ {{[N′′2]}}L , {{[N′′]}}.

Theorem 6.4.4 Let N be a K net. Then, N �cK {{[N]}}.

Proof: By Lemma 6.1.5.1, it suffices to prove that

< , {(C[N],C[{{[N]}}]) : N is a K net and C[·] is a K context}

is barb preserving, reduction closed (up-to .cK) and context closed. Clearly, we
consider here the restriction of �µK and .µK to K nets; all the proofs devel-
oped for µK can be faithfully rephrased to deal with the sub-relations contain-
ing only K nets.

Barb preservation and context closure are simple. Let us consider C[N] 7−→ N̄.
According to Lemma 5.2.6, we have six possible sub-cases:

1. N 7−→ N′ and N̄ ≡ C[N′]. Because of Lemma 6.4.3.1, we know that
{{[N]}} =⇒ &cK {{[N′]}}; thus, we can conclude up-to .cK .

2. C[·] 7−→ C′ [·] and N̄ ≡ C′[N]. This case is trivial.

3. N
. l
−→ N′, C[·] ≡ C[· ‖ l :: nil] and N̄ ≡ C[N′]. Because of Lemma 6.4.2.2,

we know that {{[N]}}
. l
===⇒ &cK {{[N′]}} and we can easily conclude.

4. N
nil @ l
−−−−−→ N′, C[·] ≡ C′ [· ‖ H], H

. l
−→ H′ and N̄ ≡ C′[N′ ‖ L′]. This case

relies on Lemma 6.4.2.1 and is simple.

5. N
l′ / l
−−−→ N′, C[·] ≡ C′[· ‖ l :: 〈l′〉] and N̄ ≡ C′[N′]. The proof relies

on Lemma 6.4.2.3 to show that C[{{[N]}}] =⇒ C′[{{[N′]}}]; now it is easy to
conclude.

6. N
(ν̃l) 〈l′〉 @ l
−−−−−−−−→ N′, C[·] ≡ C′[· ‖ H], H

l′ / l
−−−→ H′ and N̄ ≡ C′[(ν̃l)(N′ ‖ H′)].

This case relies on Lemma 6.4.2.1 and is simple.

To conclude, let us consider C[{{[N]}}] 7−→ N̄. According to Lemma 5.2.6, we
still have six possible sub-cases:

1. {{[N]}} 7−→ N′ and N̄ ≡ C[N′]. Because of Lemma 6.4.3.3, we know that
N 7−→ N′′ and N′ &lcK {{[N]}}; this suffices to conclude up-to .cK (indeed, by
considering both N′ and {{[N]}} as K nets, we have that N ′ &cK {{[N]}}).

6.5. A COMPARISON WITH THE πA-CALCULUS 163

2. C[·] 7−→ C′ [·] and N̄ ≡ C′[{{[N]}}]. This case is trivial.

3. {{[N]}}
. l
−→ N′, C[·] ≡ C[· ‖ l :: nil] and N̄ ≡ C[N′]. Because of

Lemma 6.4.2.6, we have two possible sub-cases:

(a) N
. l
−→ N′′ and N′ &cK {{[N′′]}}. In this case it is easily to conclude.

(b) N ≡ D[l′ :: in(T)@l.P], for l < bn(D[·]) ∪ fn(N), and
N′ ≡ {{[D]}}[l′ :: nil ‖ l :: in(T).eval({[P]}l′)@l′]. Now,
C[{{[N]}}] 7−→ C[{{[D]}}[l′ :: nil ‖ l :: in(T).eval({[P]}l′)@l′]] ,
N̄ &cK C[{{[D[l′ :: nil ‖ l :: in(T).eval({[P]}l′)@l′]]}}] ,

C[{{[N ‖ l :: nil]}}] (the last inequality holds by Proposition 6.4.1.3).
Now, since C[N] ≡ C[N ‖ l :: nil], we have that (C[N], N̄) ∈ < up-to
.cK , as required.

4. {{[N]}}
nil @ l
−−−−−→ N′, C[·] ≡ C′ [· ‖ H], H

. l
−→ H′ and N̄ ≡ C′ [N′ ‖ L′]. This case

relies on Lemma 6.4.2.4 and is simple.

5. {{[N]}}
l′ / l
−−−→ N′, C[·] ≡ C′[· ‖ l :: 〈l′〉] and N̄ ≡ C′[N′]. The proof relies on

Lemma 6.4.2.5 and is simple.

6. {{[N]}}
(ν̃l) 〈l′〉 @ l
−−−−−−−−→ N′, C[·] ≡ C′[· ‖ H], H

l′ / l
−−−→ H′ and N̄ ≡ C′[(ν̃l)(N′ ‖ H′)].

This case relies on Lemma 6.4.2.4 and is simple.

Corollary 6.4.5 (Semantical Equivalence w.r.t. �cK) Let N be a K net.
Then, N �cK {[N]}.

Proof: By Propositions 6.4.1.4 and 6.1.2, Theorem 6.4.4 and by transitivity of
�cK .

6.5 A Comparison with the πa-calculus

Finally, we want to assess the overall expressive power of our K-based lan-
guages by comparing (some of) them with a proper variant of the π-calculus. The
variant we choose is the asynchronous π-calculus taken from [19] plus the name
matching construct; we call the resulting formalism πa-calculus. Its syntax is

p ::= 0
∣∣∣ āb

∣∣∣ a(b).p
∣∣∣ p1|p2

∣∣∣ (νa)p
∣∣∣ [a = b]p

∣∣∣ !p

We want to remark that we consider here only the monadic version of the calculus;
using a polyadic πa-calculus does not change the results that we shall prove in
this section at all; we would have just used µK in place of K for the
comparison.

The operational semantics of the calculus is given in Table 6.5, by following
[5]. On top of this LTS, barbed equivalence is defined as follows (see also [5]).

164 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

āb
āb
−→ 0 a(b).p

ac
−→ p[c/b]

p
µ
−→ p′

[a = a]p
µ
−→ p′

p
µ
−→ p′

!p
µ
−→ !p | p′

p
µ
−→ p′ b < fn(µ)

(νb)p
µ
−→ (νb)p′

p
āb
−→ p′ a , b

(νb)p
ā(b)
−→ p′

p =α p′
µ
−→ q′ =α q

p
µ
−→ q

p
āb
−→ p′ q

ab
−→ q′

p | q
τ
−→ p′ | q′

(∗)

p
ā(b)
−→ p′ q

ab
−→ q′ b < fn(q)

p | q
τ
−→ (νb)(p′ | q′)

(∗)
p
µ
−→ p′ bn(µ) ∩ fn(q) = ∅

p | q
µ
−→ p′ | q

(∗)

and the obvious symmetric versions of the rules marked with (∗)

Table 6.5: A LTS for the πa-calculus

Definition 6.5.1 (Asynchronous Barbed Equivalence) Asynchronous barbed
equivalence, �πa , is the largest symmetric relation between πa-calculus processes
such that p �πa q implies that

1. whenever p ↓ ā, it holds that q ⇓ ā,

where p ↓ ā , (∃b . p
āb
−→ ∨ p

ā(b)
−→) and p ⇓ ā , (p =⇒↓ ā)

2. whenever p
τ
−→ p′, it holds that q =⇒ q′ and p′ �πa q′

3. for all names ñ and for all πa-calculus process r, it holds that (ν̃n)p �πa

(ν̃n)q and p|r �πa q|r.

6.5.1 Encoding the πa-calculus in K

We now provide an encoding of the πa-calculus in K; it is given in Table 6.6.
Like in the previous section, we need a normalisation function between K
nets that makes the encoding prompt. It is defined as follows:

nrmL((νl)N) , nrmL∪{l}(N)

nrmL(N1 ‖ N2) , nrmL(N1) ‖ nrmL(N2)

nrmL(l :: 〈·〉) , l :: 〈·〉

nrmL(l :: C1 | C2) , nrmL(l :: C1) ‖ nrmL(l :: C2)

nrmL(l :: P) ,

l :: P′ ‖ l′ :: 〈l′′〉 if P = out(l′′)@l′.P′ and l′ ∈ L
(νl′) (nrmL∪{l′ }(l :: P′)) if P = new(l′).P′

l :: P if P , | and no previous case holds

6.5. A COMPARISON WITH THE πA-CALCULUS 165

Top-level Encoding:

[[p]]L , proc :: [[p]] ‖ Π
n∈L

n :: nil if fn(p) ⊆ L

and proc is a reserved name

Encoding πa-calculus processes:

[[0]] , nil [[(νa)p]] , new(a).[[p]]

[[āb]] , out(b)@a.nil [[a(b).p]] , in(!b)@a.[[p]]

[[p1|p2]] , [[p1]] | [[p2]] [[!p]] , rec X.([[p]] | X)

[[[a = b]p]] , new(l).out(a)@l.in(b)@l.[[p]]

Table 6.6: Encoding πa-calculus in K

Essentially, the normalisation replaces all actions new with the net resulting from
the creation of the new nodes and all actions out over existing localities with the
net containing the datum produced by the action. When a net is the encoding of
a πa-calculus process, the continuation of each action out is nil and function nrm
does not need to be iterated on it.

For the sake of readability, we write nrmL([[p]]L) as [[[p]]]L. Some simple but
crucial properties of nrmL(·) are given in the following proposition, whose proof is
simple.

Proposition 6.5.2 Let P be a K process and p be a πa-calculus process. Then

1. if l , l′ then nrmL((νl′)(l :: P)) = nrmL(l :: new(l′).P)

2. [[[p]]]L ‖ l :: nil &cK [[[p]]]L∪{l}

3. [[p]]L &lcK [[[p]]]L

We now prove a tight correspondence between πa-calculus processes and their
encodings. We start with a correspondence between the labelled semantics of the
two calculi and then give their operational correspondence.

Lemma 6.5.3 Let p be a πa-calculus process and fn(p) ⊆ L. Then

1. if p
āb
−→ p′ then [[[p]]]L

〈b〉 @ a
=======⇒ [[[p′]]]L

2. if p
ā(b)
−→ p′ then [[[p]]]L

(νb) 〈b〉 @ a
==========⇒ [[[p′]]]L∪{b}

3. if p
ab
−→ p′ then [[[p]]]L

b / a
=====⇒ N and [[[p′]]]L∪{b} ≡ N ‖ b :: nil

4. if [[[p]]]L
〈b〉 @ a
−−−−−→ N then p

āb
−→ p′ and N ≡ [[[p′]]]L

5. if [[[p]]]L
(νb) 〈b〉 @ a
−−−−−−−−→ N then p

ā(b)
−→ p′ and [[[p′]]]L∪{b} ≡ N ‖ b :: nil

6. if [[[p]]]L
b / a
−−−→ N then p

ab
−→ p′ and [[[p′]]]L∪{b} .cK N ‖ b :: nil

166 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

Proof: By induction on the length of the inferences.

Lemma 6.5.4 (Operational Correspondence) Let p be a πa-calculus process and
fn(p) ⊆ L. Then

1. p
τ
−→ p′ implies that [[[p]]]L =⇒ [[[p′]]]L

2. [[[p]]]L
τ
−→ N implies that p

τ
−→ p′ and N &cK [[[p′]]]L

Proof: Both the claims are proved by induction on the inference occurring in
the premise. The first statement is quite simple. We give the base cases for the
second statement. We want to remark that, thanks to the normalisation procedure,
the only possible base case is when using rule (LTS-C). Thus, [[[p]]]L , N1 ‖

N2
τ
−→ N′1 ‖ N′2 , N, because N1

b / a
−−−→ N′1 and N2

〈b〉 @ a
−−−−−→ N′2. By definition, it must

be that Ni , [[[pi]]]L, for i = 1, 2; moreover, {a, b} ⊆ fn(N2) ⊆ L. By Lemma 6.5.3.6

and .4, we have that p1
ab
−→ p′1 and [[[p′1]]]L .cK N′1 ‖ b :: nil, and p2

āb
−→ p′2 and

N′2 ≡ [[[p′2]]]L. Thus, p , p1|p2
τ
−→ p′1|p

′
2 , p′. Moreover, N ≡ N′1 ‖ b :: nil ‖

N′2 &cK [[[p′1]]]L ‖ [[[p′2]]]L , [[[p′]]]L, as required.

We now prove that full abstraction can be obtained when considering only the
following subset of K contexts, called translated:

C[·] ::= [·]
∣∣∣ C[·] ‖ [[p]]L

∣∣∣ (νl)C[·]

Basically, we only permit parallel components resulting from the encoding of πa-
calculus processes. This ensures that each free name occurring in any parallel
component is also the address of a node in the component itself; this is crucial to
prove full abstraction.

Theorem 6.5.5 Let fn(p, q) ⊆ L. Then p �πa q if and only if [[[p]]]L �
tr
cK [[[q]]]L.

Proof: We start with proving that [[[p]]]L �
tr
cK [[[q]]]L implies p �πa q. Let < ,

{(p , q) : [[[p]]]L �
tr
cK [[[q]]]L}; we prove that < ⊆ �πa . Let p < q. For reduction

closure, we take p
τ
−→ p′; by Lemma 6.5.4.1 it holds that [[[p]]]L =⇒ [[[p′]]]L. Thus,

[[[q]]]L =⇒ N and [[[p′]]]L �
tr
cK N. Then, by using Lemma 6.5.4.2, it can be easily

verified that q =⇒ q′ and [[[q′]]]L .cK N. This suffices to conclude that p′ < q′

since, by the fact that .cK ⊆ �cK ⊆ �
tr
cK and by transitivity of �trcK , it holds that

[[[p′]]]L �
tr
cK [[[q′]]]L (notice that, as it is standard in the π-calculus, fn(p′) ⊆ fn(p)

and, thus, fn(p′) ⊆ L – and similarly for q and q′).

We now consider barb preservation; let p ↓ ā because p
āb
−→ . By Lemma 6.5.3.1

it holds that [[[p]]]L
b @ a
======⇒ ; thus, [[[q]]]L

b @ a
======⇒ . Hence, by Lemma 6.5.3.4 and

reduction closure (just proved), it holds that q
āb
==⇒ ; thus, by definition, q ⇓ ā. The

case for p ↓ ā because p
ā(b)
−→ is similar, but relies on Lemma 6.5.3.2 and .5.

Finally, we have to prove closure under parallel composition and restriction.
Let us examine the two conditions separately.

6.5. A COMPARISON WITH THE πA-CALCULUS 167

• We want to prove that (ν̃n)p < (ν̃n)q by knowing that (ν̃n)([[[p]]]L) �trcK
(ν̃n)([[[q]]]L). By definition, we have that (ν̃n)([[[·]]]L) , [[[(ν̃n) ·]]]L−{̃n} and
fn((ν̃n) ·) , fn(·) − {̃n}. Thus, fn((ν̃n)p, (ν̃n)q) ⊆ L − {̃n} and hence
[[[(ν̃n)p]]]L−{̃n} �

tr
cK [[[(ν̃n)q]]]L−{̃n}. By definition of <, this suffices to con-

clude.

• We want to prove that p|r < q|r by knowing that [[[p]]]L ‖ [[[r]]]L′ �
tr
cK

[[[q]]]L ‖ [[[r]]]L′ . By definition of [[·]]· and by Proposition 6.5.2.2, it
holds that [[[·]]]L ‖ [[[r]]]L′ &cK [[[·]]]L∪L′ ‖ [[[r]]]L∪L′ , [[[· ‖ r]]]L∪L′ . Thus,
[[[p ‖ r]]]L∪L′ �

tr
cK [[[q ‖ r]]]L∪L′ and fn(p|r, q|r) = fn(p, q) ∪ fn(r) ⊆ L ∪ L′.

This suffices to conclude.

We are left with proving the converse, i.e. p ≈πa q implies that [[[p]]]L �
tr
cK

[[[q]]]L. Let< , {([[[p]]]L , [[[q]]]L) : p ≈πa q}; we prove that < is a barbed congru-

ence, up-to .cK . For reduction closure, we let [[[p]]]L
τ
−→ N; by Lemma 6.5.4.2

it holds that p
τ
−→ p′ and N &cK [[[p′]]]L. Then, q =⇒ q′ and p′ �πa q′. By

Lemma 6.5.4.1, we know that [[[q]]]L =⇒ [[[q′]]]L; this suffices to conclude up-to .cK .
Barb preservation can be proved easily. By Proposition 5.2.3.2 (or .3), [[[p]]]L ↓ a

implies that [[[p]]]L
(ν̃b) 〈b〉 @ a
−−−−−−−−→ ; by Lemma 6.5.3.4 (or .5) and by definition of barbs

in the πa-calculus, this implies that p ↓ ā. Then, q ⇓ ā; by using Lemma 6.5.3.1
(or .2) and Lemma 6.5.4.1, we obtain the desired [[[q]]]L ⇓ a.

To conclude, we have to prove that, for every translated context C[·], it holds
that C[[[[p]]]L]< C[[[[q]]]L]. The key observation is that, by definition of translated
context, it holds that C[·] ≡ (ν̃n)([·] ‖ [[r]]L′). Moreover, by hypothesis, we know
that (ν̃n)(p|r) �πa (ν̃n)(q|r). Hence,

C[[[[·]]]L] ≡ (ν̃n)([[[·]]]L ‖ [[r]]L′)
&cK (ν̃n)([[[·]]]L ‖ [[[r]]]L′) by Prop. 6.5.2.3
&cK (ν̃n)([[[·]]]L∪L′ ‖ [[[r]]]L∪L′) by Prop. 6.5.2.2
, (ν̃n)(nrmL∪L′ ([[· |r]]L∪L′))
, nrmL′′ ((ν̃n)[[· |r]]L∪L′) for L′′ , (L ∪ L′) − {̃n}

, nrmL′′ ((ν̃n)(proc :: [[· |r]] ‖ Π
l′∈L∪L′

l′ :: nil))

≡ nrmL′′ ((ν̃n)(proc :: [[· |r]])) ‖ Π
l′∈L′′

l′ :: nil

= nrmL′′ (proc :: [[(ν̃n)(· |r)]]) ‖ Π
l′∈L′′

l′ :: nil by Prop. 6.5.2.1

≡ [[[(ν̃n)(· |r)]]]L′′

Notice that, if fn(·) ⊆ L and fn(r) ⊆ L′ (these hold by definition of the encoding),
then fn((ν̃n)(· |r)) ⊆ (L ∪ L′) − {̃n} , L′′. Thus, C[[[[p]]]L] &cK [[[(ν̃n)(p|r)]]]L′′

< [[[(ν̃n)(q|r)]]]L′′ .cK C[[[[q]]]L]. This suffices to conclude, up-to .cK .

Corollary 6.5.6 (Full Abstraction w.r.t. Translated Barbed Equivalence) Let
fn(p, q) ⊆ L. Then p �πa q if and only if [[p]]L �

tr
cK [[q]]L.

168 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

Proof: Trivial, by Theorem 6.5.5, Proposition 6.5.2.3 and by observing that .cK ⊆

�cK ⊆ �
tr
cK .

Remark 6.5.7: On full abstraction w.r.t. barbed equivalence. We have already
said that translated full abstraction seems us the best possible result for the encod-
ing of Table 6.6. Indeed, there is a key design issue that breaks full abstraction: in
π-calculus, knowing a name implies that communications can be performed upon
a channel with that name and these actions succeed whenever a parallel compo-
nent performs a complementary action. This is not the case in K (and in the
calculi derived from it). Indeed, it is not necessarily the case that each free name
is associated to a locality (while each name in a π-calculus process is associated
to a channel). This aspect can break full abstraction: e.g., consider the following
πa-calculus equivalence

p , a(x).(x̄ | x.̄b) �πa a(x).((x̄ | x.̄b) ⊕ b̄) , q

where ⊕ denotes internal choice. However,

[[p]]L 6�cK [[q]]L

Indeed, [[q]]L can produce a datum at node b, while [[p]]L cannot: if the name
received in the input (that replaces x) is not a node of the net, the encoding of the
output over x will never produce a datum. Thus, the input from x is blocked and
the following output on b will never produce a datum.

We think that no ‘reasonable’ encoding of πa-calculus in K (nor any other
calculus derived from K) can be given: checking existence of nodes before
firing an output is a too low-level feature that cannot be implemented in such an
abstract setting as the π-calculus. There are two ways in which we can recover full
abstraction.

1. We can make K higher-level: a simple way to do this is to add the
following structural rule to those given in Table 2.3

l :: nil ≡ 0

In this way, we recover the π-calculus’ philosophy that each name is always
associated to a communication medium (up-to ≡).

Another possibility is to consider a typed language, where types ensure
that, if a locality name is eventually used as target of an operation, then a
node whose address is that name is present in the net. This strongly resem-
bles Dπ’s framework [90].

2. We can make the πa-calculus lower-level: some names are channels, while
the other ones are just communicable objects. This can be formalised by
structuring the syntax of the πa-calculus as follows:

Systems S ::= ∃a
∣∣∣ (νa)S

∣∣∣ S 1 | S 2

∣∣∣ p
Processes p ::= . . .

6.5. A COMPARISON WITH THE πA-CALCULUS 169

Encoding Nets:

([0]) , ! ex〈〉 ([N1 ‖ N2]) , ([N1]) | ([N2])

([(νl)N]) , (νl)(([N]) | ! ex l) ([l :: C]) , ([C])l | ! ex l

Encoding Processes:

([nil])u , 0 ([〈l〉])u , ū l

([X])u , X ([rec X.P])u , rec X.([P])u

([C1|C2])u , ([C1])u | ([C2])u ([new(l).P])u , (νl)(([P])u | ! ex l)

([out(u′).P])u , ū u′ | ([P])u ([in(!x).P])u , u(x).([P])u

([in(u′).P])u , rec X.u(x).(νc)(c̄ | [x = u′]c.([P])u | c.(ū x | X)) (∗)

([eval(Q)@u′.P])u , rec X.ex(x).(νc)(c̄ | [x = u′]c.(([P])u | ([Q])u′) | c.X) (∗)

(∗) for x, X fresh

Table 6.7: Encoding K in πa-calculus

where the particle ∃a implements the presence of a channel with name a.
The operational semantics of Table 6.5 must be then modified by following
the lines of the LTS in Table 3.8 (by adding a check of existence of a channel
before firing an output action). We call π∃a this lower-level calculus.

6.5.2 Encoding K in the πa-calculus

We now present an encoding of the simplest K-based calculus, namely K-
, in the πa-calculus. The encoding is somehow inspired from the encoding of
K in µK (for the handling of names) and of µK in K (for the
encoding of the name matching construct of K).

We can follow the correspondence between channels and localities that we
pointed out in Section 6.5.1 and translate each locality to a channel. Output actions
performed at l, as well as data located at l, can be translated to output particles
of the πa-calculus l̄ . Similarly, input actions performed at l can be translated to
input prefixes of the πa-calculus l(x). . Finally, any action new(l′) is translated
to a restriction (νl′). Thus, the correspondence between the two calculi is quite
straightforward up to now.

A first feature that distinguish K from πa-calculus is the communication
paradigm and, mainly, the name matching of K (that happens while retriev-
ing a datum). This issue can encoded quite easily, if we accept divergence: process
in(l′).P running at l can be translated into a process that first retrieves a datum at l
and then checks if it is l′; if the check succeeds, the process continues, otherwise it
places back the accessed datum and looks for another one.

A second feature that distinguish K from πa-calculus is the allocation of
processes and their movements, together with the check of locality existence before

170 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

migration. Process distribution is relevant in K to establish where actions
out and in have to take place. Thus, we can define a parameterised encoding for
processes, ([P])u, where u is the locality where P runs. Then, if P is of the form
out(u′).Q, we translate it to ūu′ | ([Q])u, while, if P is of the form in(!x).Q, we
translate it to u(x).([Q])u. A process P of the form eval(Q)@u′.R running at u is
translated to the parallel composition of ([R])u and ([Q])u′ , if existence of locality u′

is ascertained.
The last feature we have to model is the distinction between names that are

addresses of network nodes and raw names. The former ones can be then used
as target of remote operations (in the case of K only actions eval), while
the latter ones cannot. By using a π-calculus terminology, only the first ones are
Names (we intentionally used the capital letter), while the latter ones are just val-
ues. However, the status of a name (without the capital letter) can change according
to the context: a Name will always remain such in any context, while a value l can
become a Name if the context provides a node with address l.

To deal with this sophisticated feature (that, as we have already discussed in
Remark 6.5.7, creates a relevant gap between πa-calculus and K-based calculi),
we use a reserved channel ex to record existence of localities. Thus, if l is a Name
in the K net considered for translation, then channel ex will repeatedly offer
l in the encoded net, i.e. the encoding will contain a process of the form

! ex l , (νc)(c̄ l | !c(x)(c̄ x | ex x))

The encoding is reported in Table 6.7. There, we also assume the possibility
of writing πa-calculus processes with recursion – that can be implemented through
replication, as usual – and we write c̄ and c to mean output and input of dummy
data. In the translation of actions in(l) and eval, the fresh restricted channel c is
used to implement a form of internal choice. In both cases, the first addendum
can evolve only if the name matching succeeds. On the other hand, the second
addendum can always be executed: this fact introduces divergence in the encoding.
Notice, however, that exactly one of the two addendum can evolve. Finally, like in
the encoding of K in µK, the fact that ex always provides data is necessary
to obtain a fully abstraction result w.r.t. translated contexts. Again, translated
contexts do not have a full discriminating power over this channel.

The proof of soundness somehow follows proofs already given in the chapter;
we only sketch the main steps and leave the details to the interested reader. First,
the translated barbed expansion in the πa-calculus, written .tr

πa
, can be defined by

following Definition 6.1.1. By following Proposition 6.1.2, it can be proved that
.tr
πa
⊂�tr
πa

and, by following Lemma 6.1.5, that translated barbed congruence up-
to .tr

πa
is contained in �tr

πa
. Then, we can prove that each K reduction is

preserved by its encoding.

Lemma 6.5.8 If N 7−→ N′, then ([N]) =⇒&tr
πa

([N′]).

Now, since the encoding ([·]) is divergent, we can follow the ideas of Section 6.3
and define partial reducts and partial states. Notice that, since divergence can orig-

6.5. A COMPARISON WITH THE πA-CALCULUS 171

inate both from the encoding of name matching and of migrations, we have two
possible cases for partial reducts.

Definition 6.5.9

1. A πa-calculus process p is a partial reduct of a K net N whenever

• N ≡ l :: in(l′).P | 〈l′〉 and
p �tr
πa

(νc)(c̄ | [x = l′]c.([P])u | c.(l̄ x | ([in(T).P])l)) | ! ex l, or

• N ≡ l :: eval(Q)@l′.P ‖ l′ :: nil and
p �tr
πa

(νc)(c̄ | [x = l′]c.(([P])l | ([Q])l′) | c.([eval(Q)@l′.P])l)
| ! ex l | ! ex l′.

2. A πa-calculus process p is a partial state of a K net N whenever N ≡
(ν̃l)(N1 ‖ · · · ‖ Nn ‖ N̄), p ≡π (ν̃l)(p1 ‖ · · · ‖ pn ‖ ([N̄])) and for all i it holds
that pi is a partial reduct of Ni (where ≡π is Milner’s structural equivalence,
see [112]).

The pleasant property of µK’s partial reducts is here stronger.

Lemma 6.5.10 Let p be a partial reduct of N. Then,

• N ≡ l :: in(l′).P | 〈l′〉 and p
τ
−→ p′ imply that either p′ &tr

πa
([N]), or p′ &tr

πa

([P])l | ! ex l.

• N ≡ l :: eval(Q).P ‖ l′ :: nil and p
τ
−→ p′ imply that either p′ &tr

πa
([N]), or

p′ &tr
πa

([P])l | ([Q])l′ | ! ex l | ! ex l′.

We can now state the reflection of reduction steps.

Lemma 6.5.11 If 〈|N|〉
τ
−→ p, then either N

τ
−→ N′ and p &tr

πa
〈|N′|〉, or p is a partial

state of N.

Finally, it is easy to see that the encoding faithfully translates the barbs; it only
adds new barbs on ex but no translated context can fully observe them. Hence, the
proof of the following concluding theorem can be carried on easily.

Theorem 6.5.12 (Full Abstraction w.r.t. Translated Barbed Congruence)
N �lcK M if and only if ([N]) �tr

πa
([M]).

Proof: For the ‘if’ direction, it suffices to prove that relation

< , {(N,M) : ([N]) �tr
πa

([M])}
∪ {(N,M) : ∃ p̄. ([N]) �trπa

p̄ ∧ p̄ partial state of M}
∪ {(N,M) : ∃ p̄. 〈|M|〉 �trπa

p̄ ∧ p̄ partial state of N}

172 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

is barb preserving, reduction closed (up-to .lcK) and closed under translated con-
texts (again, up-to .lcK). For the ‘only if’ direction, it suffices to prove that relation

< ,
⋃

N �lcK M {(([N]), ([M]))}
∪ {(([N]), p) : p partial state of M}
∪ {(p, ([M])) : p partial state of N}

is barb preserving, reduction closed (up-to .tr
πa

) and closed under translated con-
texts (again, up-to .tr

πa
).

6.6 Concluding Assessment and Related Work

The main results of this chapter are summarised in Table 6.8. There, a labelled

arrow between two calculi, X
P
−→ Y, means that the language X can be encoded in

the language Y and the encoding enjoys property P. The arrow is dotted if the
encoding can introduce divergence, i.e. infinite sequences of reductions that in the
source term were not present.

According to Palamidessi [122], each ‘reasonable’ encoding enc(·) should en-
joy at the very least the following properties:

1. homomorphic w.r.t. the parallel operator, i.e. enc(N ‖ M) = enc(N) ‖
enc(M) (this is needed in order to maintain the degree of parallelism during
the translation);

2. preserving renaming, i.e. for every permutation of names σ in the source
language there exists a permutation of names θ in the target language such
that enc(Pσ) = (enc(P))θ (this ensures that the translation does not depend
on the names involved);

3. preserving the basic observables, i.e. it has to preserve the visible behaviours
of the encoded terms;

4. preserving termination, i.e. it has to turn each terminating term in a termi-
nating term.

All the encodings we have presented in this chapter enjoy properties 2. and 3. .
About property 4., it is not enjoyed by the encodings of µK in K and of
K into the πa-calculus. This is related to the fact that, in our opinion, the
form of name matching present in the K-based calculi (that, in turn, has been
inherited by L [74]) is very powerful: it allows to perform boolean tests on
names while retrieving them. A similar feature led to the separation result of [122]
between the synchronous and the asynchronous π-calculus. About property 1., it
is not enjoyed by the encoding of the πa-calculus in K (where, however, we
have [[N ‖ M]] ≡ [[N]] ‖ [[M]]) and by the encoding of K in µK. In this case
we have a centralised entity (the locality env) that coordinates the translation of

6.6. CONCLUDING ASSESSMENT AND RELATED WORK 173

KLAIM µKLAIM

 CKLAIM

πa-calculus

 L-CKLAIM

F. A. w.r.t. ≅tr

F. A.
w.r.t. ≅tr

S. E.
w.r.t. ≅

F. A. w.r.t. ≅tr

F. A. w.r.t. ≅tr

where: F.A. stands for Fully Abstract,
S .E. stands for Semantically Equivalent,
↪→ stands for the identity encoding,
d stands for a divergent encoding,
−→ stands for a divergence-free encoding.

Table 6.8: Overview of our Results

names. According to Nestmann [118], the presence of such centralised authorities
not necessarily implies that the encoding developed is weak: in practice, indeed,
the resolution of names in Internet (through the so called DNS) requires some form
of centralised knowledge to turn logical names in IP addresses. Hence, we believe
that in this framework, property 1. is not strictly necessary.

Concluding assessment. We can now define a hierarchy of the properties en-
joyed by our encodings. This can be done by relying on the properties pointed out
in [122] and by the facts that �tr is coarser than � and that semantical equivalence
implies fully abstraction (w.r.t. the same equivalence). If we let ‘�’ mean ‘better
than’, we have that

S .E. w.r.t. �
−−−−−−−−−→ �

F.A. w.r.t. �tr

−−−−−−−−−→ �
F.A. w.r.t. �tr

− − − − − →

174 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

Thus, the encoding of K in K is the best we can imagine: it does
not introduce divergence and it turns a source net in a barbed congruent target net.
The fact that barbed congruence is a fine-grained equivalence makes our result even
stronger. Hence, the two calculi have exactly the same expressive power; the use
of remote communications is only to ease programming.

The encoding of K in µK and of πa-calculus in K are still good
results. Hence, the source and the target languages have comparable expressive
power. Moreover, the complexity of the code generated by the encoding procedure
is quite limited, especially in the second encoding.

The weaker results are the encodability of µK in K and of K
in πa-calculus; this is not surprising since, as we already said, this is related to
the expressive form of name matching we used. A part from divergence, we also
have that the encoding of polyadic communication of µK into monadic one
of K is not simple and efficient. Table 6.2 substantiates this claim: a lot
of monadic exchanges are necessary to implement each polyadic communication.
While this could be acceptable from a theoretical point of view, it is hardly usable
in practice. To conclude, we believe that, in a L-like framework, these two
forms of communication are not freely interchangeable. Hence, µK is rather
more expressive than K.

Clearly, the results in this paper do not prove that µK and K are
more powerful than K and πa-calculus, respectively. To this aim, we should
present some impossibility results similar to that in [122]. We are now working on
proving an impossibility result for an encoding of K in the πa-calculus; we
believe that, due to the check of existence of the target of a communication (that
is performed in K and not in πa-calculus), this result should hold. About
the encodability of a polyadic communication through monadic communications
(µK into K), we think that a divergence-free encoding should not exist.
Indeed, the fields of a polyadic datum can only be accessed one by one; in this
way, we are forced to split the atomic activity of function match into a field-by-
field compliance checking. Such checking must be suspended whenever the datum
accessed does not match with the template used to retrieve it, and the inputting
process must be rolled back, to let it try to access another datum. Then, the pos-
sibility of repeatedly accessing the same (non-matching) datum clearly leads to
divergence. Again, this is not a formal argument but we find it quite convincing.

Finally, as we have already said, �tr is enough to state expressiveness results.
On the other hand, an encoding can be also considered as a formal description
of how a language primitive can be implemented by means of other primitives;
then, the complexity of the encoding can be used as a measure of the power of
the primitive. We plan to investigate this aspect in a future work. However, we
can already say that �tr will be too weak in such setting: preorders based on some
notion of cost (maybe relying on whether an action is remote or not) should be
used instead.

6.6. CONCLUDING ASSESSMENT AND RELATED WORK 175

Related work. The works on encodings of process calculi that are strictly related
to our approach have been discussed throughout the chapter. We want to conclude
by examining the impact on expressiveness of alternative operators that have con-
sidered when designing K.

In [29] three different semantics for the output operation are studied in the
setting of a simple Linda-based process calculus: instantaneous output (an output
prefix immediately unleashes the corresponding tuple in the TS), ordered output
(a reduction is needed to turn an output prefix into the corresponding tuple in the
TS) and unordered output (two reductions are needed to turn an output into an
available tuple, i.e. one to send the tuple to the TS and another one to make the
tuple available in the TS). According to this terminology, the semantics of K
output operation is ordered.

In [29] it is proved that the instantaneous semantics yields the most expressive
setting. We believe that the instantaneous semantics would simplify the theory de-
veloped in this paper. For example, the proofs for the encoding of the πa-calculus
into Kwould be simpler: the encoding would be prompt and no normalization
would be needed. However, instantaneous tuple emission is unrealistic, especially
in a global computing scenario where remote operations are enabled. On the other
hand, unordered outputs are very close to the practice of global computers (con-
sider, e.g., sending e-mail messages). We believe that the theory presented in this
paper can be tailored to deal with such semantics. However, in [30] it is proved that
the simple Linda-based process calculus considered in [29] is Turing powerful un-
der the instantaneous and ordered semantics but not with the unordered semantics.
The output operation of K represents a compromise between expressiveness
and implementability.

The calculi considered in this paper do not have a general non-deterministic
choice operator. This composition mechanism of ‘classical’ process calculi (e.g.
CCS, CSP, ACP, π-calculus) is useful for specifying systems but is hardly imple-
mentable (this is especially true in distributed environments), thus it is missing in
many languages designed while taking implementation issues into account. For
example, the πa-calculus is often presented without nondeterministic choice. From
a theoretical point of view, one may wonder if the addition of (restricted forms of)
the non-deterministic choice operator to the considered calculi would change their
expressive power.

Since the same issue has been deeply studied in the setting of the πa-calculus,
let us first briefly summarize some relevant results. [119] presents two encodings
of the πa-calculus with input-guarded choice (where each summand begins with
an input action) into ‘pure’ πa-calculus, and [118] defines an encoding of a variant
of the π-calculus with separate choice (where all summands begin with the same
kind of action) in the πa-calculus. [122] shows that no ‘reasonable’ encoding of
the π-calculus with mixed choice (where each summand begins with an action)
in the πa-calculus can be ever given. Since synchronous communication can be
encoded through asynchronous communication, [93, 19, 31], it follows that, in the
setting of the πa-calculus, the introduction of (some forms of) non-deterministic

176 CHAPTER 6. EXPRESSIVENESS OF THE LANGUAGES

choice changes the expressive power of the language. Similar conclusions can be
drawn for the K-based languages we considered. By following [119, 118],
we could implement restricted non-deterministic choice. However, we have to say
that a restricted form of choice is provided implicitly by K and all its variants
through actions read/in actions: their semantics is determined by the availability
of tuples matching a given template, and in case of multiple matching the choice is
internally determined.

Chapter 7

Conclusion and Future Work

This thesis collects some foundational work on calculi based on the paradigm put
forward by the language K. To sum up, the main contributions contained in
this thesis are:

• the definition of a family of foundational calculi based on K,

• the presentation of type systems for security driven by global computing
requirements,

• the development of non-trivial, but still tractable, notions of behavioural
equivalences,

• the assessment of the calculi presented from the point of view of their ex-
pressiveness.

The strength and the usefulness of these efforts should be witnessed by the exam-
ples provided throughout the thesis. In particular, we took into account several
scenarios, ranging from e-commerce to on-line banking, from multiuser systems to
distributed protocols. Moreover, the encodings used to carry on the analysis of the
expressive power of the calculi should also have improved the understanding of the
K and the appreciation of its specific design choices, that make it significantly
different from the standard process calculi and from the other calculi for GC.

Further developments. While writing this thesis, we extended the work on
K-derived calculi with several issues like dynamic inter-node connections [60],
failures [63] and more flexible forms of pattern-matching [64]. We did not include
here such results to save space. However, it is worth saying that the work we have
just presented was the basis for all these enhancements. This fact furtherly sub-
stantiates the claim that this thesis acts as a crucial foundational work within the
K project.

177

178 CHAPTER 7. CONCLUSION AND FUTURE WORK

Future work. In addition to the work covered by this thesis, we studied other
possible approaches to security in calculi with mobility, that could be integrated
with the work presented here. We now conclude by discussing the most interesting
issues.

In Chapter 3, we expressed node policies in a very simple way, essentially as
sets of process actions. More sophisticated possibilities are available. For example,
we could exploit the theory developed in [23], where we study the impact of r ôle-
based access control (RBAC, [132]) mechanisms within a distributed π-calculus.
The policies we used in this paper can be defined in a more flexible way by using
the RBAC approach. Moreover, in [78] we work on a very simple distributed calcu-
lus with code mobility where several fine-grained policies are expressed by using,
e.g., finite automata. By properly modifying the types presented in Chapter 3, we
believe that the theory developed in loc.cit. can be adapted to the K setting.

A concrete issue that we totally ignored in this thesis is the use of cryptogra-
phy. As we have already remarked several times, cryptography is a fundamental
lower-level tool to ensure that GCs work properly. Thus, in [17, 18], we worked
on the Spi-calculus [1], a cryptographic version of the π-calculus, to develop a
sound and complete axiomatisation for finite processes under a bisimulation-based
semantics; then, we used some equational laws to show the correctness of the pro-
tocol K. Clearly, cryptography is an orthogonal issue with respect to the
topics covered by this thesis. A challenging direction for future research is to study
the integration of cryptographic primitives in a calculus with mobile agents, like
K.

Appendix A

Symbols and Notations

In Chapter 2:
L : locality names (in K)
V : locality variables (in K)
N : names (in µK, K and K)
ρ : allocation environments (finite mappings of names for variables)

fn(·), bn(·) : free and bound names
fv(·), bv(·) : free and bound variables (in K)
E[[·]]ρ : the evaluation function of a tuple/template w.r.t. ρ
match : the pattern-matching function (between a template and a tuple)
σ : . substitutions of names and processes for variables in K

. substitutions of names for names in µK, K and
K

ε : the empty substitution
◦ : the composition of substitutions
≡ : the structural congruence relation
7−→ : the reduction relation

In Chapter 3:
C : the set of process capabilities
π : sets of capabilities
Π : the powerset of C (i.e., the set of all the πs)
v
Π

: an ordering on Π
d : the pointwise union of functions
Γ : typing environments

upd : the extension of a type environment with the typing annotations
for the names bound in a template

↗ : the run-time error predicate

179

180 APPENDIX A. SYMBOLS AND NOTATIONS

In Sections 3.2 and 3.3:
δ : types and type environments
� : the subtyping relation

matchδ : the typed pattern-matching function

In Section 3.4:
p : a finite set of template patterns
P : the set of all template patterns

T (·) : the set of all templates complying with a set of patterns
∆ : types
⊥ : the empty type
6 : the subtyping relation

match∆(l) : the typed pattern-matching function

In Chapter 4:
r : regions (i.e., finite subsets of L)
> : all the net (i.e., the largest region)
R : the set of all regions
� : the type annotation procedure
] : the union of functions with disjoint domains
+ : the extension of information in a typing environment

reg(·) : a function returning the intersection of regions in ·
↗S : turning each region r in > within a typing environment ,

if r ∩ S , ∅
�� : tagged typing annotation

7−→→ : tagged reduction relation

In Chapter 5:
↓, ⇓ : strong and weak basic observable (or barb)
C[·] : net context
� : reduction barbed congruence
' : may testing
≈ : (labelled) bisimulation

−→ , =⇒ : strong and weak labelled transitions
τ : silent action
I : inert node components
α : labels for the bisimulation
� : trace equivalence
µ : labels for the trace equivalence
% : traces (i.e., sequences of visible actions)
ε : empty trace
· : concatenation of traces
� : ordering relation on traces
· : complementation on traces

q(%) : canonical observer for trace %

181

In Chapter 6:
. : expansion preorder
�

tr : translated reduction barbed congruence
.tr : translated expansion preorder
〈(·)〉 : encoding K in µK
〈〈(·)〉〉 : normalisation of 〈(·)〉
〈|·|〉 : encoding µK in K
{[·]} : encoding K in K
{{[·]}} : normalisation of 〈(·)〉
[[·]] : encoding πa-calculus in K

[[[·]]] : normalisation of [[·]]
([·]) : encoding K in πa-calculus

182 APPENDIX A. SYMBOLS AND NOTATIONS

Bibliography

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The Spi
calculus. Information and Computation, 148(1):1–70, 1999. An extended abstract
appeared in the Proc. of the 4th ACM Conf. on Computer and Communications
Security, 1997.

[2] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language for Resource-
aware Mobile Programs. In J. Vitek and C. Tschudin, editors, Mobile Object Sys-
tems: Towards the Programmable Internet, volume 1222 of LNCS, pages 111–130.
Springer, 1997.

[3] G. Agha. A Model of Concurrent Computation in Distributed Systems. MIT Press,
1986.

[4] R. Amadio. On modelling mobility. Theoretical Computer Science, 240(1):147–
176, 2000.

[5] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-
chronous π-calculus. Theoretical Computer Science, 195(2):291–324, 1998. An
extended abstract appeared in Proc. of CONCUR ’96, LNCS 1119: 147–162.

[6] K. Arnold, E. Freeman, and S. Hupfer. JavaSpaces Principles, Patterns and Prac-
tice. Addison-Wesley, 1999.

[7] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1996.

[8] H. P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic and the
Foundations of Mathematics. North Holland, 1984 (revised edition).

[9] L. Bettini. Linguistic Constructs for Object-Oriented Mobile Code Programming
and their Implementations. PhD thesis, Dip. di Matematica, Univ. di Siena, 2003.

[10] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The KLAIM project: Theory and practice.
In C. Priami, editor, Global Computing: Programming Environments, Languages,
Security and Analysis of Systems, number 2874 in LNCS, pages 88–150. Springer,
2003.

[11] L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents
in X-K. In P. Ciancarini and R. Tolksdorf, editors, Proc. of the 7th IEEE
Workshops on Enablings Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pages 110–115. IEEE Computer Society, 1998.

[12] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Mobile Code.
Software — Practice and Experience, 32:1365–1394, 2002.

183

184 BIBLIOGRAPHY

[13] M. Boreale. On the expressiveness of internal mobility in name-passing calculi.
Theoretical Comput. Sci., 195(2):205–226, 1998. An extended abstract appeared in
Proceedings of CONCUR ’96, LNCS 1119: 163–178.

[14] M. Boreale and R. De Nicola. Testing equivalences for mobile processes. Informa-
tion and Conputation, 120:279–303, 1995. An extended abstract appeared in Proc.
of CONCUR ’92, LNCS 630.

[15] M. Boreale, R. De Nicola, and R. Pugliese. Basic observables for processes. Infor-
mation and Conputation, 149(1):77–98, 1999.

[16] M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asyn-
chronous processes. Information and Computation, 172:139–164, 2002.

[17] M. Boreale and D. Gorla. On compositional reasoning in the spi-calculus. In
M. Nielsen and U. Engberg, editors, Proceedings of FoSSaCS ’02, volume 2303
of LNCS, pages 67–81. Springer-Verlag, 2002.

[18] M. Boreale and D. Gorla. Process calculi and the verification of security proper-
ties. Journal of Telecommunication and Information Technology— Special Issue on
Cryptographic Protocol Verification, (4):28–40, 2002.

[19] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702,
INRIA Sophia-Antipolis, 1992.

[20] G. Boudol. Typing the use of resources in a concurrent calculus. In R. K. Shya-
masundar and K. Ueda, editors, Proceedings of ASIAN ’97, volume 1345 of LNCS,
pages 239–253. Springer, 1997.

[21] G. Boudol, I. Castellani, F. Germain, and M. Lacoste. Models of distribution and
mobility: state of the art. MIKADO Global Computing Project, IST-2001-32222.
Deliverable D1.1.1, reference RR/WP1/1. 2002.

[22] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with
localities. Formal Aspects of Computing, 6:165–200, 1994.

[23] C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for role-based access
control. In Proceedings of 17th CSFW. IEEE Computer Society, 2004. Full version
as Tech. Rep. 08/2004, Dip. di Informatica, Univ. di Roma “La Sapienza”.

[24] M. Bugliesi and G. Castagna. Secure safe ambients. In Proceedings of POPL ’01.
ACM, 2001.

[25] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proceedings of TACS
’01, number 2215 in LNCS, pages 38–63. Springer, 2001.

[26] M. Bugliesi, G. Castagna, and S. Crafa. Reasoning about security in mobile am-
bients. In Proceedings of CONCUR ’01, number 2154 in LNCS, pages 102–120.
Springer, 2001.

[27] M. Bugliesi, D. Colazzo, and S. Crafa. Types for discretionary access control. In
Proceedings of CONCUR’04, number 3170 in LNCS, pages 225–239. Springer,
2004.

[28] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication interference
in mobile boxed ambients. In M. Agrawal and A. Seth, editors, Proceedings of
FSTTCS’02, volume 2556 of LNCS, pages 71–84. Springer, 2002.

BIBLIOGRAPHY 185

[29] N. Busi, R. Gorrieri, and G. Zavattaro. Comparing three semantics for linda-like
languages. Theoretical Computer Science, 240(1):49–90, 2000.

[30] N. Busi, R. Gorrieri, and G. Zavattaro. On the expressiveness of linda coordination
primitives. Information and Computation, 156(1-2):90–121, 2000.

[31] D. Cacciagrano and F. Corradini. On synchronous and asynchronous communi-
cation paradigms. In Proc. of ICTCS’01, number 2202 in LNCS, pages 256–268.
Springer, 2001.

[32] L. Caires and L. Cardelli. A Spatial Logic for Concurrency. Information and Com-
putation, 186(2):194–235, 2003. Earlier, this work appeared split in two parts,
respectively in Proc. of TACS’01, LNCS 2215, and Proc. of CONCUR’02, LNCS
2421.

[33] L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27–59,
1995.

[34] L. Cardelli. Abstractions for mobile computation. In J. Vitek and C. Jensen, editors,
Secure Internet Programming: Security Issues for Mobile and Distributed Objects,
number 1603 in LNCS, pages 51–94. Springer, 1999.

[35] L. Cardelli, G. Ghelli, , and A. D. Gordon. Secrecy and group creation. In Proc. of
CONCUR’00, number 1877, pages 365–379. Springer, 2000.

[36] L. Cardelli, G. Ghelli, and A. D. Gordon. Mobility types for mobile ambients.
In J. Wiederman, P. van Emde Boas, and M. Nielsen, editors, Proc. of ICALP’99,
volume 1644 of LNCS, pages 230–239. Springer, 1999.

[37] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types. In
J. van Leeuwen, O. Watanabe, M. Hagiya, P. Mosses, and T. Ito, editors, Proc. of
IFIP-TCS’00, volume 1872 of LNCS, pages 333–347. Springer, 2000.

[38] L. Cardelli, G. Ghelli, and A. D. Gordon. Types for the ambient calculus. Informa-
tion and Computation, 177(2):160–194, 2002.

[39] L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proc. of POPL’99,
pages 79–92. ACM, 1999.

[40] L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mobile
Ambients. In Proc. of POPL’00. ACM, 2000.

[41] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Comput. Sci.,
240(1):177–213, 2000. An extended abstract appeared in Proc. of FoSSaCS ’98,
number 1378 of LNCS, pages 140-155.

[42] L. Cardelli and A. D. Gordon. Logical Properties of Name Restriction. In S. Abram-
sky, editor, Proc. of TLCA’01, number 2044 in LNCS. Springer, 2001.

[43] G. Castagna, G. Ghelli, and F. Z. Nardelli. Typing mobility in the seal calculus.
In Proceedings of CONCUR ’01, number 2154 in LNCS, pages 82–101. Springer,
2001.

[44] G. Castagna and F. Z. Nardelli. The Seal Calculus Revisited: contextual equivalence
and bisimilarity. In M. Agrawal and A. Seth, editors, Proceedings of FSTTCS’02,
volume 2556 of LNCS, pages 85–96. Springer, 2002.

186 BIBLIOGRAPHY

[45] G. Castagna and J. Vitek. Seal: A framework for secure mobile computations. In
H. Bal, B. Belkhouche, and L. Cardelli, editors, Internet Programming Languages,
number 1686 in LNCS, pages 47–77. Springer, 1999.

[46] I. Castellani. Process algebras with localities. In J. Bergstra, A. Ponse, and
S. Smolka, editors, Handbook of Process Algebra, pages 945–1045. Elsevier Sci-
ence, 2001.

[47] I. Castellani and M. Hennessy. Distributed bisimulations. Journal of the ACM,
36:887–911, 1989.

[48] I. Castellani and M. Hennessy. Testing theories for asynchronous languages. In
V. Arvind and R. Ramanujam, editors, Proceedings of FSTTCS ’98, volume 1530
of LNCS, pages 90–101, 1998.

[49] S. Castellani, P. Ciancarini, and D. Rossi. The ShaPE of ShaDE: a coordination
system. Technical Report UBLCS 96-5, Dip. di Scienze dell’Informazione, Univ.
di Bologna, Italy, 1996.

[50] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Coordinating mul-
tiagent applications on the WWW: A reference architecture. IEEE Transactions on
Software Engineering, 24(5):362–366, 1998.

[51] R. Cleaveland. Tableau-based model checking in the propositional µ-calculus. Acta
Informatica, 27(8):725–747, 1990.

[52] Concurrency and Mobility Group at Dipartimento di Sistemi e Informatica, Univer-
sità di Firenze. K web page. http://music.dsi.unifi.it.

[53] M. Coppo, M. Dezani, E.Giovannetti, and R. Pugliese. Dynamic and Local Typing
for Mobile Ambients. In Proc. of IFIP-TCS’04. Kluwer, 2004.

[54] F. Corradini and R. De Nicola. Locality based semantics for process algebra. Acta
Informatica, 34:291–324, 1997.

[55] S. Dal Zilio and A. D. Gordon. Region analysis and a pi-calculus with groups. In
Proc. of MFCS’00, number 1893, pages 409–424. Springer, 2000.

[56] N. Davies, S. Wade, A. Friday, and G. Blair. L2imbo: a tuple space based platform
for adaptive mobile applications. In Int. Conference on Open Distributed Process-
ing/Distributed Platforms (ICODP/ICDP’97), 1997.

[57] R. De Nicola, G. Ferrari, and R. Pugliese. K: a Kernel Language for Agents
Interaction and Mobility. IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

[58] R. De Nicola, G. Ferrari, and R. Pugliese. Programming Access Control: The Klaim
Experience. In C. Palamidessi, editor, Proceedings of CONCUR’00, volume 1877
of LNCS, pages 48–65. Springer, 2000.

[59] R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for Access Control.
Theoretical Computer Science, 240(1):215–254, 2000.

[60] R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for global
computing. Technical report. 07/2004, Dip. di Informatica, Univ. di Roma “La
Sapienza”. An extended abstract will appear in Proc. of ICALP’05.

BIBLIOGRAPHY 187

[61] R. De Nicola, D. Gorla, and R. Pugliese. Confining data and processes in global
computing applications. Science of Computer Programming. To appear.

[62] R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of KLAIM-based
calculi. Proc. of EXPRESS’04, ENTCS, 128(2):117–130, 2004. Full version as
Tech. Rep. 09/2004, Dip. di Informatica, Univ. di Roma “La Sapienza”; to appear
in Theoretical Computer Science.

[63] R. De Nicola, D. Gorla, and R. Pugliese. Global computing in a dynamic network
of tuple spaces. In J. Jacquet and G. Picco, editors, Proc. of 7th International Con-
ference on Coordination Models and Languages (COORDINATION 2005), volume
3454 of LNCS, pages 157–172. Springer, 2005.

[64] R. De Nicola, D. Gorla, and R. Pugliese. Pattern matching over a dynamic net-
work of tuple spaces. In M. Steffen and G. Zavattaro, editors, Proc. of 7th IFIP In-
ternational Conference on Formal Methods for Object Oriented-based Distributed
Systems (FMOODS 2005), volume 3535 of LNCS, pages 1–14. Springer, 2005.

[65] R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical
Computer Science, 34:83–133, 1984.

[66] R. De Nicola and M. Loreti. A Modal Logic for Mobile Agents. ACM Transac-
tions on Computational Logic, 2004. An extended abstract appeared in Proc. of
AMAST’00, LNCS 1816.

[67] P. Degano, F. Levi, and C. Bodei. Safe ambients: Control flow analysis and security.
In Proc. of ASIAN’00, volume 1961 of LNCS, pages 199–214. Springer, 2000.

[68] D. Deugo. Choosing a Mobile Agent Messaging Model. In Proceedings of ISADS
’01, pages 278–286. IEEE Computer Society, 2001.

[69] M. Dezani-Ciancaglini and I. Salvo. Security types for mobile safe ambients. In
Proceedings of ASIAN’00, volume 1961 of LNCS, pages 215–236. Springer, 2000.

[70] G. M. F. B. Schneider and R. Harper. A language-based approach to security.
In Informatics: 10 Years Ahead, 10 Years Back. Conference on the Occasion of
Dagstuhl’s 10th Anniversary, volume 2000 of LNCS, page 86. Springer, 1989.

[71] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In U. Montanari and V. Sassone, editors, Proceedings of CONCUR
’96, volume 1119 of LNCS, pages 406–421. Springer, 1996.

[72] C. Fournet and C. Laneve. Bisimulations for the join-calculus. Theoretical Com-
puter Science, 266(1-2):569–603, 2001.

[73] A. Fuggetta, G. Picco, and G. Vigna. Understanging code mobility. IEEE Transac-
tions on Software Engineering, 24(5):342–361, 1998.

[74] D. Gelernter. Generative communication in linda. ACM Transactions on Program-
ming Languages and Systems, 7(1):80–112, 1985.

[75] D. Gelernter. Multiple tuple spaces in Linda. In E. Odijk, M. Rem, and J.-C. Syre,
editors, Proceedings of PARLE ’89, volume 366 of LNCS, pages 20–27. Springer-
Verlang, 1989.

[76] General Magic, Inc. Odyssey, 1998. http://www.genmagic.com/-

technology/odyssey.html.

188 BIBLIOGRAPHY

[77] J. Godskesen, T. Hildebrandt, and V. Sassone. A calculus of mobile resources. In
L. Brim, P. Jancar, M. Kretı́nský, and A. Kucera, editors, Proceedings of CON-
CUR’02, volume 2421 of LNCS, pages 272–287. Springer, 2002.

[78] D. Gorla, M. Hennessy, and V. Sassone. Security policies as membranes in systems
for global computing. In J. Rathke, editor, Proc. of 3rd EATCS Workshop on Foun-
dations of Global Ubiquitous Computing (FGUC’04), ENTCS. Elsevier, 2004. Full
version as Research Rep. 02/2004, Dep. Informatics, Univ. of Sussex; to appear in
Logical Methods in Computer Science.

[79] D. Gorla and R. Pugliese. Enforcing security policies via types. In D. Hutter,
G. Mueller, W.Stephan, and M. Ullman, editors, Proc. of 1st Intern.Conf. on Se-
curity in Pervasive Computing (SPC’03), volume 2802 of LNCS, pages 88–103.
Springer-Verlag, 2003. Full version as Tech. Rep. 05/2004, Dip. di Informatica,
Univ. di Roma “La Sapienza”.

[80] D. Gorla and R. Pugliese. Resource access and mobility control with dynamic priv-
ileges acquisition. In J. Baeten, J. Lenstra, J. Parrow, and G. Woeginger, editors,
Proceedings of ICALP’03, volume 2719 of LNCS, pages 119–132. Springer-Verlag,
2003. Full version as Tech. Rep. 06/2004, Dip. di Informatica, Univ. di Roma “La
Sapienza”.

[81] D. Gorla and R. Pugliese. Controlling data movement in global computing ap-
plications. In Proc. of the 19th ACM-SIGAPP Symposium on Applied Computing
(SAC’04), pages 1462–1467. ACM, 2004.

[82] R. S. Gray. Agent Tcl: A flexible and secure mobile-agent system. PhD Thesis.
Technical Report PCS-TR98-327, Dartmouth College, Computer Science, Hanover,
NH, 1997.

[83] R. R. Hansen, J. G. Jensen, F. Nielson, and H. R. Nielson. Abstract interpretation
of mobile ambients. In Proc. of SAS’99, number 1694 in LNCS, pages 134–148.
Springer, 1999.

[84] M. Hennessy. The security pi-calculus and non-interference. In Proc. of MFPS XIX,
ENTCS, 2003. Full version to appear in Journal of Logic and Algebraic Program-
ming.

[85] M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access and
mobility control in distributed systems. In Proceedings of FoSSaCS ’03, volume
2620 of LNCS, pages 282–299. Springer, 2003. Full version as COGS Computer
Science Technical Report, 2002:01.

[86] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency.
Journal of the ACM, 32(1):137–161, 1985.

[87] M. Hennessy, J. Rathke, and N. Yoshida. SafeDpi: a language for controlling mo-
bile code. In Proceedings of FoSSaCS’04, volume 2987 of LNCS, pages 241–256.
Springer, 2004.

[88] M. Hennessy and J. Riely. Type-safe execution of mobile agents in anonymous
networks. In J. Vitek and C. Tschudin, editors, Mobile Object Systems: Towards the
Programmable Internet, volume 1222 of LNCS, pages 111–130. Springer, 1997.

BIBLIOGRAPHY 189

[89] M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous
pi-calculus. In U. Montanari, J. Rolim, and E. Welzl, editors, Proceedings of
ICALP’00, volume 1853 of LNCS, pages 415–427. Springer, 2000. Full version
to appear in ACM TOPLAS.

[90] M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents.
Information and Computation, 173:82–120, 2002.

[91] C. Hoare. Communicating sequential processes. In R. McKeag and A. Macnaghten,
editors, On the construction of programs – an advanced course, pages 229–254.
Cambridge university press, 1980.

[92] K. Honda. Types for dyadic interaction. In E. Best, editor, Proceedings of CONCUR
’93, volume 715 of LNCS, pages 509–523. Springer, 1993.

[93] K. Honda and M. Tokoro. An object calculus for asynchronous communication.
In P. America, editor, Proceedings of ECOOP ’91, volume 512 of LNCS, pages
133–147. Springer, 1991.

[94] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed pro-
cess behaviour. In G. Smolka, editor, Proceedings of ESOP ’00, volume 1782 of
LNCS, pages 180–199. Springer, 2000.

[95] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In C. Hankin, editor,
Proceedings of ESOP ’98, volume 1381 of LNCS, pages 122–138. Springer, 1998.

[96] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 152(2):437–486, 1995. An extract appeared in Proc. of FSTTCS
’93, LNCS 761.

[97] D. Johansen, F. Schneider, and R. Renesse. What TACOMA Taught Us. In D. Milo-
jicic, F. Douglis, and R. Wheeler, editors, Mobility, Mobile Agents and Process Mi-
gration - An edited Collection. Addison-Wesley, 1998.

[98] D. Kirli. Confined mobile functions. In Proceedings of 14th CSFW. IEEE Computer
Society, 2001.

[99] N. Kobayashi. A partially deadlock-free typed process calculus. ACM Transac-
tion on Programming Languages and Systems, 20(2):436–482, 1998. An extended
abstract previously appeared in the Proc. of LICS ’97, pages 128–139.

[100] N. Kobayashi. Type systems for concurrent processes: From deadlock-freedom to
livelock-freedom, time-boundedness. In J. van Leeuwen, O. Watanabe, M. Hagiya,
P. Mosses, and T. Ito, editors, Proceedings of IFIP TCS 2000, volume 1872 of LNCS,
pages 365–389. Springer, 2000.

[101] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In
Proceedings of POPL ’96, pages 358–371. ACM, 1996.

[102] N. Kobayashi, S. Saito, and E. Sumii. An implicitly-typed deadlock-free process
calculus. In C. Palamidessi, editor, Proceedings of CONCUR ’00, volume 1877 of
LNCS, pages 489–503. Springer, 2000.

[103] D. Lange and M. Oshima. Programming and Deploying Java mobile Agnets with
Aglets. Addison-Wesley, 1998.

190 BIBLIOGRAPHY

[104] F. Levi and S. Maffeis. An abstract interpretation framework for analysing mobile
ambients. In Proc. of SAS’01, number 2126 in LNCS, pages 395–411. Springer,
2001.

[105] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proceedings of
POPL ’00, pages 352–364. ACM, 2000.

[106] M. Loreti. Languages and Logics for Network Aware Programming. PhD thesis,
Università di Siena, 2002. Available at http://music.dsi.unifi.it.

[107] M. Merro and M. Hennessy. Bisimulation congruences in Safe Ambients. In Pro-
ceedings of POPL ’02. ACM, 2002.

[108] M. Merro and F. Z. Nardelli. Bisimulation proof methods for mobile ambients.
In J. Baeten, J. Lenstra, J. Parrow, and G. Woeginger, editors, Proceedings of
ICALP’03, volume 2719 of LNCS. Springer, 2003.

[109] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267–310, 1983.

[110] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[111] R. Milner. Sorts in the π-calculus (extended abstract). In E. Best and G. Rozenberg,
editors, Proc. of the 3rd Workshop on Concurrency and Compositionality, volume
191 of GMD-Studien. GMD Bonn, St. Augustin, 1991.

[112] R. Milner. The polyadic π-calculus: A tutorial. In F. Bauer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification, volume 94 of Series
F: Computer and System Sciences. NATO Advanced Study Institute, 1993.

[113] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II.
Information and Computation, 100(1):1–40, 41–77, 1992.

[114] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, 114:149–171, 1993.

[115] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Proceedings
of ICALP ’92, volume 623 of LNCS, pages 685–695. Springer, 1992.

[116] U. Montanari and M. Pistore. Finite state verification for the asynchronous pi-
calculus. In R. Cleaveland, editor, Proc. of TACAS’99, volume 1579 of LNCS,
pages 255–269. Springer, 1999.

[117] G. Necula. Proof-carrying code. In Proc. of POPL ’97, pages 106–119, 1997.

[118] U. Nestmann. What is a ‘good’ encoding of guarded choice? Information and Com-
putation, 156:287–319, 2000. An extended abstract appeared in the Proceedings of
EXPRESS ’97, volume 7 of ENTCS.

[119] U. Nestmann and B. C. Pierce. Decoding choice encodings. Information and Com-
putation, 163:1–59, 2000. An extended abstract appeared in the Proceedings of
CONCUR ’96, LNCS 1119, pages 179–194.

[120] F. Nielson, H. R. Nielson, R. R. Hansen, and J. G. Jensen. Validating firewalls in
mobile ambients. In J. C. Baeten and S. Mauw, editors, Proceedings of CONCUR
’99, volume 1664 of LNCS, pages 463–477. Springer, 1999.

[121] A. Omicini and F. Zambonelli. Coordination for internet application development.
Autonomous Agents and Multi-agent Systems, 2(3):251–269, 1999.

BIBLIOGRAPHY 191

[122] C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculi. Mathematical Structures in Computer Science, 13(5):685–719,
2003. An extended abstract appeared in Proc. of POPL’97, ACM Press.

[123] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, 5th
GI Conference, volume 104 of LNCS. Springer, 1981.

[124] J. Parrow. An introduction to the pi-calculus. In J. Bergstra, A. Ponse, and
S. Smolka, editors, Handbook of Process Algebra, pages 479–543. Elsevier Sci-
ence, 2001.

[125] G. Picco, A. Murphy, and G.-C. Roman. L: Linda Meets Mobility. In D. Garlan,
editor, Proc. of the 21st Int. Conference on Software Engineering (ICSE’99), pages
368–377. ACM, 1999.

[126] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathe-
matical Structures in Computer Science, 6(5):409–454, 1996. An extract appeared
in Proc. of LICS ’93: 376–385.

[127] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

[128] J. Riely and M. Hennessy. A typed language for distributed mobile processes. In
Proceedings of POPL ’98. ACM, 1998.

[129] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents.
In Proceedings of POPL ’99, pages 93–104. ACM, 1999. Full version to appear in
Journal of Automated Reasoning, 2003.

[130] J. Riely and M. Hennessy. Distributed processes and location failures. Theoretical
Computer Science, 266:693–735, 2001.

[131] A. Rowstron. WCL: A web co-ordination language. World Wide Web Journal,
1(3):167–179, 1998.

[132] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-Based Access Control
Models. IEEE Computer, 29(2):38–47, 1996.

[133] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, 1993. CST-99-93 (also published as ECS-LFCS-93-
266).

[134] D. Sangiorgi. Bisimulation in higher-order process calculi. Information and Compu-
tation, 131:141–178, 1996. An early version appeared in Proc. of PROCOMET’94,
pages 207–224.

[135] D. Sangiorgi. The name discipline of uniform receptiveness. Theoretical Computer
Science, 221(1–2):457–493, 1999. An abstract appeared in the Proc. of ICALP ’97,
LNCS 1256, pages 303–313.

[136] D. Sangiorgi. Reasoning about concurrent systems using types. In W. Thomas,
editor, Proceedings of FoSSaCS ’99, volume 1578 of LNCS, pages 31–40. Springer,
1999.

[137] D. Sangiorgi. Asynchronous process calculi: the first-order and higher-order
paradigms (tutorial). Theoretical Computer Science, 253(2):311–350, 2001.

192 BIBLIOGRAPHY

[138] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[139] P. Sewell. Global/local subtyping and capability inference for a distributed pi-
calculus. In K. G. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of ICALP
’98, volume 1443 of LNCS, pages 695–706. Springer, 1998.

[140] P. Sewell, P. Wojciechowski, and B. Pierce. Location independence for mobile
agents. In H. Bal, B. Belkhouche, and L. Cardelli, editors, Proceedings of ICCL
’98, volume 1686 of LNCS. Springer, 1999.

[141] C. Stirling and D. Walker. Local model checking in the modal mu-calculus. Theo-
retical Computer Science, 89(1):161–177, 1991.

[142] P. Thati, R. Ziaei, and G. Agha. A Theory of May Testing for Actors. In Proc. of
FMOODS’02, pages 147–162. Kluwer, 2002.

[143] B. Thomsen, L. Leth, and T.-M. Kuo. A Facile tutorial. In U. Montanari and
V. Sassone, editors, Proceedings of CONCUR ’96, volume 1119 of LNCS, pages
278–298. Springer, 1996.

[144] D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, 1996. CST-126-96 (also published as ECS-LFCS-96-345).

[145] A. Unyapoth and P. Sewell. Nomadic Pict: Correct communication infrastructures
for mobile computation. In Proceedings of POPL ’01, pages 116–127. ACM, 2001.

[146] R. van Glabbeek. The linear time - branching time spectrum. In J. Baeten and
J. Klop, editors, Proceedings of CONCUR’90, volume 458 of LNCS, pages 278–
297. Springer, 1990.

[147] R. van Glabbeek. The linear time - branching time spectrum II; the semantics of se-
quential systems with silent moves. In E. Best, editor, Proceedings of CONCUR’93,
volume 715 of LNCS, pages 66–81. Springer, 1993.

[148] J. E. White. Telescript Technology: The Foundation for the Electronic Marketplace.
White paper, General Magic, Inc., Mountain View, CA, 1994.

[149] J. E. White. Mobile Agents. In J. Bradshaw, editor, Software Agents. AAAI Press
and MIT Press, 1996.

[150] G. Winskel. A note on model checking the modal ν-calculus. In G. Ausiello,
M. Dezani-Ciancaglini, and S. R. D. Rocca, editors, Proc. of the 16th ICALP, vol-
ume 372 of LNCS, pages 761–772. Springer, 1989.

[151] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. Tspaces. IBM Systems Journal,
37(3):454–474, 1998.

[152] N. Yoshida. Graph types for monadic mobile processes. In V. Chandru and
V. Vinay, editors, Proceedings of FSTTCS ’96, volume 1180 of LNCS, pages 371–
386. Springer, 1996.

[153] N. Yoshida and M. Hennessy. Subtyping and locality in distributed higher order
processes. In J. C. Baeten and S. Mauw, editors, Proceedings of CONCUR ’99,
volume 1664 of LNCS, pages 557–572. Springer, 1999.

[154] N. Yoshida and M. Hennessy. Assigning types to processes. Information and
Computation, 174(2):143–179, 2002. An extended abstract appeared in Proc. of
LICS’00, pagg. 334-348.

