
Concurrent Pattern Calculus

Thomas Given-Wilson1 Daniele Gorla2 Barry Jay3

1 NICTA, Sydney, Australia
2 Dip. di Informatica, “Sapienza” Università di Roma

3 Centre for Quantum Computation and Intelligent Systems &

School of Software, University of Technology, Sydney

June 26, 2013

Abstract

Concurrent pattern calculus (CPC) drives interaction between pro-
cesses by comparing data structures, just as sequential pattern calculus
drives computation. By generalising from pattern matching to pattern
unification, interaction becomes symmetrical, with information flowing
in both directions. CPC provides a natural language to express trade
where information exchange is pivotal to interaction. The unification al-
lows some patterns to be more discriminating than others; hence, the
behavioural theory must take this aspect into account, leading to a bisim-
ulation subject to compatibility of patterns. Many popular process calculi
can be encoded in CPC; this allows for a gain in expressiveness, formalised
through encodings.

1 Introduction

The π-calculus [24, 31] holds an honoured position among process calculi as it
is the simplest calculus that is able to support computation as represented by
λ-calculus [5]. However, pattern calculus [20, 18] supports even more computa-
tions than λ-calculus, since pattern-matching functions may be intensional with
respect to their arguments [19] in the sense that, through pattern matching, ar-
guments can be decomposed in their building blocks. For example, the pattern
x y can decompose any compound data structure u v into its components u
and v. This is different from extensional computation, like those of λ- and π-
calculus, where arguments are ‘atomic’. Hence it is natural to explore how a
concurrent pattern calculus that exploits factorisation might appear. In fact it
turns out rather well.

This paper adapts the pattern-matching mechanism of the pure pattern cal-
culus to concurrent processes, that are built up by exploiting parallel composi-
tion, name restriction and replication. This yields a concurrent pattern calculus
(CPC), where prefixes for input and output are generalised to patterns whose
unification triggers a two-way, or symmetric, flow of information, as represented
by the sole interaction rule

(p → P | q → Q) 7−→ σP | ρQ

1

where σ and ρ are the substitutions on names resulting from the unification of
p and q.

The flexibility of the pattern unification and the symmetry of exchange in
CPC align closely with the world of trade. Here the support for discovering a
compatible process and exchanging information mirrors the behaviour of trading
systems such as a stock market. The main features of CPC are illustrated in
the following sample trade interaction:

(ν sharesID)pABCSharesq • sharesID • λx → 〈charge x for sale〉
| (ν bankAcc)pABCSharesq • λy • bankAcc → 〈save y as proof 〉

7−→ (ν sharesID)(ν bankAcc)(〈charge bankAcc for sale〉
| 〈save sharesID as proof 〉)

The first line models a seller that will synchronise with a buyer, using the pro-
tected information ABCShares, and exchange its shares (sharesID) for bank ac-
count information to charge (bound to x). The second line models a buyer. No-
tice that the information exchange is bidirectional and simultaneous: sharesID
replaces y in the (continuation of the) buyer and bankAcc replaces x in the (con-
tinuation of the) seller. Moreover, the two patterns pABCSharesq•sharesID •λx
and pABCSharesq•λy•bankAcc also specify the details of the shares being traded,
that must be matched for equality in the pattern matching, as indicated by the
syntax p·q.

Pattern unification in CPC is even richer than indicated in this example, as
unification may bind a compound pattern to a single name; that is, patterns
do not need to be fully decomposed in unification. For example, the bank ac-
count information could be specified, and matched upon, in much more detail.
The buyer could provide the account name and number such as in the follow-
ing pattern: (ν accName)(ν accNum)pABCSharesq • λy • (name • accName •
number • accNum). This more detailed buyer would still match against the
seller, now yielding 〈charge name • accName • number • accNum for sale〉. In-
deed, the seller could also specify a desire to only accept bank account informa-
tion that includes a name and number with the following pattern: pABCSharesq•
sharesID • (pnameq•λa•pnumberq•λb) and continuation 〈charge a b for sale〉.
This would also match with the detailed buyer information by unifying name
with pnameq, number with pnumberq, and binding accName and accNum to a
and b respectively. The second seller exploits the intensionality of CPC to only
interact with a buyer whose pattern is of the right structure (four sub-patterns)
and contains the right information (the protected names name and number,
and shared information in the other two positions).

This rich form of interaction, combined with concurrency, makes CPC very
expressive, as illustrated by the following diamond [12]:

λv-calculus

SF -calculus π-calculus

Concurrent Pattern Calculus

@
@

@I

�
�

��

�
�

��

@
@

@I

2

The λ-calculus sits at the bottom and can be generalised either by SF -calculus
[19], by considering intensionality in the sequential setting, or by π-calculus, by
considering concurrency in the extensional setting. CPC completes the diamond
by adding either concurrency to SF -calculus, or intensionality to π-calculus.
Thus, CPC is the most expressive of all by supporting intensional concurrent
computation.

The definition of CPC also includes a behavioural theory that defines when
two processes are behaviourally equivalent. This is done using a standard ap-
proach in concurrency. First, define an intuitive notion of equivalence that
equates processes with the same interactional behaviour, in any context and
along any reduction sequence, to yield a notion of barbed congruence. Second,
provide a more effective characterisation of such equivalence by means of a la-
belled transition system (LTS) and a bisimulation-based equivalence. Although
this path is familiar, some delicacy is required for each definition. For example,
as unification of patterns may require testing of names for equality, the barbs of
CPC (i.e. the predicate describing the interactional behaviour of a CPC pro-
cess) must account for names that might be matched, not just those that must
be matched. This is different from the standard barbs of, say, the π-calculus.
Further, as some patterns are more discriminating than others, the bisimulation
defined here will rely on a notion of compatibility of patterns, yielding a bisim-
ulation game in which a challenge can be replied to with a different, though
compatible, reply. This is reminiscent of the asynchronous bisimulation for the
asynchronous π-calculus [4] or the symbolic characterization of open bisimilarity
in the π-calculus [30].

CPC’s support for interaction that is both structured and symmetrical makes
it more expressive than most approaches to interaction in the literature. For
example, checking equality of channel names, as in π-calculus [24], can be viewed
as a trivial form of pattern unification. This can be generalized to unification
of tuples of names, as in Linda [11], or fusing names, as in Fusion [27]. Spi
calculus [3] adds patterns for numbers (zero and successors) and encryptions.
Also the Psi calculus [6] introduces support for structures, albeit with a limited
symmetry.

More formally, π-calculus, Linda and Spi calculus can all be encoded into
CPC but CPC cannot be encoded into any of them. By contrast, the way in
which name fusion is modeled in fusion calculus is not encodable into CPC;
conversely, the richness of CPC’s pattern unification is not encodable in fusion
calculus. Similarly, the implicit computation of Psi calculus cannot be encoded
within CPC; the converse separation result is ensured by CPC’s symmetry.

A natural objection to CPC is that its unification is too complex to be an
atomic operation. In particular, any limit to the size of communicated messages
could be violated by some match. Also, one cannot, in practice, implement a
simultaneous exchange of information, so that pattern unification must be im-
plemented in terms of simpler primitives. This objection applies to many other
calculi. For example, neither substitution in λ-calculus nor Linda’s pattern
matching are atomic, but both underpin many existing programming environ-
ments [26, 2, 7, 28]. The same comments apply to several other process calculi
[21, 29, 32].

The structure of the paper is as follows. Section 2 introduces symmetric
matching through a concurrent pattern calculus and an illustrative example.
Section 3 defines the behavioural theory of the language: its barbed congruence,

3

LTS and the alternative characterization via a bisimulation-based equivalence.
Section 4 formalises the relation between CPC and other process calculi. Section
5 concludes the paper. Standard proofs have been moved to the Appendix.

Note that this is an extended version of the original “Concurrent Pattern
Calculus” that first introduced the titled work [14]. Moreover, the behavioural
theory has been presented in [13].

2 Concurrent Pattern Calculus

This section presents a concurrent pattern calculus (CPC) that uses symmetric
pattern unification as the basis of communication. Both symmetry and pattern
matching appear in existing models of concurrency, but in more limited ways.
For example, π-calculus requires a sender and receiver to share a channel, so
that knowledge of the channel is symmetric but information flows in one di-
rection only. Fusion calculus achieves symmetry by fusing names together but
has no intensional patterns. Linda’s matching is more intensional as it can test
equality of an arbitrary number of names, and the number of names to be com-
municated, in an atomic interaction. Spi calculus has even more intensional
patterns, e.g. for natural numbers, and can check equality of terms (i.e. pat-
terns), but does not perform matching in general. Neither Linda or Spi calculus
support much symmetry beyond that of the π-calculus.

The expressiveness of CPC comes from extending the class of communicable
objects from raw names to a class of patterns that can be unified. This merges
equality testing and bi-directional communication in a single step.

2.1 Patterns

Suppose given a countable set of namesN (meta-variables n, m, x, y, z, . . .). The
patterns (meta-variables p, p′, p1, q, q

′, q1, . . .) are built using names and have the
following forms:

Patterns p ::= λx binding name
x variable name
pxq protected name
p • p compound

A binding name λx denotes information sought, e.g. by a trader; variable
names x represent such information. Protected names pxq represent recognised
information that cannot be traded. A compound combines two patterns p and
q, its components, into a pattern p • q. Compounding is left associative, similar
to application in λ-calculus, pure pattern calculus and combinatory logics. The
atoms are patterns that are not compounds. The atoms x and pxq know x.

Binding, variable and protected names are all well established concepts in
the literature. Indeed, there is a correspondence between patterns and prefixes
of more familiar process calculi, such as π-calculus: binding names correspond
to input arguments and variable names to output arguments. Moreover, a form
of protected names appear in Linda. There is some subtlety in their relationship
to variable names. As protected names specify a requirement, it is natural that
they unify with the variable form of the name. Similarly, as protected names

4

in CPC can be used to support channel-based communication, it is also natural
that protected names unify with themselves.

Given a pattern p the sets of: variables names, denoted vn(p); protected
names, denoted pn(p); and binding names, denoted bn(p), are defined as ex-
pected with the union being taken for compounds. The free names of a pattern
p, written fn(p), is the union of the variable names and protected names of p.
A pattern is well formed if its binding names are pairwise distinct and different
from the free ones. All patterns appearing in the rest of this paper are assumed
to be well formed.

As protected names are limited to recognition and binding names are being
sought, neither should be communicable to another process. Thus, a pattern
is communicable, i.e. is able to be traded to another process, if it contains
no protected or binding names. Protection can be extended from names to
communicable patterns by defining

pp • qq = ppq • pqq

A substitution σ is defined as a partial function from names to communicable
patterns. The domain of σ is denoted dom(σ); the free names of σ, written fn(σ),
is given by the union of the sets fn(σx) where x ∈ dom(σ). The names of σ,
written names(σ), are dom(σ) ∪ fn(σ). A substitution σ avoids a name x (or a
collection of names ñ) if x /∈ names(σ) (respectively ñ ∩ names(σ) = {}). Note
that all substitutions considered in this paper have finite domain. For later
convenience, we denote by idX the identity substitution on a set of names X; it
maps every name in X to itself, i.e. idX(x) = x, for every x ∈ X.

Substitutions are applied to patterns as follows

σx =
{

σ(x) if x ∈ dom(σ)
x otherwise

σpxq =
{

pσ(x)q if x ∈ dom(σ)
pxq otherwise

σ(λx) = λx

σ(p • q) = (σp) • (σq)

As in pure pattern calculus, the action of a substitution σ on patterns can be
adapted to produce a function σ̂ that acts on binding names rather than on free
names. In CPC, it is defined by

σ̂x = x

σ̂pxq = pxq

σ̂(λx) =
{

σ(x) if x ∈ dom(σ)
λx otherwise

σ̂(p • q) = (σ̂p) • (σ̂q)

When σ is of the form {pi/xi}i∈I , then {pi/λxi}i∈I may be used to denote σ̂.
The symmetric matching or unification {p||q} of two patterns p and q at-

tempts to unify p and q by generating substitutions upon their binding names.
When defined, the result is a pair of substitutions whose domains are the bind-
ing names of p and of q, respectively. The rules to generate the substitutions

5

are:

{x||x}
{x||pxq}
{pxq||x}
{pxq||pxq}

 = ({}, {})

{λx||q} = ({q/x}, {}) if q is communicable
{p||λx} = ({}, {p/x}) if p is communicable

{p1 • p2||q1 • q2} = ((σ1 ∪ σ2), (ρ1 ∪ ρ2)) if {pi||qi} = (σi, ρi) for i ∈ {1, 2}
{p||q} = undefined otherwise

Two atoms unify if they know the same name. A name that seeks informa-
tion (i.e., a binding name) unifies with any communicable pattern to produce
a binding for its underlying name. Two compounds unify if their correspond-
ing components do; the resulting substitutions are given by taking unions of
those produced by unifying the components (necessarily disjoint as patterns are
well-formed). Otherwise the patterns cannot be unified and the unification is
undefined.

Proposition 2.1. If the unification of patterns p and q is defined then any
protected name of p is a free name of q.

Proof: By an easy induction on the structure of p. �

2.2 Processes

The processes of CPC are given by:

Processes P ::= 0 null
P |P parallel composition
!P replication
(νx)P restriction
p → P case

The null process, parallel composition, replication and restriction are the clas-
sical ones for process calculi: 0 is the inactive process; P | Q is the parallel
composition of processes P and Q, allowing the two processes to evolve inde-
pendently or to interact; the replication !P provides as many parallel copies of
P as desired; (νx)P binds x in P so that it is not visible from without. The
traditional input and output primitives are replaced by the case, viz. p → P ,
that has a pattern p and a body P . If P is 0 then p → 0 may be denoted by p.

For later convenience, ñ denotes a sequence of names n1, . . . , ni; for example,
(νn1)(. . . ((νni)P)) will be written (νñ)P .

The free names of processes, denoted fn(P), are defined as usual for all the
traditional primitives and

fn(p → P) = fn(p) ∪ (fn(P)\bn(p))

for the case. As expected the binding names of the pattern bind their free
occurrences in the body.

6

2.3 Operational Semantics

The application σP of a substitution σ to a process P is defined in the usual
manner, provided that there is no name capture. Name capture can be avoided
by α-conversion (written =α) that is the congruence relation generated by the
following axioms:

(νx)P =α (νy)({y/x}P) y /∈ fn(P)
p → P =α ({λy/λx}p) → ({y/x}P) x ∈ bn(p), y /∈ fn(P) ∪ bn(p)

The structural equivalence relation ≡ is defined just as in π-calculus [23]: it
includes α-conversion and its defining axioms are:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P !P ≡ P | !P

P | (νn)Q ≡ (νn)(P | Q) if n 6∈ fn(P)

It states that: | is a commutative, associative, monoidal operator, with 0 acting
as the identity; that restriction has no effect on the null process; that the order
of restricted names is immaterial; that replication can be freely unfolded; and
that the scope of a restricted name can be freely extended, provided that no
name capture arises.

The operational semantics of CPC is formulated via a reduction relation 7−→
between pairs of CPC processes. Its defining rules are:

(p → P) | (q → Q) 7−→ (σP) | (ρQ)
if {p||q} = (σ, ρ)

P 7−→ P ′

P |Q 7−→ P ′|Q
P 7−→ P ′

(νn)P 7−→ (νn)P ′
P ≡ Q Q 7−→ Q′ Q′ ≡ P ′

P 7−→ P ′

CPC has one interaction axiom, stating that, if the unification of two patterns
p and q is defined and generates (σ, ρ), then the parallel composition of two
cases p → P and q → Q reduces to the parallel composition of σP and ρQ.
Alternatively, if the unification of p and q is undefined, then no interaction
occurs. Unlike the sequential setting, there is no need for capturing failure of
unification: indeed, interaction between processes is opportunistic rather being
determined by the syntax of terms, as in sequential calculi. That is, failure to
interact with one process does not prevent interactions with other processes.

The interaction rule is then closed under parallel composition, restriction
and structural equivalence in the usual manner. Unlike pure pattern calculus,
but like pi-calculus, computation does not occur within the body of a case. As
usual, Z=⇒ denotes the reflexive and transitive closure of 7−→.

The section concludes with three simple properties of substitutions and the
reduction relation.

Proposition 2.2. For every process P and substitution σ, it holds that
fn(σP) ⊆ fn(P) ∪ fn(σ).

Proof: Trivial by definition of the application of σ. �

7

Proposition 2.3. If P Z=⇒ P ′, then fn(P ′) ⊆ fn(P).

Proof: P Z=⇒ P ′ means that P 7−→k P ′, for some k ≥ 0. The proof is by
induction in k and trivially follows by Proposition 2.2. �

Proposition 2.4. If P 7−→ P ′, then σP 7−→ σP ′, for every σ.

Proof: By induction on the derivation of P 7−→ P ′. �

Proposition 2.5. Suppose a process p → P interacts with a process Q. If x is
a protected name in p then x must be a free name in Q.

Proof: For Q to interact with p → P it must be that Q Z=⇒ (νñ)(q → Q1 | Q2)
such that ñ∩ fn(p → P) = ∅ and {p||q} is defined. Then, by Proposition 2.1, the
free names of q include x and, consequently, x must be free in q → Q1 | Q2. By
Proposition 2.3, x is free in Q. Further, x cannot belong to ñ, since x ∈ fn(p →
P) and ñ ∩ fn(p → P) = ∅. �

2.4 Trade in CPC

This section uses the example of share trading to explore the potential of CPC.
The scenario is that two traders, a buyer and a seller, wish to engage in trade.
To complete a transaction, the traders need to progress through two stages:
discovering each other and exchanging information. Both traders begin with a
pattern for their desired transaction. The discovery phase can be characterised
as a pattern-unification problem, where traders’ patterns are used to find a
compatible partner. The exchange phase occurs when a buyer and seller have
agreed upon a transaction. Now each trader wishes to exchange information in
a single interaction, preventing any incomplete trade from occurring.

The rest of this section develops three solutions of increasing sophistication
that: demonstrate discovery; introduce a registrar to validate the traders; and
protects names to ensure privacy.

Solution 1

Consider two traders, a buyer and a seller. The buyer Buy1 with bank account
b and desired shares s can be given by

Buy1 = s • λm → m • b • λx → B(x)

The first pattern s • λm is used to match with a compatible seller using share
information s, and to input a name m to be used as a channel to exchange
bank account information b for share certificates bound to x. The transaction
successfully concludes with B(x).

The seller Sell1 with share certificates c and desired share sale s is given by

Sell1 = (νn)s • n → n • λy • c → S(y)

The seller creates a channel name n and then tries to find a buyer for the shares
described in s, offering n to the buyer to continue the transaction. The channel is
then used to exchange billing information, bound to y, for the share certificates
c. The seller then concludes with the successfully completed transaction as S(y).

8

The discovery phase succeeds when the traders are placed in a parallel com-
position and discover each other by unification on s

Buy1|Sell1 ≡ (νn)(s • λm → m • b • λx → B(x) | s • n → n • λy • c → S(y))
7−→ (νn)(n • b • λx → B(x) | n • λy • c → S(y))

The next phase is to exchange billing information for share certificates, as in

(νn)(n • b • λx → B(x) | n • λy • c → S(y)) 7−→ (νn)(B(c) | S(b))

The transaction concludes with the buyer having the share certificates c and
the seller having the billing account b.

This solution allows the traders to discover each other and exchange in-
formation atomically to complete a transaction. However, there is no way to
determine if a trader is trustworthy.

Solution 2

Now add a registrar that keeps track of registered traders. Traders offer their
identity to potential partners and the registrar confirms if the identity belongs
to a valid trader. The buyer is now

Buy2 = s • iB • λj → nB • j • λm → m • b • λx → B(x)

The first pattern now swaps the buyer’s identity iB for the seller’s, bound to
j. The buyer then consults the registrar using the identifier nB to validate j; if
valid, the exchange continues as before.

Now define the seller symmetrically by

Sell2 = s • λj • iS → nS • j • λm → m • λy • c → S(y)

Also define the registrar Reg2 with identifiers nB and nS to communicate with
the buyer and seller, respectively, by

Reg2 = (νn)(nB • piSq • n | nS • piBq • n)

The registrar creates a new identifier n and delivers it to traders who have been
validated; then it makes the identifier available to known traders who attempt
to validate another known trader. Although rather simple, the registrar can
easily be extended to support a multitude of traders.

Running these processes in parallel yields the following interaction

Buy2 | Sell2 | Reg2

≡ (νn)(s • iB • λj → nB • j • λm → m • b • λx → B(x) | nB • piSq • n

| s • λj • iS → nS • j • λm → m • λy • c → S(y) | nS • piBq • n)
7−→ (νn)(nB • iS • λm → m • b • λx → B(x) | nB • piSq • n

| nS • iB • λm → m • λy • c → S(y) | nS • piBq • n)

The share information s allows the buyer and seller to discover each other and
swap identities iB and iS . The next two interactions involve the buyer and

9

seller validating each other’s identity and inputting the identifier to complete
the transaction

(νn)(nB • iS • λm → m • b • λx → B(x) | nB • piSq • n

| nS • iB • λm → m • λy • c → S(y) | nS • piBq • n)
7−→ (νn)(n • b • λx → B(x)

| nS • iB • λm → m • λy • c → S(y) | nS • piBq • n)
7−→ (νn)(n • b • λx → B(x) | n • λy • c → S(y))

Now that the traders have validated each other, they can continue with the
exchange step from before

(νn)(n • b • λx → B(x) | n • λy • c → S(y)) 7−→ (νn)(B(c) | S(b))

The traders exchange information and successfully complete with B(c) and S(b).

Solution 3

Although Solution 2 satisfies the desire to validate that traders are legitimate,
the freedom of unification allows for malicious processes to interfere. Consider
the promiscuous process Prom given by

Prom = λz1 • λz2 • a → P (z1, z2)

This process is willing to match any other process that will swap two pieces of
information for some arbitrary name a. Such a process could interfere with the
traders trying to complete the exchange phase of a transaction. For example,

(νn)(n • b • λx → B(x) | n • λy • c → S(y)) | Prom

7−→ (νn)(B(a) | n • λy • c → S(y) | P (n, b))

where the promiscuous process has stolen the identifier n and the bank account
information b. The unfortunate buyer is left with some useless information a
and the seller is waiting to complete the transaction.

This vulnerability (emerging both in Solution 1 and 2) can be repaired by
using protected names. For example, the buyer, seller and registrar of Solution
2 can become

Buy3 = s • iB • λj → pnBq • j • λm → pmq • b • λx → B(x)
Sell3 = s • λj • iS → pnSq • j • λm → pmq • λy • c → S(y)
Reg3 = (νn)(pnBq • piSq • n | pnSq • piBq • n)

Now all communications between the buyer, seller and registrar use protected
identifiers: pnBq, pnSq and pmq. Thus, we just need to add the appropriate
restrictions:

(νnB)(νnS)(Buy3 | Sell3 | Reg3)

Therefore, other processes can only interact with the traders during the dis-
covery phase, which will not lead to a successful transaction. The registrar
will only interact with the traders as all the registrar’s patterns have protected
names known only to the registrar and a trader (Proposition 2.5).

10

3 Behavioural Theory

This section follows a standard approach in concurrency to defining behavioural
equivalences, beginning with a barbed congruence and following with a labelled
transition system (LTS) and a bisimulation for CPC. Some properties of patterns
will be explored as a basis for showing coincidence of the two semantics. Finally
some equational reasoning is given.

3.1 Barbed Congruence

The first crucial step is to characterise the interactions a process can participate
in via barbs. Since a barb is an opportunity for interaction, a simplistic definition
could be the following:

P ↓ iff P ≡ p → P ′ | P ′′, for some p, P ′ and P ′′ (1)

However, this definition is too strong: for example, (νn)(n → P) does not
exhibit a barb according to (1), but it can interact with an external process,
e.g. λx → 0. Thus, an improvement to (1) is as follows:

P ↓ iff P ≡ (νñ)(p → P ′ | P ′′), for some ñ, p, P ′ and P ′′ (2)

Now, this definition is too weak. Consider (νn)(pnq → P): it exhibits a barb
according to (2), but cannot interact with any external process. A further
refinement on (2) could be:

P ↓ iff P ≡ (νñ)(p → P ′ | P ′′), for some ñ, p, P ′, P ′′ s.t. pn(p) ∩ ñ = ∅ (3)

This definition is not yet the final one, as it is not sufficiently discriminating to
have only a single kind of barb (the contexts in Definition 3.36 use two kinds
of barbs, to define success and failure). Thus, like in CCS and π-calculus [25],
barbs must be indexed, e.g. on some names that give an abstract account of the
matching capabilities of the process. Because of the rich form of interactions,
CPC barbs also include the set of names that may be tested for equality in
an interaction, not just those that must be equal. This leads to the following
definition:

Definition 3.1 (Barb). Let P ↓m̃ mean that P ≡ (νñ)(p → P ′ | P ′′) for some
ñ and p and P ′ and P ′′ such that pn(p) ∩ ñ = ∅ and m̃ = fn(p)\ñ.

For later convenience define P ⇓m̃ to mean that there exists some P ′ such
that P Z=⇒ P ′ and P ′ ↓m̃.

Using this definition, a barbed congruence can be defined in the standard way
[25, 17] by requiring three properties. Let < denote a binary relation on CPC
processes, and let a context C(·) be a CPC process with the hole ‘ · ’ replacing
one instance of the null process.

Definition 3.2 (Barb preservation). < is barb preserving iff, for every (P,Q) ∈
< and set of names m̃, it holds that P ↓m̃ implies Q ↓m̃.

Definition 3.3 (Reduction closure). < is reduction closed iff, for every (P,Q) ∈
<, it holds that P 7−→ P ′ implies Q 7−→ Q′, for some Q′ such that (P ′, Q′) ∈ <.

11

Definition 3.4 (Context closure). < is context closed iff, for every (P,Q) ∈ <
and CPC context C(·), it holds that (C(P), C(Q)) ∈ <.

Definition 3.5 (Barbed congruence). Barbed congruence, ', is the least sym-
metric, barb preserving, reduction closed and context closed binary relation on
CPC processes.

Barbed congruence relates processes with the same behaviour, as captured
by barbs: two equivalent processes must exhibit the same behaviours, and this
property should hold along every sequence of reductions and in every execution
context. This defines the strong version of barbed congruence; its weak coun-
terpart consists of replacing the predicate 7−→ with Z=⇒ in Definition 3.3, and
↓m̃ with ⇓m̃ in the definition of reduction closure, in the usual manner [24, 25].
The following proofs are (mostly) simplified by working in the strong setting;
however, everything can be rephrased in the weak setting.

The challenge in proving (strong/weak) barbed congruence is to prove con-
text closure. The typical way of solving the problem is by giving a coinduc-
tive (bisimulation-based) characterization of barbed congruence, that provides
a manageable proof technique. In turn, this requires an alternative operational
semantics, by means of a labelled transition system, on top of which the bisim-
ulation equivalence can be defined.

3.2 Labelled Transition System

The following is an adaption of the standard late LTS for the π-calculus [24].
Labels are defined as follows:

µ ::= τ | (νñ)p

where τ is used to label silent transitions.
Labels are used in transitions P

µ−→ P ′ between CPC processes, whose defin-
ing rules are given in Figure 1. If P

µ−→ P ′ then P ′ is a µ-reduct of P , alter-
natively the transition P

µ−→ P ′ indicates that P performs µ and reduces to
P ′. Rule case states that a case’s pattern can be used to interact with external
processes. Rule resnon is used when a restricted name does not appear in the
names of the label: it simply maintains the restriction on the process after the
transition. By contrast, rule resin is used when a restricted name occurs in the
label: as the restricted name is going to be shared with other processes, the re-
striction is moved from the process to the label (this is called extrusion, by using
a π-calculus terminology). Rule unify defines when two processes can interact
to perform an internal action: this can occur whenever the processes exhibit
labels with unifiable patterns and with no possibility of clash or capture due to
restricted names. Rule parint states that, if either process in a parallel composi-
tion can evolve with an internal action, then the whole process can evolve with
an internal action. Rule parext is similar, but is used when the label is visible:
when one of the processes in parallel exhibits an external action, then the whole
composition exhibits the same external action, as long as the restricted or bind-
ing names of the label do not appear free in the parallel component that does
not generate the label. Finally, rule rep unfolds the replicated process to infer
the action.

12

case : (p → P)
p−→ P

resnon :
P

µ−→ P ′

(νn)P
µ−→ (νn)P ′

n /∈ names(µ)

resin :
P

(νñ)p−−−−→ P ′

(νm)P
(νñ,m)p−−−−−→ P ′

m ∈ vn(p) \ (ñ ∪ pn(p) ∪ bn(p))

unify : P
(νm̃)p−−−−→ P ′ Q

(νñ)q−−−→ Q′

P | Q
τ−→ (νm̃, ñ)(σP ′ | ρQ′)

{p||q} = (σ, ρ)
m̃ ∩ fn(Q) = ñ ∩ fn(P) = ∅
m̃ ∩ ñ = ∅

parint :
P

τ−→ P ′

P | Q
τ−→ P ′ | Q

parext :
P

(νñ)p−−−−→ P ′

P | Q
(νñ)p−−−−→ P ′ | Q

(ñ ∪ bn(p)) ∩ fn(Q) = ∅

rep : !P |P µ−→ P ′

!P
µ−→ P ′

Figure 1: Labelled Transition System for CPC (the symmetric versions of parint
and parext have been omitted)

Note that α-conversion is always assumed, to satisfy the side conditions
whenever needed.

The presentation of the LTS is concluded with the following two results.
First, for every P and µ, there are finitely many ≡-equivalence classes of µ-
reducts of P (Proposition 3.7). Second, the LTS induces the same operational
semantics as the reductions of CPC (Proposition 3.9). As CPC reductions only
involve interaction between processes and not external actions, it is sufficient to
show that any internal action of the LTS is mimicked by a reduction in CPC,
and visa versa. All proofs are in Appendix A, because they are quite standard.

Definition 3.6. An LTS is structurally image finite if, for every P and µ, it
holds that {P ′ : P

µ−→ P ′}/≡ contains finitely many elements.

Proposition 3.7. The LTS defined in Figure 1 is structurally image finite.

Lemma 3.8. If P
(νm̃)p−−−−→ P ′ then there exist ñ and Q1 and Q2 such that P ≡

(νm̃)(νñ)(p → Q1 | Q2) and P ′ ≡ (νñ)(Q1 | Q2) and ñ ∩ names((νm̃)p) = ∅
and bn(p) ∩ fn(Q2) = ∅.

Proposition 3.9. If P
τ−→ P ′ then P 7−→ P ′. Conversely, if P 7−→ P ′ then

there exists P ′′ such that P
τ−→ P ′′ ≡ P ′.

13

3.3 Bisimulation

The next step is to develop a bisimulation relation for CPC that equates pro-
cesses with the same interactional behaviour as captured by the labels of the
LTS. The complexity for CPC is that the labels for external actions contain
patterns, and some patterns are more general than others. For example, a tran-
sition P

pnq−−→ P ′ performs the action pnq; however a similar external action of
another process could be the variable name n and the transition Q

n−→ Q′. Both
transitions have the same barb, that is P ↓n and Q ↓n; however their labels are
not identical and, indeed, the latter can interact with a process performing a
transition labeled with λx whereas the former cannot. Thus, a compatibility re-
lation is defined on patterns that can be used to develop the bisimulation. The
rest of this section discusses the development of compatibility and concludes
with the definition of bisimulation for CPC.

Bisimilarity of two processes P and Q can be captured by a challenge-reply
game based upon the actions the processes can take. One process, say P , issues
a challenge and evolves to a new state P ′. Now Q must perform an action that
is a proper reply and evolve to a state Q′. If Q cannot perform a proper reply
then the challenge issued by P can distinguish P and Q, and shows they are not
equivalent. If Q can properly reply then the game continues with the processes
P ′ and Q′. Two processes are bisimilar (or equivalent) if any challenge by one
can be answered by a proper reply from the other.

The main complexity in defining a bisimulation to capture this challenge-
reply game is the choice of actions, i.e. challenges and replies. In most process
calculi, a challenge is replied to with an identical action [22, 24]. However, there
are situations in which an exact reply would make the bisimulation equivalence
too fine for characterising barbed congruence [4, 10]. This is due to the impossi-
bility for the language contexts to force barbed congruent processes to execute
the same action; in such calculi more liberal replies must be allowed. That
CPC lies in this second group of calculi is demonstrated by the following two
examples.

Example 1 Consider the processes

P = λx • λy → x • y and Q = λz → z

together with the challenge P
λx•λy−−−−→ x • y. One may think that a possible

context Cλx•λy(·) to enforce a proper reply could be · | w • w → pwq, for w
fresh. Indeed, Cλx•λy(P) 7−→ w • w | pwq and the latter process exhibits a
barb over w. However, the exhibition of action λx • λy is not necessary for the
production of such a barb: indeed, Cλx•λy(Q) 7−→ w • w | pwq, but in doing so
Q performs λz instead of λx • λy.

Example 2 Consider the processes

P = pnq → 0 and Q = n → 0

together with the context Cpnq(·) = n → pwq, for w fresh. Although Cpnq(P) 7−→
pwq and the latter process exhibits a barb over w, the exhibition of action pnq is
not necessary for the production of such a barb: Cpnq(Q) 7−→ pwq also exhibits
a barb on w, but in doing so Q performs n instead of pnq.

14

Example 1 shows that CPC pattern-unification allows binding names to be
contractive: it is not necessary to fully decompose a pattern to bind it. Thus a
compound pattern may be bound to a single name or to more than one name
in unification. Example 2 illustrates that CPC pattern-unification on protected
names only requires the other pattern know the name, but such a name is not
necessarily protected in the reply.

These two observations make it clear that some patterns are more discerning
than others, i.e. unify with fewer patterns than others. This leads to the
following definitions.

Definition 3.10. Define a match (p, σ) to be a pattern p and substitution σ
such that bn(p) = dom(σ).

Definition 3.11. Let (p, σ) and (q, ρ) be matches. Define inductively that p is
compatible with q by σ and ρ, denoted p, σ � q, ρ as follows:

p, σ � λy, {σ̂p/y} if fn(p) = ∅
n, {} � n, {}

pnq, {} � pnq, {}
pnq, {} � n, {}

p1 • p2, σ1 ∪ σ2 � q1 • q2, ρ1 ∪ ρ2 if pi, σi � qi, ρi, for i ∈ {1, 2}

The idea behind this definition is that a pattern p is compatible with another
pattern q if and only if every other pattern r that unifies p by some substitutions
(θ, σ) also unifies with q with substitutions (θ, ρ) such that p, σ � q, ρ. That is,
the patterns that unify with p are a subset of the patterns that unify with q.
This will be proved later in Lemma 3.17.

The compatibility relation on patterns provides the concept of proper reply
in the challenge-reply game.

Definition 3.12 (Bisimulation). A symmetric binary relation on CPC processes
< is a bisimulation if, for every (P,Q) ∈ < and P

µ−→ P ′, it holds that:

• if µ = τ , then Q
τ−→ Q′, for some Q′ such that (P ′, Q′) ∈ <;

• if µ = (νñ)p and (bn(p) ∪ ñ) ∩ fn(Q) = ∅, then, for all matches (p, σ)
with fn(σ) ∩ ñ = ∅, there exist (q, ρ) and Q′ such that p, σ � q, ρ and
(σP ′, ρQ′) ∈ <.

Denote by ∼ the largest bisimulation closed under any substitution.

The definition is inspired by the early bisimulation congruence for the π-
calculus [24]: for every possible instantiation σ of the binding names, there
exists a proper reply from Q. Of course, σ cannot be chosen arbitrarily: it
cannot use in its range names that were restricted in P . Also the action µ cannot
be arbitrary, as in the π-calculus: its restricted and binding names cannot occur
free in Q.

Differently from the π-calculus, however, the reply from Q can be different
from the challenge from P : this is due to the fact that contexts in CPC are
not powerful enough to enforce an identical reply (as highligthed in Examples 1
and 2). Indeed, this notion of bisimulation allows a challenge p to be replied
to by any compatible q, provided that σ is properly adapted (yielding ρ, as
described by the compatibility relation) before being applied to Q′. This feature

15

somehow resembles the symbolic characterization of open bisimilarity given in
[30, 8]. There, labels are pairs made up of an action and a set of equality
constraints. A challenge can be replied to by a smaller (i.e. less constraining)
set. However, the action in the reply must be the same (in [30]) or becomes the
same once we apply the name identifications induced by the equality constraints
(in [8]).

3.4 Properties of Compatibility

This section considers some properties of the compatibility relation on patterns
introduced in Section 3.3; they are formalised for later exploitation, even though
some of them also illustrate some general features of patterns. In particular, we
show that compatibility preserves information used for barbs, is stable under
substitution, is reflexive and transitive.

Proposition 3.13. If p, σ � q, ρ then fn(p) = fn(q) and vn(p) ⊆ vn(q) and
pn(q) ⊆ pn(p).

Proof: By definition of compatibility and induction on the structure of q. �

Given two substitutions σ and θ, denote with θ[σ] the composition of σ and
θ, with domain limited to the domain of σ, i.e. the substitution mapping every
x ∈ dom(σ) to θ(σ(x)).

Lemma 3.14. If p, σ � q, ρ then p, θ[σ] � q, θ[ρ], for every θ.

Proof: By induction on the structure of q. The only non-trivial base case
is when q = λy; in this case, p = λx1 • . . . • λxn, for some n ≥ 1, and for
ρ = {σ̂p/y} = {σ(x1) • . . . • σ(xn)/y}. Since dom(θ[σ]) = dom(σ), we have that
p, θ[σ] � q, ϑ, for ϑ = {θ̂[σ](p)/y} = {θ[σ](x1) • . . . • θ[σ](xn)/y} = {θ(σ(x1) •
. . . • σ(xn))/y} = {θ(ρ(y))/y} = θ[ρ]. �

Proposition 3.15 (Compatibility is reflexive). For all matches (p, σ), it holds
that p, σ � p, σ.

Proof: Trivial by definition of compatibility. �

Proposition 3.16 (Compatibility is transitive). If p, σ � q, ρ and q, ρ � r, θ
then p, σ � r, θ.

Proof: By induction on r. We have three possible base cases:

• r = λz: in this case, q = λy1 • . . . • λyn, for some n ≥ 1, and

θ = {ρ̂q/z} = {ρ(y1) • . . . • ρ(yn)/z}.

Again by definition of compatibility, p = λx1
1•. . .•λxk1

1 •. . .•λx1
n•. . .•λxkn

n ,
for some k1, .., kn ≥ 1, and

ρ = {σ̂(x1
i • . . . • xki

i)/yi}i=1,..,n = {σ(x1
i) • . . . • σ(xki

i)/yi}i=1,..,n.

Thus, θ = {σ(x1
1) • . . . •σ(xk1

1) • . . . •σ(x1
n) • . . . •σ(xkn

n)/z} = {σ̂p/z} and
p, σ � r, θ, as desired.

16

• r = pnq: in this case q = pnq and θ = ρ = {}. Again by compatibility,
p = pnq and σ = {}; thus p, σ � r, θ.

• r = n: in this case q can either be pnq or n, and θ = ρ = {}. Again by
compatibility, p = pnq or p = n (this is possible only when q = n), and
σ = {}; in all cases, p, σ � r, θ.

For the inductive step, let r = r1•r2. By compatibility, q = q1•q2 and θ = θ1∪θ2

and ρ = ρ1 ∪ ρ2, with qi, ρi � ri, θi, for i = 1, 2. Similarly, p = p1 • p2 and
σ = σ1 ∪ σ2, with pi, σi � qi, ρi, for i = 1, 2. By two applications of the
inductive hypothesis, we obtain pi, σi � ri, θi, for i = 1, 2, and by definition of
compatibility we can conclude. �

The next result captures the idea behind the definition of compatibility: the
patterns that unify with p are a subset of the patterns that unify with q.

Lemma 3.17. If p, σ � q, ρ then, for every r and θ such that {r||p} = (θ, σ),
we have that {r||q} = (θ, ρ).

Proof: The proof is by induction on q. There are three possible base cases:

• If q = λy then fn(p) = ∅ and ρ = {σ̂p/y}; for the unification of r and
p to be defined, it must be θ = {} and σ = {ri/xi}xi∈bn(p), each ri

is communicable and σ̂p = r. It follows that {r||q} = ({}, {r/y}) =
({}, {σ̂p/y}) = (θ, ρ).

• If q = pnq then p = pnq and σ = ρ = {}. For r to unify with p, it must be
that r is n or pnq; in both cases θ = {}. Hence, {r||q} = ({}, {}) = (θ, ρ).

• If q = n then p is either n or pnq, and σ = ρ = {}. In both cases, r can as
well be either n or pnq. The proof is similar to the previous case.

For the inductive step, q = q1 • q2; by comparability, p = p1 • p2. There are two
possible cases for r to unify with p:

• If r = λz, then p must be communicable and θ = {p/z}; thus, by definition
of comparability, q = p and σ = ρ = {}. Hence, {r||q} = ({q/z}, {}) =
({p/z}, {}) = (θ, ρ).

• Otherwise, for r to unify with p, it must be r = r1 • r2 with {ri||pi} =
(θ1, σi), for i ∈ {1, 2}, and σ = σ1] σ2 and θ = θ1] θ2. Conclude by two
applications of induction and by definition of compatibility.

�

Notice that the converse does not hold. Take p = n and q = pnq; we have
that, for every r such that {r||p} = (θ, σ), we have that {r||q} = (θ, ρ) (the only
such r’s are n and pnq, for which σ = θ = ρ = {}); however, n, {} 6� pnq, {}.

The following result is a variation of the previous lemma, that fixes σ to
idbn(p) but allows an arbitrary substitution in the unification with r.

Lemma 3.18. If p, idbn(p) � q, ρ and {p||r} = (ϑ, θ), then {q||r} = (ϑ[ρ], θ),

Proof: By induction on q. There are three possible base cases:

17

• q = λx: by Definition 3.11, it must be that fn(p) = ∅, i.e. p = λx1•. . .•λxk,
for some k. Thus, ρ = {x1 • . . . • xk/x}, r = r1 • . . . • rk communicable,
ϑ = {r1/x1 . . . rk/xk} and θ = {}. By definition of unification, {q||r} =
({r/x}, {}) and conclude, since {r/x} = {r1 • . . . • rk/x} = ϑ[ρ].

• q = n: in this case, it must be either p = n or p = pnq; in both cases,
ρ = {}. If p = n, then trivially conclude, since q = p and ϑ[ρ] = ϑ. If
p = pnq, obtain that r can be either n or pnq; in both cases ϑ = θ = {}
and trivially conclude.

• q = pnq: in this case p = pnq, ρ = {} and work like in the previous case.

For the inductive case, q = q1 • q2; thus, by Definition 3.11, p = p1 • p2 and
pi, idbn(pi) � qi, ρi, where ρi = ρ|bn(qi), for i ∈ {1, 2}. We have two possibilities
for r:

• r = r1 • r2, where {pi||ri} = (ϑi, θi), for i ∈ {1, 2}; moreover, ϑ = ϑ1] ϑ2

and θ = θ1] θ2. Apply induction two times and easily conclude.

• r = λx and p is communicable; thus, ϑ = {} and θ = {p/x}. By definition
of compatibility, q = p and ρ = {}. Trivially conclude. �

As compatibility is an ordering on matches, it is interesting to observe that,
for every pattern p, there is a unique (up to α-conversion) maximal pattern
w.r.t. �. Note that, as in Lemma 3.18 the substitution can be fixed (or indeed
entirely elided).

Proposition 3.19. For every pattern p there exists a maximal pattern q with
respect to �; this pattern is unique up-to α-conversion of binding names.

Proof: The proof is by induction on the structure of p:

• If fn(p) = ∅, then q = λy for some fresh y.

• If p is n or pnq, then q is n.

• If p = p1 • p2, for fn(p) 6= ∅, then proceed by induction on p1 and p2.

The only arbitrary choice is the y used in the first item, that can be α-converted
to any other fresh name. �

To conclude the properties of the compatibility, it is worth remarking it does
not yield a lattice: there is no supremum for the two patterns λx and n.

3.5 Soundness of the Bisimulation

This section proves soundness by showing that the bisimulation relation is in-
cluded in barbed congruence. This is done by showing that the bisimilarity
relation is an equivalence, it is barb preserving, reduction closed and context
closed. The first three facts are ensured by the following three lemmas.

Lemma 3.20. If P ∼ Q and Q ∼ R then P ∼ R.

Proof: Standard, by exploiting Proposition 3.16. �

18

Lemma 3.21. ∼ is barb preserving.

Proof: Straightforward by Proposition 3.13 and Lemma 3.8. �

Lemma 3.22. ∼ is reduction closed.

Proof: Trivial by Proposition 3.9. �

Closure under any context is less easy to prove. The approach here is as fol-
lows: prove bisimilarity is closed under case prefixing; then prove closure under
name restriction and parallel composition (as in π-calculus, it is necessary to
simultaneously handle these two operators, because of name extrusion); finally,
prove closure under replication. Proofs of these Lemmata are in Appendix B, be-
cause they are adaptions of the corresponding results for the π-calculus. These
three results will easily entail closure under arbitrary contexts (Lemma 3.26).

Lemma 3.23. If P ∼ Q then p → P ∼ p → Q.

Lemma 3.24. If P ∼ Q then (νñ)(P | R) ∼ (νñ)(Q | R).

Lemma 3.25. If P ∼ Q then !P ∼!Q.

Lemma 3.26. ∼ is contextual.

Proof: Given two bisimilar processes P and Q, it is necessary to show that for
any context C(·) it holds that C(P) ∼ C(Q). The proof is by induction on the
structure of the context.

• If C(·) def= · then the result is immediate.

• If C(·) def= C′(·) | R or C(·) def= (νn)C′(·), then C′(P) ∼ C′(Q) by induction
and conclude by Lemma 3.24.

• If C(·) def= !C′(·), then C′(P) ∼ C′(Q) by induction and conclude by
Lemma 3.25.

• If C(·) def= p → C′(·), then C′(P) ∼ C′(Q) by induction and conclude by
Lemma 3.23.

�

The soundness of bisimilarity w.r.t. barbed congruence now trivially follows.

Theorem 3.27 (Soundness of bisimilarity). ∼ ⊆ '.

Proof: Lemma 3.21, Lemma 3.22 and Lemma 3.26 entail that ∼ satisfies the
conditions of Definition 3.5. �

3.6 Completeness of the Bisimulation

Completeness is proved by showing that barbed congruence is a bisimulation.
There are two results required: showing that barbed congruence is closed un-
der substitutions, and showing that, for any challenge, a proper reply can be
obtained via closure under an appropriate context. To this aim, we define no-
tions of success and failure that can be reported. A fresh name w is used for

19

reporting success, with a barb ↓w indicating success, and ⇓w indicating a re-
duction sequence that eventually reports success. Failure is handled similarly
using the fresh name f . A process P succeeds if P ⇓w and P 6⇓f ; P is successful
if P ≡ (νñ)(pwq • p | P ′), for some ñ and p and P ′ such that w 6∈ ñ and P ′ 6⇓f .
P becomes successful if it can reduce to a successful process and P 6⇓f .

The next lemma shows that barbed congruence is closed under any substi-
tution.

Lemma 3.28. If P ' Q then σP ' σQ, for every σ.

Proof: Given a substitution σ, choose patterns p and q such that {p||q} =
(σ, {}); to be explicit, p = λx1 • . . . • λxk and q = σ(x1) • . . . • σ(xk), for
{x1, . . . , xk} = dom(σ). Define C(·) def= p → · | q; by context closure, C(P) '
C(Q). By reduction closure, the reduction C(P) 7−→ σP can be replied to only
by C(Q) 7−→ σQ; hence, σP ' σQ, as desired. �

The other result to be proved is that challenges can be tested for a proper
reply by a context. When the challenge is an internal action, the reply is also an
internal action; thus, the empty context suffices, as barbed congruence is reduc-
tion closed. The complex scenario is when the challenge is a pattern together
with a set of restricted names, i.e., a label of the form (νñ)p. Observe that in
the bisimulation such challenges also fix a substitution σ whose domain is the
binding names of p. Most of this section develops a reply for a challenge of the
form ((νñ)p, idbn(p)); the general setting (with an arbitrary σ) will be recovered
in Theorem 3.45 by relying on Lemma 3.14.

The context for forcing a proper reply is developed in three steps. The
first step presents the specification of a pattern and a set of names N (to be
thought of as the free names of the processes being compared for bisimilarity);
this is the information required to build a reply context. The second step
develops auxiliary processes to test specific components of a pattern, based on
information from the specification. The third step combines these into a reply
context that becomes successful if and only if it interacts with a process that
exhibits a proper reply to the challenge.

For later convenience, we define the first projection fst(−) and second
projection snd(−) of a set of pairs: e.g., fst({(x,m), (y, n)}) = {x, y} and
snd({(x, m), (y, n)}) = {m,n}, respectively.

Definition 3.29. The specification specN (p) of a pattern p with respect to a
finite set of names N is defined follows:

specN (λx) = x, {}, {}

specN (n) =

{
λx, {(x, n)}, {} if n ∈ N and x is fresh for N and p

λx, {}, {(x, n)} if n /∈ N and x is fresh for N and p

specN (pnq) = pnq, {}, {}

specN (p • q) = p′ • q′, Fp] Fq, Rp]Rq if
{

specN (p) = p′, Fp, Rp

specN (q) = q′, Fq, Rq

where Fp] Fq denotes Fp ∪ Fq, provided that fst(Fp) ∩ fst(Fq) = ∅ (a similar
meaning holds for Rp]Rq).

20

Given a pattern p, the specification specN (p) = p′, F, R of p with respect to a
set of names N has three components: (1) p′, called the complementary pattern,
is a pattern used to ensure that the context interacts with a process that exhibits
a pattern q such that p is compatible with q (via some substitutions); (2) F is
a collection of pairs (x, n) made up by a binding name in p′ and the expected
(free) name it will be bound to; finally, (3) R is a collection of pairs (x, n) made
up by a binding name in p′ and the expected (restricted) name it will be bound
to. Observe that p′ is well formed as all binding names are (pairwise) different.

The specification is straightforward for binding names, protected names and
compounds. When p is a variable name, p′ is a fresh binding name λx and the
intended binding of x to n is recorded in F or R, according to whether n is free
or restricted, respectively.

Proposition 3.30. Given a pattern p and a finite set of names N , let
specN (p) = p′, F, R. Then, {p||p′} = (idbn(p), {n/x}(x,n)∈F∪R).

Proof: By straightforward induction on the structure of p. �

To simplify the definitions, let
∏

x∈S P(x) be the parallel composition of
processes P(x), for each x in S. The tests also exploit a check check(x, m, y, n, w)
to ensure equality or inequality of name substitutions:

check(x, m, y, n, w) =

{
(νz)(pzq • pxq | pzq • pyq → pwq) if m = n

pwq | (νz)(pzq • pxq | pzq • pyq → pfq • λz) otherwise

Observe that failure here is indicated by pattern pfq•λz; in this way, two failure
barbs cannot unify and so they cannot disappear during computations.

Definition 3.31 (Tests). Let w and f be fresh names, i.e. different from all
the other names around. Then define:

free(x, n, w) = (νm)(pmq • pnq → pwq | pmq • pxq)

restN (x, w) = pwq | (νm)(νz)(pmq • x • z
| pmq • (λy1 • λy2) • λz → pfq • λz
|

∏
n∈Npmq • pnq • λz → pfq • λz)

equalityR(x, m,w) = (νw̃y)(pwy1q → . . . → pwyi
q → pwq

|
∏

(y,n)∈R check(x,m, y, n, wy))

where ỹ = {y1, . . . , yi} = fst(R)

The behaviour of the tests just defined is formalized by the following three
results.

Lemma 3.32. Let θ be such that {n, w} ∩ dom(θ) = ∅; then, θ(free(x, n, w))
succeeds if and only if θ(x) = n.

Proof: Trivial. �

Lemma 3.33. Let θ be such that (N∪{w, f})∩dom(θ) = ∅; then, θ(restN (x,w))
succeeds if and only if θ(x) ∈ N \N .

21

Proof: Straightforward. �

Lemma 3.34. Let θ be such that (snd(R) ∪ {w, f,m}) ∩ dom(θ) = ∅; then,
θ(equalityR(x,m,w)) succeeds if and only if, for every (y, n) ∈ R, m = n if and
only if θ(x) = θ(y).

Proof: In order for θ(equalityR(x, m,w)) to succeed by exhibiting a barb pwq,
each check θ(check(x, m, y, n, wy)) must succeed by producing pwyq. The rest of
the proof is straightforward. �

Lemma 3.35. Let T be a test and θ be a substitution such that θ(T) succeeds;
there are exactly k reductions of θ(T) to a successful process, where k depends
only on the structure of T .

Proof: Trivial for free and restricted tests, for which k = 1 and k = 0, respec-
tively. For an equality test equalityR(x, m,w) it suffices to observe that each
successful check has an exact number of reductions to succeed (1, if m = n, 0
otherwise) and then there is a reduction to consume the success barb of each
check. Thus, k = |R| + h, where h is the number of pairs in R whose second
component equals m. �

From now on, we adopt the following notation: if ñ = n1, . . . , ni, then
pwq• ñ denotes pwq•n1 • . . .•ni. Moreover, θ(ñ) denotes θ(n1), . . . , θ(ni); hence,
pwq • θ(ñ) denotes pwq • θ(n1) • . . . • θ(ni).

Definition 3.36. The characteristic process charN (p) of a pattern p with respect
to a finite set of names N is charN (p) = p′ → testsN

F,R where specN (p) = p′, F, R
and

testsN
F,R

def= (νw̃x)(νw̃y)(
pwx1q → . . . → pwxiq → pwy1q → . . . → pwyjq → pwq • x̃

|
∏

(x,n)∈R equalityR(x, n, wx)
|

∏
(y,n)∈F free(y, n, wy)

|
∏

(y,n)∈R restN (y, wy))

where x̃ = {x1, . . . , xi} = fst(R) and ỹ = {y1, . . . , yj} = fst(F) ∪ fst(R).

Lemma 3.37. Let θ be such that dom(θ) = fst(F) ∪ fst(R); then, θ(testsN
F,R)

succeeds if and only if

1. for every (x, n) ∈ F it holds that θ(x) = n;

2. for every (x, n) ∈ R it holds that θ(x) ∈ N \N ;

3. for every (x, n) and (y, m) ∈ R it holds that n = m if and only if θ(x) =
θ(y).

Proof: By induction on |F ∪ R| and Lemmas 3.32, 3.33 and 3.34. Indeed, by
Definition 3.29, fst(F ∪R)∩ (snd(F ∪R)∪N) = ∅; moreover, freshness of w and
f implies that {w, f} ∩ dom(θ) = ∅. �

Note that the following results will consider the number of reductions re-
quired to succeed. These are significant to proving the results in the strong
setting, but unimportant in the weak setting, i.e. with 7−→ replaced by Z=⇒.

22

Lemma 3.38. Given charN (p) and any substitution θ such that dom(θ) =
fst(F)∪ fst(R) and θ(testsN

F,R) succeeds, then there are exactly k reduction steps
θ(testsN

F,R) 7−→k pwq • θ(x̃) | Z, where x̃ = fst(R) and Z ' 0 and k depends only
on F and R and N ; moreover, no sequence of reductions shorter than k can
yield a successful process.

Proof: By induction on |F ∪R| and Lemma 3.35. �

Notice that k does not depend on θ; thus, we shall refer to k as the number
of reductions for testsN

F,R to become successful. The crucial result we have to
show is that the characterisation of a pattern p with respect to a set of names
N can yield a reduction via a proper reply (according to Definition 3.12) to the
challenge (νñ)p when ñ does not intersect N . A reply context for a challenge
((νñ)p, idbn(p)) with a finite set of names N can be defined by exploiting the
characteristic process.

Definition 3.39. A reply context CN
p (·) for the challenge ((νñ)p, idbn(p)) with

a finite set of names N such that ñ is disjoint from N is defined as follows:

CN
p (·) def= charN (p) | ·

Proposition 3.40. Given a reply context CN
p (·), the minimum number of re-

ductions required for CN
p (Q) to become successful (for any Q) is the number of

reduction steps for testsN
F,R to become successful plus 1.

Proof: By Definition 3.39, success can be generated only after removing the
case p′ from charN (p); this can only be done via a reduction together with Q,
i.e. Q must eventually yield a pattern q that unifies with p′. The minimum
number of reductions is obtained when Q already yields such a q, i.e. when Q is
a process of the form (νm̃)(q → Q1 | Q2), for some m̃ and q and Q1 and Q2 such
that {p′||q} = (θ, ρ) and θ(testsN

F,R) succeeds. In this case, dom(θ) = bn(p′) =
fst(F ∪R); by Lemma 3.38, θ(testsN

F,R) becomes successful in k reductions; thus,
CN

p (Q) becomes successful in k +1 reductions, and this is the minimum over all
possible Q’s. �

Denote the number of reductions put forward by Proposition 3.40 as
Lb(N, p). The main feature of CN

p (·) is that, when the hole is filled with a
process Q, it holds that CN

p (Q) becomes successful in Lb(N, p) reductions if

and only if there exist (q, ρ) and Q′ such that Q
(νñ)q−−−→ Q′ and p, idbn(p) � q, ρ.

This fact is proved by Theorems 3.41 and 3.43.

Theorem 3.41. Suppose given a challenge ((νñ)p, idbn(p)), a finite set of names
N , a process Q and fresh names w and f such that (ñ ∪ {w, f}) ∩ N = ∅ and

(fn((νñ)p) ∪ fn(Q)) ⊆ N . If Q has a transition of the form Q
(νñ)q−−−−→ Q′ and

there is a substitution ρ such that p, idbn(p) � q, ρ then CN
p (Q) succeeds and has

a reduction sequence CN
p (Q) 7−→k (νñ)(ρQ′ | pwq • ñ | Z), where k = Lb(N, p)

and Z ' 0.

Proof: We assume, by α-conversion, that binding names of p are fresh, in
particular do not appear in Q. By Proposition 3.30 {p||p′} = (σ, θ) where

23

σ = idbn(p) and θ = {n/x}(x,n)∈F∪R. By Lemma 3.17 {q||p′} = (ρ, θ); thus
CN

p (Q) 7−→ (νñ)(ρQ′ | θ(testsN
F,R)). Since w and f do not appear in Q, the only

possibility of producing a successful process is when θ(testsN
F,R) succeeds; this

is ensured by Lemma 3.37. The thesis follows by Lemma 3.38. �

The main difficulty in proving the converse result is the possibility of renam-
ing restricted names. Thus, we first need a technical lemma that ensures us the
possibility of having the same set of restricted names both in the challenge and
in the reply, as required by the definition of bisimulation.

Lemma 3.42. Let p and N be such that pn(p) ⊆ N , bn(p) ∩ N = ∅ and
specN (p) = p′, F, R. If q is such that bn(p) ∩ fn(q) = ∅ and {p′||q} = (θ, ρ) such
that θ(testsN

F,R) succeeds, then:

• |vn(p) \N | = |vn(q) \N |;

• there exists a bijective renaming ζ of vn(q) \ N into vn(p) \ N such that
p, idbn(p) � ζq, ρ;

• θ = {n/x}(x,n)∈F ∪ {ζ−1(n)/x}(x,n)∈R.

Proof: The proof is by induction on the structure of p. We have three possible
base cases:

1. If p = λx, then p′ = x and F = R = ∅. By definition of pattern unification,
q ∈ {x, pxq, λy}, for any y. Since x ∈ bn(p) and bn(p) ∩ fn(q) = ∅, it can
only be q = λy; then, θ = {} and ρ = {x/y}. This suffices to conclude,
since vn(p) \N = vn(q) \N = ∅ and λx, id{x} � λy, ρ.

2. If p = n, then p′ = λx, for x fresh. Let us distinguish two subcases:

• If n ∈ N , then F = {(x, n)} and R = ∅. By definition of pattern
unification, q must be communicable, ρ = {} and θ = {q/x}. Since
testsN

F,R only contains free(x, n), by Lemma 3.32 it holds that q =
θ(x) = n. This suffices to conclude, since vn(p) \N = vn(q) \N = ∅
and n, {} � n, ρ.

• If n 6∈ N , then F = ∅ and R = {(x, n)}. Like before, q must
be communicable, ρ = {} and θ = {q/x}. Since testsN

F,R contains
restN (x), by Lemma 3.33 it holds that q = θ(x) = m ∈ N \N ; thus,
|vn(p) \ N | = |vn(q) \ N | = 1. This suffices to conclude, by taking
ζ = {n/m}, since n, {} � n, ρ.

3. If p = pnq, then p′ = pnq and F = R = ∅. By definition of pattern
unification, q ∈ {n, pnq} and ρ = θ = {}. In any case, vn(p) \ N =
vn(q) \N = ∅ and p, {} � q, ρ.

For the inductive case, let p = p1 •p2. By definition of specification, p′ = p′1 •p′2,
F = F1] F2 and R = R1] R2, where specN (pi) = p′i, Fi, Ri, for i ∈ {1, 2}. By
definition of pattern unification, there are two possibilities for q:

1. If q = λz, for some z, then p′ must be communicable (i.e., p′ = x1•. . .•xn,
for some n), θ = {} and ρ = {x1 • . . . • xn/z}. If p′ = x1 • . . . • xn, then,
by definition of specification, p = λx1 • . . . • λxn. Hence, vn(p) \ N =
vn(q) \N = ∅ and λx1 • . . . • λxn, id{x1,...,xn} � λz, ρ.

24

2. Otherwise, it must be that q = q1•q2, with {p′i||qi} = (θi, ρi), for i ∈ {1, 2};
moreover, θ = θ1 ∪ θ2 and ρ = ρ1 ∪ ρ2. Since the first components of F1

and F2 are disjoint (and similarly for R1 and R2), θ(testsN
F,R) succeeds

implies that both θ(testsN
F1,R1

) and θ(testsN
F2,R2

) succeed, since every test
of θ(testsN

Fi,Ri
) is a test of θ(testsN

F,R). Now, by two applications of the
induction hypothesis, we obtain that, for i ∈ {1, 2}:

• |Vi| = |Wi|, where Vi = vn(pi) \N and Wi = vn(qi) \N ;

• there exists a bijective renaming ζi of Wi into Vi such that
pi, idbn(pi) � ζiqi, ρi;

• θi = {n/x}(x,n)∈Fi
∪ {ζ−1

i (n)/x}(x,n)∈Ri
.

We now prove the following facts:

(a) if m ∈ W1 \W2, then ζ1(m) ∈ V1 \ V2:
by contradiction, assume that ζ1(m) = n ∈ V1 ∩ V2 (indeed,
ζ1(m) ∈ V1, by construction of ζ1). By construction of the spec-
ification, there exists (x, n) ∈ R1. Moreover, since n ∈ V2, there
exists m′ ∈ W2 such that ζ2(m′) = n but m′ 6= m. Again by con-
struction of the specification, there exists (y, n) ∈ R2. By inductive
hypothesis, θ1(x) = ζ−1

1 (n) = m and θ2(x) = ζ−1
2 (n) = m′. But then

θ(check(x, n, y, n)), that is part of θ(testsN
F,R), cannot succeed, since

θ1(x) 6= θ2(y) (see Lemma 3.34). Contradiction.

(b) if m ∈ W2 \W1, then ζ2(m) ∈ V2 \ V1:
similar to the previous case.

(c) if m ∈ W1 ∩W2, then ζ1(m) = ζ2(m) ∈ V1 ∩ V2:
let ni = ζi(m) ∈ Vi; by construction of the specification, there ex-
ists (xi, ni) ∈ Ri. By contradiction, assume that n1 6= n2. Then,
θ(check(x1, n1, x2, n2)), that is part of θ(testsN

F,R), reports failure,
since by induction θ1(x1) = ζ−1

1 (x1) = m = ζ−1
2 (x2) = θ2(x2) (see

Lemma 3.34). Contradiction.

Thus, V1∪V2 and W1∪W2 have the same cardinality; moreover, ζ = ζ1∪ζ2

is a bijection between them and it is well-defined (in the sense that ζ1 and
ζ2 coincide on all elements of dom(ζ1) ∩ dom(ζ2) – see point (c) above).
Thus, p1, idbn(p1) � ζq1, ρ1 and p2, idbn(p2) � ζq2, ρ2; so, p, idbn(p) �
ζq, ρ. Moreover, θ = θ1 ∪ θ2 = {n/x}(x,n)∈F1 ∪ {ζ−1(n)/x}(x,n)∈R1 ∪
{n/x}(x,n)∈F2 ∪ {ζ−1(n)/x}(x,n)∈R2 = {n/x}(x,n)∈F ∪ {ζ−1(n)/x}(x,n)∈R,
as desired. �

Theorem 3.43. Suppose given a challenge ((νñ)p, idbn(p)), a finite set of
names N , a process Q and fresh names w and f such that bn(p) ∩ N =
(ñ ∪ {w, f}) ∩ N = ∅ and (fn((νñ)p) ∪ fn(Q)) ⊆ N . If CN

p (Q) becomes suc-
cessful in Lb(N, p) reduction steps, then there exist (q, ρ) and Q′ such that

Q
(νñ)q−−−−→ Q′ and p, idbn(p) � q, ρ.

Proof: By Proposition 3.40, there must be a reduction CN
p (Q) 7−→

(νm̃)(θ(testsN
F,R) | ρQ′′) obtained because Q

(νm̃)q′

−−−−→ Q′′ and {p′||q′} = (θ, ρ).

25

Since w /∈ fn(Q, p′) and CN
p (Q) ⇓w, it must be that θ(testsN

F,R) becomes success-
ful; by Proposition 3.40, this happens in Lb(N, p)− 1 reduction steps.

By hypothesis, fn((νñ)p) ⊆ N ; thus, vn(p) \ N = ñ. Moreover, by α-
conversion, m̃ ∩ fn(Q) = ∅; thus, by fn((νm̃)q′) ⊆ fn(Q) ⊆ N , we have that
vn(q′) \ N = m̃. Since bn(p) ∩ N = ∅, we also have that bn(p) ∩ fn(q′) = ∅;
thus, we can use Lemma 3.42 and obtain a bijection ζ = {ñ/m̃} such that

p, idbn(p) � ζq′, ρ; moreover, by α-conversion, Q
(νñ)ζq′

−−−−−→ ζQ′′. We can conclude
by taking q = ζq′ and Q′ = ζQ′′. �

We are almost ready to give the completeness result, we just need an auxil-
iary lemma that allows us to remove success and dead processes from both sides
of a barbed congruence, while also opening the scope of the names exported by
the success barb.

Lemma 3.44. Let (νm̃)(P | pwq • m̃ | Z) ' (νm̃)(Q | pwq • m̃ | Z), for w /∈
fn(P,Q, m̃) and Z ' 0; then P ' Q.

Proof: By Theorem 3.27, it suffices to prove that

< = {(P,Q) : (νm̃)(P | pwq • m̃ | Z) ' (νm̃)(Q | pwq • m̃ | Z)
∧ w /∈ fn(P,Q, m̃) ∧ Z ' 0}

is a bisimulation. Consider the challenge P
µ−→ P ′ and reason by case analysis

on µ.

• If µ = τ , then (νm̃)(P | pwq • m̃ | Z) τ−→ (νm̃)(P ′ | pwq • m̃ | Z) = P̂ . By
Proposition 3.9 and reduction closure, (νm̃)(Q | pwq • m̃ | Z) τ−→ Q̂ such
that P̂ ' Q̂. By Proposition 2.5 (since w /∈ fn(Q)) and Z ' 0, it can only
be that Q̂ = (νm̃)(Q′ | pwq • m̃ | Z), where Q

τ−→ Q′. By definition of <,
we conclude that (P ′, Q′) ∈ <.

• If µ = (νñ)p, for (bn(p) ∪ ñ) ∩ fn(Q) = ∅. By α-conversion, we can also
assume that bn(p) ∩ (ñ ∪ m̃ ∪ fn(P)) = ∅. Let us now fix a substitution σ
such that dom(σ) = bn(p) and fn(σ) ∩ ñ = ∅. Consider the context

C(·) = · | pwq • λ̃m → (σ(charN (p)) | pwq • λ̃n → pw′q • ñ • m̃)

for w′ fresh (in particular, different from w). Consider now the following
sequence of reductions:

C((νm̃)(P |pwq • m̃|Z))

7−→ (νm̃)(σ(CN
p (P)) | Z | pwq • λ̃n → pw′q • ñ • m̃)

7−→Lb(N,p) (νm̃)((νñ)(σP ′|pwq • ñ|σZ ′) | Z | pwq • λ̃n → pw′q • ñ • m̃)

7−→ (νñ, m̃)(σP ′ | pw′q • ñ • m̃ | Z|σZ ′) = P̂

The first reduction is obtained by unifying pwq•m̃ with the first case of C(·);
this replaces the binding names m̃ in the context with the variable names
m̃ and the scope of the restriction is extended consequently. Moreover,
σ(charN (p)) | P = σ(charN (p) | P) = σ(CN

p (P)): the first equality holds
because dom(σ) = bn(p) and bn(p) ∩ fn(P) = ∅; the second equality holds

26

by definition of reply context. The second sequence of reductions follows
by Theorem 3.41 (ensuring that CN

p (P) 7−→Lb(N,p) (νñ)(P ′|pwq• ñ|Z ′), for
Z ′ ' 0), Proposition 2.4 and by the fact that σ((νñ)(P ′|pwq • ñ|Z ′)) =
(νñ)(σP ′|pwq•ñ|σZ ′) (indeed, w is fresh and names(σ)∩ñ = ∅). Moreover,
notice that σZ ′ ' σ0 ' 0, because of Lemma 3.28. The last reduction
is obtained by unifying pwq • ñ with the case pwq • λ̃n of the context; this
replaces the binding names ñ in the context with the variable names ñ
and the scope of the restriction is extended consequently.

Consider now C((νm̃)(Q|pwq•m̃|Z)); by reduction closure, C((νm̃)(Q|pwq•
m̃|Z)) 7−→Lb(N,p)+2 Q̂ such that P̂ ' Q̂. As P̂ has a barb containing w′,
so must Q̂; by definition of C(·), this can happen only if CN

p (Q) becomes
successful in Lb(N, p) steps. By Theorem 3.43, this entails that there exist

(q, ρ) and Q′ such that Q
(νñ)q−−−→ Q′ and p, idbn(p) � q, ρ. Moreover, with

a reasoning similar to that for the reductions of C((νm̃)(P |pwq• m̃|Z)), we
can conclude that Q̂ = (νñ, m̃)(σ[ρ](Q′) | pw′q • ñ • m̃ | Z|σZ ′); indeed,
in this case the application of Theorem 3.41 yields CN

p (Q) 7−→Lb(N,p)

(νñ)(ρQ′|pwq • ñ|Z ′).

To state that (σP ′, σ[ρ](Q′)) ∈ <, it suffices to notice that Z|σZ ′ ' 0; this
holds because of contextuality of barbed congruence. Finally, Lemma 3.14
entails that p, σ � q, σ[ρ]: indeed, σ[idbn(p)] = σ because dom(σ) = bn(p).
This shows that (q, σ[ρ]) and Q′ is a proper reply to the challenge

P
(νñ)p−−−−→ P ′ together with σ. �

Theorem 3.45 (Completeness of the bisimulation). ' ⊆ ∼.

Proof: It is sufficient to prove that, for every pair of processes P and Q such
that P ' Q and for every transition P

µ−→ P ′, there exists a proper reply (ac-
cording to the definition of the bisimulation) of Q and the reducts are still barbed
congruent. This is trivial when µ = τ , due to reduction closure and Proposi-
tion 3.9. The difficult case if when µ = (νñ)p, for (bn(p) ∪ ñ) ∩ fn(Q) = ∅. In
this case fix a substitution σ such that dom(σ) = bn(p) and fn(σ) ∩ ñ = ∅.

By Theorem 3.41 and Proposition 3.15, CN
p (P) becomes successful in k reduc-

tion steps, where k = Lb(N, p). It follows by barbed congruence that CN
p (Q)

becomes successful in k reduction steps too; Theorem 3.43 then implies that

Q
(νñ)q−−−→ Q′ for some (q, ρ′) and Q′ such that p, idbn(p) � q, ρ′.
By two applications of Theorem 3.41 it follows that CN

p (P) 7−→k

(νñ)(P ′ | pwq • ñ | Z), for Z ' 0, and CN
p (Q) 7−→k (νñ)(ρ′Q′ | pwq • ñ | Z).

Notice that, by Lemma 3.40 and definition of the reply context, these are the
only possibilities that yield a success barb in k reductions. Furthermore, reduc-
tion closure of ' and Lemma 3.44 imply that P ′ ' ρ′Q′. By Lemma 3.28, we
obtain σP ′ ' σ(ρ′Q′) = σ[ρ′](Q′). By Lemma 3.14, p, idbn(p) � q, ρ′ implies
p, σ � q, σ[ρ′]. This suffices to conclude. �

3.7 Equational Reasoning

This section considers some examples where bisimulation can be used to show
equivalence of processes. The first example exploits the unification of protected

27

names with both variable and protected names:

pnq → P | !n → P ∼ !n → P

It states that the processes pnq → P | !n → P can be subsumed by the more
compact process !n → P ; indeed, any interaction of the left hand processes can
be properly responded to by the right hand process and vice versa.

The second example considers the contractive nature of binding names in
CPC: a case with the pattern λx • λy can be subsumed by a case with the
pattern λz as long as some conditions are met. For example:

λx • λy → P | !λz → Q ∼ !λz → Q if P ∼ {x • y/z}Q

The side condition requires that the bodies of the cases must be bisimilar under
a substitution that preserves the structure of any pattern bound by λx • λy in
the process Q.

These examples both arise from pattern unification and also appear in the
compatibility relation. Indeed, the examples above are instances of a general
result:

Theorem 3.46. Let P = p → P ′ | !q → Q′ and Q = !q → Q′. If there exists ρ
such that p, idbn(p) � q, ρ and P ′ ∼ ρQ′, then P ∼ Q.

Proof: It suffices to prove that

< = {(p → P ′|Q|R,Q|R) : Q =!q → Q′ ∧ ∃ρ . p, idbn(p) � q, ρ ∧ P ′ ∼ ρQ′} ∪ ∼

is a bisimulation. To this aim, consider every challenge from p → P ′|Q|R and
show that there exists a transition from Q|R that is a proper reply (according
to the bisimulation). The converse (when the challenge comes from Q | R) is
easier.

So, let p → P ′|Q|R µ−→ P̂ ; there are two possibilities for µ:

1. µ = (νñ)p′: in this case, we also have to fix a substitution σ such that
dom(σ) = bn(p′) and fn(σ) ∩ ñ = ∅. There are three possible ways for
producing µ:

(a) µ = p and P̂ = P ′|Q|R: in this case, since the action comes
from p → P ′, by the side condition of rule parext, it must be
that bn(p) ∩ fn(Q|R) = ∅. Now, consider Q

q−→ Q′|Q with bn(q) ∩
fn(Q|R) = ∅ (this can always be done, by using α-conversion); thus,
Q|R q−→ Q′|Q|R = Q̂. Let ρ be such that p, idbn(p) � q, ρ; by
Lemma 3.14, p, σ � q, σ[ρ], where σ[idbn(p)] = σ because dom(σ) =
bn(p). Now it suffices to prove that (σP̂ , σ[ρ]Q̂) ∈ <. This fol-
lows from the hypothesis that P ′ ∼ ρQ′: indeed, by closure of
∼ under substitutions, σP ′ ∼ σ(ρQ′) = σ[ρ]Q′; by Lemma 3.24,
σP ′|Q|R ∼ σ[ρ]Q′|Q|R. Now conclude: since dom(σ) = bn(p)
and bn(p) ∩ fn(Q|R) = ∅, it holds that σP̂ = σP ′|Q|R; since
dom(σ[ρ]) = dom(ρ) = bn(q) and bn(q) ∩ fn(Q|R) = ∅, it holds that
σ[ρ]Q̂ = σ[ρ]Q′|Q|R; finally, by definition, ∼ ⊆ <.

28

(b) µ = q and P̂ = p → P ′|Q′|Q|R: in this case, since the action
comes from Q, by the side condition of rule parext, it must be that
bn(q) ∩ fn(p → P ′|R) = ∅. Now, consider Q|R q−→ Q′|Q|R = Q̂. By
Lemma 3.15, q, σ � q, σ. It suffices to prove that (σP̂ , σQ̂) ∈ <.
This follows from the definition of <: since dom(σ) = bn(q) and
bn(q) ∩ fn(p → P ′|R) = ∅, it holds that σP̂ = p → P ′|σQ′|Q|R and
σQ̂ = σQ′|Q|R.

(c) µ = (νñ)r, R
µ−→ R′ and P̂ = p → P ′|Q|R′: in this case, by the side

condition of rule parext, it must be that bn(r) ∩ fn(p → P ′|Q) = ∅.
Now, consider Q|R µ−→ Q|R′ = Q̂ and reason like in the previous
case, obtaining that σP̂ = p → P ′|Q|σR′ < Q|σR′ = σQ̂.

2. µ = τ : in this case, there are five possible ways for producing µ:

(a) R
τ−→ R′ and P̂ = p → P ′|Q|R′: this case is trivial.

(b) P̂ = ϑP ′|θ(Q′|Q)|R, where {p||q} = (ϑ, θ): Let ρ be such that
p, idbn(p) � q, ρ; by Lemma 3.18, {q||q} = (ϑ[ρ], θ). But a pattern can
unify with itself only if it is communicable; this entails that θ = {}
and that p is communicable, thus ϑ = {}. Hence, P̂ = P ′|Q′|Q|R
and conclude by taking Q|R τ−→ Q′|Q′|Q|R = Q̂, since by hypothesis
P ′ ∼ Q′.

(c) P̂ = (νñ)(ϑP ′|Q|θR′), where R
(νñ)r−−−→ R′ and {p||r} = (ϑ, θ): by

α-conversion, now let bn(p) ∩ fn(Q) = ∅ and ñ ∩ fn(p → P ′|Q) = ∅.
Now consider Q

q−→ Q′|Q with bn(q) ∩ fn(Q) = ∅; by Lemma 3.18,
the hypothesis p, idbn(p) � q, ρ entails {q||r} = (ϑ[ρ], θ). Thus,
Q|R τ−→ (νñ)(ϑ[ρ](Q′|Q)|θR′) = (νñ)(ϑ[ρ]Q′|Q|θR′) = Q̂, where
the first equality holds because dom(ϑ[ρ]) = dom(ρ) = bn(q) and
bn(q) ∩ fn(Q) = ∅. Conclude by using the hypothesis P ′ ∼ ρQ′,
thanks to closure of ∼ under substitutions, parallel and restriction.

(d) P̂ = p → P ′ | (νñ)(ϑ(Q′|Q)|θR′), where R
(νñ)r−−−→ R′ and {q||r} =

(ϑ, θ): this case is simple, by considering Q|R τ−→
(νñ)(ϑ(Q′|Q)|θR′) = Q̂ and by observing that dom(ϑ) = bn(q), with
bn(q) ∩ fn(Q) = ∅.

(e) P̂ = p → P ′ | ϑQ′|θQ′|Q|R, where {q||q} = (ϑ, θ): this case is trivial,
by observing that ϑ = θ = {}. �

To conclude, notice that the more general claim

Let P = p → P ′ | !q → Q′ and Q =!q → Q′; if there are σ and ρ
such that p, σ � q, ρ and σP ′ ∼ ρQ′, then P ∼ Q

does not hold. To see this, consider the following two processes:

P = λx → P ′ | Q with P ′ = (νn)(pnq • x | pnq •m → pwq) for x 6= m
Q =!λx → Q′ with Q′ = (νn)(pnq •m | pnq •m → pwq)

Trivially λx, {m/x} � λx, {m/x} and {m/x}P ′ ∼ {m/x}Q′ = Q′; however,
P is not bisimilar to Q. Indeed, in the context C(·) = · | k → 0, for k 6= m,

29

they behave differently: C(P) can reduce in one step to a process that is stuck
and cannot exhibit any barb on w; by contrast, every reduct of C(Q) reduces
in another step to a process that exhibits a barb on w. (As usual, for proving
equivalences it is easier to rely on bisimulation, while for proving inequivalences
it is easier to rely on barbed congruence, thanks to Theorems 3.27 and 3.45 this
approach works perfectly.) Theorem 3.46 is more demanding: it does not leave
us free to choose whatever σ we want, but it forces us working with idbn(p). Now,
the only ρ such that λx, {x/x} � λx, ρ is {x/x}; with such a substitution, the
second hypothesis of the theorem, in this case P ′ ∼ Q′, does not hold and so
we cannot conclude that P ∼ Q.

4 Comparison with Other Process Calculi

This section exploits the techniques developed in [15, 16] to formally assess the
expressive power of CPC with respect to π-calculus, Linda, Spi calculus, Fusion
and Psi calculus. After briefly recalling these models and some basic material
from [16], the relation to CPC is formalised. First, let each model, includ-
ing CPC, be augmented with a reserved process ‘

√
’, used to signal successful

termination. This feature is needed to formulate what is a valid encoding in
Definition 4.1.

4.1 Some Process Calculi

π-calculus [24, 31]. The π-calculus processes are given by the following gram-
mar:

P ::= 0 |
√

| a〈b〉.P | a(x).P | (νn)P | P |Q | !P

and the only reduction axiom is

a〈b〉.P | a(x).Q 7−→ P | {b/x}Q

The reduction relation is obtained by closing this interaction rule by parallel,
restriction and the same structural equivalence relation defined for CPC.

Linda [11]. Consider the following variant of Linda formulated to follow CPC’s
syntax. Processes are defined as:

P ::= 0 |
√

| 〈b1, . . . , bk〉 | (t1, . . . , tk).P | (νn)P | P |Q | !P

where b ranges over names and t denotes a template field, defined by:

t ::= λx | pbq

Assume that input variables occurring in templates are all distinct. This as-
sumption rules out template (λx, λx), but accepts (λx, pbq, pbq). Templates are
used to implement Linda’s pattern matching, defined as follows:

Match(;) = {} Match(pbq; b) = {} Match(λx; b) = {b/x}

Match(t; b) = σ1 Match(t̃; b̃) = σ2

Match(t, t̃ ; b, b̃) = σ1] σ2

30

where ‘]’ denotes the union of partial functions with disjoint domains. The
interaction axiom is:

〈̃b〉 | (t̃).P 7−→ σP if Match(t̃; b̃) = σ

The reduction relation is obtained by closing this interaction rule by parallel,
restriction and the same structural equivalence relation defined for CPC.

Spi calculus [3]. This language is unusual as names are now generalised to
terms of the form

M,N ::= n | x | (M,N) | 0 | suc(M) | {M}N

They are rather similar to the patterns of CPC in that they may have internal
structure. Of particular interest are the pair, successor and encryption that may
be bound to a name and then decomposed later by an intensional reduction.

The processes of the Spi calculus are:

P,Q ::= 0 |
√

| P |Q | !P | (νm)P | M(x).P | M〈N〉.P
| [M is N]P | let (x, y) = M in P

| case M of {x}N : P | case M of 0 : P suc(x) : Q

The null process, parallel composition, replication and restriction are all famil-
iar. The input M(x).P and output M〈N〉.P are generalised from π-calculus to
allow arbitrary terms in the place of channel names and output arguments. The
match [M is N]P determines equality of M and N . The splitting let (x, y) =
M in P decomposes pairs. The decryption case M of {x}N : P decrypts M and
binds the encrypted message to x. The integer test case M of 0 : P suc(x) : Q
branches according to the number. Note that the last four processes can all get
stuck if M is an incompatible term. Furthermore, the last three are intensional,
i.e. they depend on the internal structure of M .

Concerning the operational semantics, we consider a slightly modified version
of Spi calculus where interaction is generalised to

M〈N〉.P | M(x).Q 7−→ P | {N/x}Q

where M is any term of the Spi calculus. The remaining axioms are:

[M is M]P 7−→ P

let (x, y) = (M,N) in P 7−→ {M/x,N/y}P
case {M}N of {x}N : P 7−→ {M/x}P

case 0 of 0 : P suc(x) : Q 7−→ P

case suc(N) of 0 : P suc(x) : Q 7−→ {N/x}Q

Again, the reduction relation is obtained by closing the interaction axiom under
parallel, restriction and the structural equivalence of CPC.

Fusion [27]. Following the presentation in [33], processes are defined as:

P ::= 0 |
√

| P |P | (νx)P | !P | u〈x̃〉.P | u(x̃).P

31

The interaction rule for Fusion is

(νũ)(u〈x̃〉.P | u(ỹ).Q | R) 7−→ σP | σQ | σR with dom(σ) ∪ ran(σ) ⊆ {x̃, ỹ}
and ũ = dom(σ) \ ran(σ)
and σ(v) = σ(w)
iff (v, w) ∈ E(x̃ = ỹ)

where E(x̃ = ỹ) is the least equivalence relation on names generated by the
equalities x̃ = ỹ (that is defined whenever |x̃| = |ỹ|). Fusion’s reduction relation
is obtained by closing the interaction axiom under parallel, restriction and the
structural equivalence of CPC.

Psi [6]. For our purposes, Psi-calculi are parametrized w.r.t. two sets: terms
T, ranged over by M,N, . . ., and assertions A, ranged over by Ψ. The empty
assertion is written 1. We also assume two operators: channel equivalence,
·↔⊆ T×T, and assertion composition, ⊗ : A×A → A. It is also required that
·↔ is transitive and symmetric, and that (⊗,1) is a commutative monoid.

Processes in Psi are defined as:

P ::= 0 |
√

| P |P | (νx)P | !P | M〈N〉.P | M(λx̃)N.P | L Ψ M

We now give a reduction semantics, by isolating the τ actions of the LTS given
in [6]. To this aim, we recall the definiton of frame of a process P , written F(P),
as the set of unguarded assertions occurring in P . Formally:

F(L Ψ M) = Ψ F((νx)P) = (νx)F(P) F(P |Q) = F(P)⊗F(Q)

and is 1 in all other cases. We denote as (νb̃P)ΨP the frame of P . The structural
laws are the same as in π-calculus. The reduction relation is inferred by the
following laws:

Ψ ` M
·↔ N

Ψ . M〈K〉.P | N(λx̃)H.Q 7−→ P | {L̃/x̃}Q
K = H[x̃ := L̃]

Ψ⊗ΨQ . P 7−→ P ′

Ψ . P | Q 7−→ P ′ | Q
F(Q) = (νb̃Q)ΨQ, b̃Q fresh for Ψ and P

Ψ . P 7−→ P ′

Ψ . (νx)P 7−→ (νx)P ′ x 6∈ names(Ψ)
P ≡ Q Ψ . Q 7−→ Q′ Q′ ≡ P ′

Ψ . P 7−→ P ′

We write P 7−→ P ′ whenever 1 . P 7−→ P ′.

4.2 Valid Encodings and their Properties

This section recalls and adapts the definition of valid encodings as well as some
useful theorems (details in [16]) for formally relating process calculi. An en-
coding of a language L1 into another language L2 is a pair ([[·]], ϕ[[]]) where
[[·]] translates every L1-process into an L2-process and ϕ[[]] maps every source
name into a tuple of arity k of (target) names, for k > 0. The translation [[·]]
turns every source term into a target term; in doing this, the translation may

32

fix some names to play a precise rôle or may translate a single name into a tuple
of names. This can be obtained by exploiting ϕ[[]].

Now consider only encodings that satisfy the following properties. Let a
k-ary context C(1; . . . ; k) be a term where k occurrences of 0 are linearly
replaced by the holes { 1; . . . ; k} (every one of the k holes must occur once
and only once). Moreover, denote with 7−→i and Z=⇒i the relations 7−→ and
Z=⇒ in language Li; denote with 7−→ω

i an infinite sequence of reductions in Li.
Moreover, we let 'i denote the reference behavioural equivalence for language
Li. Also, let P ⇓i mean that there exists P ′ such that P Z=⇒i P ′ and P ′ ≡
P ′′ |

√
, for some P ′′. Finally, to simplify reading, let S range over processes of

the source language (viz., L1) and T range over processes of the target language
(viz., L2).

Definition 4.1 (Valid Encoding). An encoding ([[·]], ϕ[[]]) of L1 into L2 is valid
if it satisfies the following five properties:

1. Compositionality: for every k-ary operator op of L1 and for every subset of
names N , there exists a k-ary context CN

op(1; . . . ; k) of L2 such that, for
all S1, . . . , Sk with fn(S1, . . . , Sk) = N , it holds that [[op(S1, . . . , Sk)]] =
CN

op([[S1]]; . . . ; [[Sk]]).

2. Name invariance: for every S and name substitution σ, it holds that

[[σS]]
{

= σ′[[S]] if σ is injective
'2 σ′[[S]] otherwise

where σ′ is such that ϕ[[]](σ(a)) = σ′(ϕ[[]](a)) for every name a.

3. Operational correspondence:

• for all S Z=⇒1 S′, it holds that [[S]] Z=⇒2'2 [[S′]];

• for all [[S]] Z=⇒2 T , there exists S′ such that S Z=⇒1S
′ and T Z=⇒2'2

[[S′]].

4. Divergence reflection: for every S such that [[S]] 7−→ ω
2 , it holds that

S 7−→ω
1 .

5. Success sensitiveness: for every S, it holds that S ⇓1 if and only if [[S]] ⇓2.

Now recall some results concerning valid encodings, in particular for show-
ing separation results, i.e. for proving that no valid encoding can exist be-
tween a pair of languages L1 and L2 satisfying certain conditions. Here, these
languages will be limited to CPC and those introduced in Section 4.1. Orig-
inally valid encodings considered were assumed to be semi-homomorphic, i.e.
where the interpretation of parallel composition is via a context of the form
(νñ)(1 | 2 | R), for some ñ and R that only depend on the free names of
the translated processes. This assumption simplified the proofs of the following
results in general, i.e. without relying on any specific process calculus; in our
setting, since the languages are fixed, we can prove the same results without
assuming semi-homomorphism.

Proposition 4.2. Let [[·]] be a valid encoding; then, S 7−→/ 1 implies that
[[S]] 7−→/ 2.

33

Theorem 4.3. Assume that there exists S such that S 7−→/ 1 and S 6⇓1 and
S | S ⇓1; moreover, assume that every T that does not reduce is such that
T | T 7−→/ 2. Then, there cannot exist any valid encoding of L1 into L2.

To state the following proof technique, define the matching degree of a lan-
guage L, written Md(L), as the least upper bound on the number of names that
must be matched to yield a reduction in L. For example, Md(π-calculus) = 1,
since the only name matched for performing a reduction is the name of the chan-
nel where the communication happens, whereas Md(Linda) = Md(CPC) = ∞,
since there is no upper bound on the number of names that can be matched in
a reduction.

Theorem 4.4. If Md(L1) > Md(L2), then there exists no valid encoding of
L1 into L2.

4.3 CPC vs π-calculus and Linda

A hierarchy of sets of process calculi with different communication primitives is
obtained by Gorla [15] via combining four features: synchronism (synchronous
vs asynchronous), arity (monadic vs polyadic data exchange), communication
medium (channels vs shared dataspaces), and the presence of a form of pattern
matching (that checks the arity of the tuple of names and equality of some
specific names). This hierarchy is built upon a very similar notion of encoding
to that presented in Definition 4.1 and, in particular, it is proved that Linda [11]
(called L a,p,d,pm in [15]) is more expressive than monadic/polyadic π-calculus
[24, 23] (called L s,m,c,no and L s,p,c,no, respectively, in [15]).

As Linda is more expressive than π-calculus, it is sufficient to show that CPC
is more expressive than Linda. However, apart from being a corollary of such
a result, the lack of a valid encoding of CPC into π-calculus can also be shown
by exploiting the matching degree, i.e. Theorem 4.4: the matching degree of
π-calculus is one, while the matching degree of CPC is infinite.

Theorem 4.5. There is no valid encoding of CPC into Linda.

Proof: The self-matching CPC process S = x →
√

is such that S 67−→ and S 6⇓,
however S | S 7−→ and S | S ⇓. Every Linda process T such that T | T 7−→ can
reduce in isolation, i.e. T 7−→: this fact can be easily proved by induction on
the structure of T . Conclude by Theorem 4.3. �

The next step is to show a valid encoding of Linda into CPC. The encoding
[[·]] is homomorphic with respect to all operators except for input and output
which are encoded as follows:

[[(t̃).P]] def= pat−t(t̃) → [[P]]

[[〈̃b〉]] def= pat−d(̃b) → 0

The functions pat−t(·) and pat−d(·) are used to translate templates and data,
respectively, into CPC patterns. The functions are defined as follows:

pat−t() def= λx • in for x a fresh name
pat−t(t, t̃) def= t • in • pat−t(t̃)

pat−d() def= in • λx

pat−d(b, b̃) def= b • λx • pat−d(̃b) for x a fresh name

34

where in is any name (a symbolic name is used for clarity but no result relies
upon this choice). Moreover, the function pat−d(·) associates a bound variable
to every name in the sequence; this fact ensures that a pattern that translates
a datum and a pattern that translates a template match only if they have the
same length (this is a feature of Linda’s pattern matching but not of CPC’s
unification). It is worth noting that the simpler translation [[〈b1, . . . , bn〉]]

def=
b1 • . . . • bn → 0 would not work: the Linda process 〈b〉 | 〈b〉 does not reduce,
whereas its encoding would, in contradiction with Proposition 4.2.

Next is to prove that this encoding is valid. This is an easy corollary of
the following lemma, stating a strict correspondence between Linda’s pattern
matching and CPC’s unification (on patterns arising from the translation).

Lemma 4.6. Match(t̃; b̃) = σ if and only if {pat−t(t̃)||pat−d(̃b)} = (σ ∪
{in/x}, {in/x0, . . . , in/xn}), where {x0, . . . , xn} = bn(pat−d(̃b)) and dom(σ)]
{x} = bn(pat−t(t̃)) and σ maps names to names.

Proof: In both directions the proof is by induction on the length of t̃. The
forward direction is as follows.

• The base case is when t̃ is the empty sequence of template fields; thus,
pat−t(t̃) = λx• in. By definition of Match, it must be that b̃ is the empty
sequence and that σ is the empty substitution. Thus, pat−d(̃b) = in • λx
and the thesis easily follows.

• For the inductive step t̃ = t, t̃′ and pat−t(t̃) = t • in • pat−t(t̃′). By
definition of Match, it must be that b̃ = b, b̃′ and Match(t, b) = σ1

and Match(t̃′, b̃′) = σ2 and σ = σ1] σ2. By the induction hy-
pothesis, {pat−t(t̃′)||pat−d(b̃′)} = (σ2 ∪ {in/x}; {in/x1, . . . , in/xn}), where
{x1, . . . , xn} = bn(pat−d(b̃′)) and dom(σ2)] {x} = bn(pat−t(t̃′)). There
are now two sub-cases to consider according to the kind of template field
t.

– If t = pbq then σ1 = {}; thus, σ = σ2 and {pat−t(t̃)||pat−d(̃b)} =
(σ ∪ {in/x}, {in/x0, . . . , in/xn}).

– If t = λy then σ1 = {b/y} and y 6∈ dom(σ2). Thus, pat−t(t̃) is a
pattern in CPC and it follows that {pat−t(t̃)||pat−d(̃b)} = (σ1 ∪ σ2 ∪
{in/x}, {in/x0, . . . , in/xn}) = (σ ∪ {in/x}, {in/x0, . . . , in/xn}).

The reverse direction is as follows.

• The base case is when t̃ is the empty sequence of template fields; thus,
pat−t(t̃) = λx • in. Now proceed by contradiction. Assume that b̃ is not
the empty sequence. In this case, pat−d(̃b) = b0 •λx0 • (b1 •λx1 • (. . . (bn •
λxn•(in•λxn+1)) . . .), for some n > 0. By definition of pattern unification
in CPC, pat−d(̃b) and pat−t(t̃) cannot unify, and this would contradict the
hypothesis. Thus, it must be that b̃ is the empty sequence and we easily
conclude.

• The inductive case is when t̃ = t, t̃′ and thus, pat−t(t̃) = t• in•pat−t(t̃′). If
b̃ was the empty sequence, then pat−d(̃b) = in • λx and it would not unify
with pat−t(t̃). Hence, b̃ = b, b̃′ and so pat−d(̃b) = b • λx • pat−d(b̃′). By

35

definition of pattern-unification in CPC it follows that {t||b} = (σ1, {}) and
{pat−t(t̃′)||pat−d(b̃′)} = (σ2 ∪ {in/x}, {in/x1, . . . , in/xn}) and σ = σ1 ∪ σ2.
Now consider the two sub-cases according to the kind of the template field
t.

– If t = pbq then σ1 = {} and so σ2 = σ. By induction hypothesis,
Match(t̃′; b̃′) = σ, and so Match(t̃; b̃) = σ.

– If t = λy then σ1 = {b/y} and σ2 = {ni/yi} for yi ∈ dom(σ)\{y} and
ni = σyi. Thus, y 6∈ dom(σ2) and so σ = σ1] σ2. By the induction
hypothesis, Match(t̃′; b̃′) = σ2; moreover, Match(t; b) = σ1. Thus,
Match(t̃; b̃) = σ. �

Lemma 4.7. If P ≡ Q then [[P]] ≡ [[Q]]. Conversely, if [[P]] ≡ Q then
Q = [[P ′]], for some P ′ ≡ P .

Proof: Trivial, from the fact that ≡ acts only on operators that [[·]] translates
homomorphically. �

Theorem 4.8. The translation [[·]] from Linda into CPC preserves and reflects
reductions. That is:

• If P 7−→ P ′ then [[P]] 7−→ [[P ′]];

• if [[P]] 7−→ Q then Q = [[P ′]] for some P ′ such that P 7−→ P ′.

Proof: Both parts can be easily proved by a straightforward induction on
judgements P 7−→ P ′ and [[P]] 7−→ Q, respectively. In both cases, the base step
is the most interesting one and it trivially follows from Lemma 4.6; the inductive
cases where the last rule used is the structural one rely on Lemma 4.7. �

Corollary 4.9. The encoding of Linda into CPC is valid.

Proof: Compositionality and name invariance hold by construction. Opera-
tional correspondence and divergence reflection easily follow from Theorem 4.8.
Success sensitiveness can be proved as follows: P ⇓ means that there exist P ′

and k ≥ 0 such that P 7−→k P ′ ≡ P ′′ |
√

; by exploiting Theorem 4.8 k times
and Lemma 4.7, we obtain that [[P]] 7−→k [[P ′]] ≡ [[P ′′]] |

√
, i.e. that [[P]] ⇓.

The converse implication can be proved similarly. �

4.4 CPC vs Spi

CPC cannot be encoded into Spi calculus, as a corollary of Theorem 4.3. This
can be proved like in Theorem 4.5: the self-unifyinging CPC process x →

√

cannot be properly rendered in Spi.
The remainder of this section develops an encoding of Spi calculus into CPC.

The terms can be encoded as patterns using the reserved names pair, encr, 0
and suc by

[[n]] def= n [[suc(M)]] def= suc • [[M]]
[[x]] def= x [[(M,N)]] def= pair • [[M]] • [[N]]
[[0]] def= 0 [[{M}N]] def= encr • [[M]] • [[N]]

36

The tagging is used for safety, as otherwise there are potential pathologies in
the translation: for example, without tags, the representation of an encrypted
term could be confused with a pair.

The encoding of the familiar process forms are homomorphic as expected.
The input and output both encode as cases:

[[M(x).P]] def= [[M]] • λx • in → [[P]]
[[M〈N〉.P]] def= [[M]] • ([[N]]) • λx → [[P]] x is a fresh name

The symbolic name in (input) and fresh name x (output) are used to ensure
that encoded inputs will only unify with encoded outputs as for Linda.

The four remaining process forms all require pattern unification and so trans-
late to cases in parallel. In each encoding a fresh name n is used to prevent
interaction with other processes, see Lemma 2.5. As in the Spi calculus, the
encodings will reduce only after a successful unification and will be stuck oth-
erwise. The encodings are

[[[M is N]P]] def= (νn)(pnq • [[M]] → [[P]] | pnq • [[N]])

[[let (x, y) = M in P]] def= (νn)(pnq • (ppairq • λx • λy) → [[P]]
|pnq • [[M]])

[[case M of {x}N : P]] def= (νn)(pnq • (pencrq • λx • [[N]]) → [[P]]
|pnq • [[M]])

[[case M of 0 : P suc(x) : Q]] def= (νn)(pnq • p0q → [[P]]
|pnq • (psucq • λx) → [[Q]]
|pnq • [[M]])

The unification [M is N]P only reduces to P if M = N , thus the encoding
creates two patterns using [[M]] and [[N]] with one reducing to [[P]]. The
encoding of pair splitting let (x, y) = M in P creates a case with a pattern that
unifies with a tagged pair and binds the components to x and y in [[P]]. This
is put in parallel with another case that has [[M]] in the pattern. The encoding
of a decryption case M of {x}N : P checks whether [[M]] is encoded with key
[[N]] and retrieves the value encrypted by binding it to x in the continuation.
Lastly the encoding of an integer test case M of 0 : P suc(x) : Q creates a case
for each of the zero and the successor possibilities. These cases unify the tag
and the reserved names 0, reducing to [[P]], or suc and binding x in [[Q]]. The
term to be compared [[M]] is as in the other cases.

Let us now prove validity of this encoding.

Lemma 4.10. If P ≡ Q then [[P]] ≡ [[Q]]. Conversely, if [[P]] ≡ Q then
Q = [[P ′]], for some P ′ ≡ P .

Proof: Trivial, from the fact that ≡ acts only on operators that [[·]] translates
homomorphically. �

Theorem 4.11. The translation [[·]] from Spi calculus into CPC preserves and
reflects reductions, up-to CPC’s barbed congruence. That is:

• If P 7−→ P ′ then [[P]] 7−→' [[P ′]];

37

• if [[P]] 7−→ Q then Q ' [[P ′]] for some P ′ such that P 7−→ P ′.

Proof: The first claim can be easily proved by a straightforward induction
on judgement P 7−→ P ′. The base case is proved by reasoning on the Spi
axiom used to infer the reduction. Although all the cases are straightfor-
ward, a reduction rule for integers is shown for illustration. Consider the
reduction for a successor as the reduction for zero is simpler. In this case,
P = case suc(M) of 0 : P1 suc(x) : P2 and P ′ = {M/x}P2. Then,

[[P]] def= (νn)(pnq • (num • p0q) → [[P1]]
| pnq • (num • (psucq • λx)) → [[P2]]
| pnq • (num • (suc • [[M]])) → 0) .

and it can only reduce to

{[[M]]/x}[[P2]] | (νn)pnq • (num • p0q) → [[P1]]

By a straightforward induction on the structure of P2 it is easy to prove that
{[[M]]/x}[[P2]] = [[{M/x}P2]]. Thus, [[P]] 7−→ [[{M/x}P2]] | (νn)pnq • (num •
p0q) → [[P1]] ' [[P ′]], where the last equivalence follows from Lemma 2.5.
The inductive case is straightforward, with the structural case relying on
Lemma 4.10.

The second part can be proved by induction on judgement [[P]] 7−→ Q.
There is just one base case, i.e. when [[P]] = p → Q1 | q → Q2 and Q =
σQ1 | ρQ2 and {p||q} = (σ, ρ). By definition of the encoding, it can only be that
p = [[M]] • λx • in and Q1 = [[P1]] and q = [[M]] • ([[N]]) • λx and Q2 = [[P2]]
for some P1, P2, M and N . This means that P = M(x).P1 | M〈N〉.P2 and that
Q = {[[N]]/x}[[P1]] | [[P2]] = [[{N/x}P1 | P2]]. To conclude, it suffices to take
P ′ = {N/x}P1 | P2. For the inductive case there are two possibilities.

• The inference of [[P]] 7−→ Q ends with an application of the rule for
parallel composition or for structural equivalence: this case can be proved
by a straightforward induction.

• The inference of [[P]] 7−→ Q ends with an application of the rule for
restriction; thus, [[P]] = (νn)Q′, with Q′ 7−→ Q′′ and Q = (νn)Q′′. If
Q′ = [[P ′′]], for some P ′′, apply a straightforward induction. Otherwise,
there are the following four possibilities.

– Q′ = pnq • p[[M]]q → [[P1]] | pnq • p[[N]]q and, hence, Q′′ = [[P1]].
By definition of the encoding, P = [M is N]P1. Notice that the
reduction Q′ 7−→ Q′′ can happen only if [[M]] and [[N]] unify; by
construction of the encoding of Spi-terms, this can happen only if
M = N and, hence, P 7−→ P1. The thesis follows by letting P ′ = P1,
since n is a fresh name and so Q = (νn)[[P1]] ≡ [[P1]].

– Q′ = pnq • (ppairq • (λx • λy)) → [[P1]] | pnq • (pair • ([[M]] • [[N]]))
and, hence, Q′′ = {[[M]]/x, [[N]]/y}[[P1]]. This case is similar to the
previous one, by letting P be let (x, y) = (M,N) in P1.

– Q′ = pnq • (pencrq • (λx • [[N]])) → [[P1]] | pnq • (encr • ([[M]] • [[N]]))
and, hence, Q′′ = {[[M]]/x}[[P1]]. This case is similar to the previous
one, by letting P be case {M}N of {x}N : P1.

38

– Q′ = pnq•(num•p0q) → [[P1]] | pnq•(num•(psucq•λx)) → [[P2]] | pnq•
[[M]]. Hence, P = case M of 0 : P1 suc(x) : P2. According to the
kind of [[M]], there are two sub-cases (notice that, since Q′ 7−→ Q′′,
no other possibility is allowed for [[M]]).

∗ [[M]] = num • 0: in this case, Q′′ = [[P1]] | pnq • (num • (psucq •
λx)) → [[P2]] and so Q = (νn)Q′′ ≡ [[P1]] | (νn)pnq•(num•(psucq•
λx)) → [[P2]] ' [[P1]]. In this case, M = 0 and so P 7−→ P1; to
conclude, it suffices to let P ′ be P1.

∗ [[M]] = num • (suc • [[M ′]]), for some M ′: in this case, Q′′ =
{[[M ′]]/x}[[P2]] | pnq • (num • p0q) → [[P1]] and so Q = (νn)Q′′ ≡
[[{M ′/x}P2]] | (νn)pnq • (num • 0) → [[P1]] ' [[{M ′/x}P2]]. In
this case, M = suc(M ′) and so P 7−→ {M ′/x}P2; to conclude,
it suffices to let P ′ be {M ′/x}P2. �

Corollary 4.12. The encoding of Spi calculus into CPC is valid.

Proof: See the proof for Corollary 4.9. �

Notice that the criteria for a valid encoding do not imply full abstraction of
the encoding (actually, they were defined as an alternative to full abstraction
[15, 16]). This means that the encoding of equivalent Spi calculus processes
can be distinguished by contexts in CPC that do not result from the encoding
of any Spi calculus context. Indeed, while this encoding allows Spi calculus
to be modelled in CPC, it does not entail that cryptography can be properly
rendered. Consider the pattern encr•λx•λy that could unify with the encoding
of an encrypted term to bind the message and key, so that CPC can break
any encryption! Indeed this is an artefact of the straightforward approach to
encoding taken here. Some discussion of alternative approaches to encryption
in CPC are detailed in the first author’s PhD dissertation [12].

4.5 CPC vs Fusion

The separation results for CPC and the other process calculi presented so far
have all been proved via symmetry; thus, the relationship between Fusion and
CPC is of particular interest. Such calculi are unrelated, in the sense that there
exists no valid encoding from one into the other. The impossibility for a valid
encoding of CPC into Fusion can be proved in two ways, by exploiting either
the matching degree or the symmetry of CPC.

Theorem 4.13. There is no valid encoding of CPC into Fusion.

Proof: The matching degree of Fusion is 1 while the matching degree of CPC is
infinite; conclude by Theorem 4.4. Alternatively, reuse the proof for Theorem 4.5
as every Fusion process T is such that T | T 7−→ implies T 7−→. �

The converse separation result is ensured by the following theorem.

Theorem 4.14. There exists no valid encoding of Fusion into CPC.

39

Proof: By contradiction, assume that there exists a valid encoding [[·]] of Fusion
into CPC. Consider the Fusion process P

def= (νx)(u〈x〉 | u(y).
√

), for x, y and
u pairwise distinct. By success sensitiveness, P ⇓ entails that [[P]] ⇓.

We first prove that [[P]] must reduce before reporting success, i.e. that
every occurrence of

√
in [[P]] falls underneath some prefix. By composition-

ality, [[P]] def= C{u,x,y}
(νx) (C{u,x,y}

| ([[u〈x〉]]; [[u(y).
√

]])). If [[P]] had a top-level un-

guarded occurrence of
√

, then such an occurrence could be in C{u,x,y}
(νx) (), in

C{u,x,y}
| (1; 2), in [[u〈x〉]] or in [[u(y).

√
]]; in any case, it would also follow that

at least one of [[(νx)(u〈x〉 | y(u).
√

)]] or [[(νx)(x〈u〉 | u(y).
√

)]] would report
success, whereas both (νx)(u〈x〉 | y(u).

√
) 6⇓ and (νx)(x〈u〉 | u(y).

√
) 6⇓, against

success sensitiveness of [[·]]. Thus, the only possibility for [[P]] to report success
is to perform some reduction steps (at least one) and then exhibit a top-level
unguarded occurrence of

√
.

We now prove that every possible reduction leads to contradict validity of
[[·]]; this suffices to conclude. There are five possibilities for [[P]] 7−→.

1. Either C{u,x,y}
(νx) 7−→, or C{u,x,y}

| 7−→, or [[u〈x〉]] 7−→ or [[u(y).
√

]] 7−→.
In any of these cases, at least one out of [[(νx)(u〈x〉 | y(u).

√
)]] or

[[(νx)(x〈u〉 | u(y).
√

)]] would reduce; however, (νx)(u〈x〉 | y(u).
√

) 67−→
and (νx)(x〈u〉 | u(y).

√
) 67−→, against Proposition 4.2 (that must hold

whenever [[·]] is valid).

2. Reduction is generated by interaction between C{u,x,y}
(νx) and C{u,x,y}

| . As
before, [[(νx)(u〈x〉 | y(u).

√
)]] 7−→ whereas (νx)(u〈x〉 | y(u).

√
) 67−→,

against Proposition 4.2.

3. Reduction is generated by interaction between C{u,x,y}
op and [[u〈x〉]], for

op ∈ {(νx), | }. Like case 2.

4. Reduction is generated by interaction between C{u,x,y}
op and [[u(y).

√
]], for

op ∈ {(νx), | }. As before it follows that [[(νx)(x〈u〉 | u(y).
√

)]] 7−→
whereas (νx)(x〈u〉 | u(y).

√
) 67−→, against Proposition 4.2.

5. The reduction is generated by an interaction between the processes [[u〈x〉]]
and [[u(y).

√
]]. In this case, it follows that [[u〈x〉 | u(y).

√
]] 7−→ whereas

u〈x〉 | u(y).
√
67−→: indeed, the interaction rule of Fusion imposes that at

least one between x and y must be restricted to yield the interaction.
�

4.6 CPC vs Psi

CPC and Psi are unrelated, in the sense that there exists no valid encoding from
one into the other. As in Theorem 4.13, the impossibility for a valid encoding
of CPC into Psi can be proved in two ways, by exploiting the matching degree
or symmetry of CPC. The converse separation result is ensured by the following
theorem.

Theorem 4.15. There exists no valid encoding of Psi into CPC.

40

Proof: Assume that there exists a valid encoding [[·]] of Psi into CPC. Consider
the Psi process P

def= (ā.c | b.(
√
| c)) | L a

·↔ b M, where we have omitted the
argument of the actions because useless, and choose a, b and c pairwise distinct;
also consider the reduction

{a ·↔ b} ` a
·↔ b

{a ·↔ b} . ā.c | b.(
√
| c) 7−→ c |

√
| c

1 . P 7−→ (c |
√
| c) | L a

·↔ b M

Thus, P ⇓ and, by success sensitiveness, [[P]] ⇓. By compositionality, [[P]] def=
C{a,b,c}
| (C{a,b,c}

| ([[ā.c]]; [[b.(
√
| c)]]); [[L a

·↔ b M]]). Like in the proof of Theo-
rem 4.14, it is easy to prove that the only possibility for [[P]] to report success
is to perform some reduction steps (at least one) and then exhibit a top-level
unguarded occurrence of

√
.

We now prove that every possible reduction leads to contradict validity of
[[·]]; this suffices to conclude. Of course, none of [[ā.c]], [[b.(

√
| c)]] and [[L a

·↔
b M]] can reduce, because ā.c, b.(

√
| c) and L a

·↔ b M do not reduce. Thus, there
are seven possibilities for [[P]] 7−→.

1. Either C{a,b,c}
| 7−→ or the reduction is obtained by synchronizing the two

copies of C{a,b,c}
| . In both cases, also [[(c̄.a | b.(

√
| c)) | L a

·↔ b M]] would

reduce, whereas (c̄.a | b.(
√
| c)) | L a

·↔ b M 67−→, against Proposition 4.2
(that must hold whenever [[·]] is valid).

2. The reduction is obtained by synchronizing [[ā.c]] with (one of the two
copies of) C{a,b,c}

| . In this case, also [[(ā.c | c.(
√
| b)) | L a

·↔ b M]] would

reduce, whereas (ā.c | c.(
√
| b)) | L a

·↔ b M 67−→.

3. The reduction is obtained by synchronizing [[b.(
√
| c)]] with (one of the

two copies of) C{a,b,c}
| . This case is proved impossible like case 1 above.

4. The reduction is obtained by synchronizing [[L a
·↔ b M]] with (one of the

two copies of) C{a,b,c}
| . This case is proved impossible like cases 1 and 2

above.

5. The reduction is obtained by synchronizing [[ā.c]] with [[b.(
√
| c)]]. In

this case, also [[(ā.c | b.(
√

| c)) | L a
·↔ c M]] would reduce, whereas

(ā.c | b.(
√
| c)) | L a

·↔ c M 67−→.

6. The reduction is obtained by synchronizing [[ā.c]] with [[L a
·↔ b M]]. This

case is proved impossible like case 2 above.

7. The reduction is obtained by synchronizing [[b.(
√
| c)]] with [[L a

·↔ b M]].
This case is proved impossible like case 1 above.

�

41

5 Conclusions

Concurrent pattern calculus uses patterns to represent input, output and tests
for equality, whose interaction is driven by unification that allows a two-way flow
of information. This symmetric information exchange provides a concise model
of trade in the information age. This is illustrated by the example of traders
who can discover each other in the open and then close the deal in private.

As patterns drive interaction in CPC, their properties heavily influence
CPC’s behaviour theory. As pattern unification may match any number of
names these must all be accounted for in the definition of barbs. More deli-
cately, some patterns are compatible with others, in that their unifications yield
similar results. The resulting bisimulation requires that the transitions be com-
patible patterns rather than exact. Further, the techniques developed for CPC’s
behavioural theory can easily account for other kinds of pattern matching, such
as in polyadic π-calculus and Linda [13].

CPC supports valid encodings of many popular concurrent calculi such as
π-calculus, Spi calculus and Linda as its patterns describe more structures.
However, these three calculi do not support valid encodings of CPC because,
among other things, they are insufficiently symmetric. On the other hand,
while fusion calculus is completely symmetric, it has an incompatible approach
to interaction. Similarly, Psi calculus is unrelated to CPC due to supporting
implicit computations, while also being less symmetric.

Another path of development for a process calculus is implementation in
a programming language [29, 7, 2, 21]. The bondi programming language is
based upon pattern matching as the core of reduction and the theory of pattern
calculus [18, 1]. A Concurrent bondi has also been developed that extends
bondi with concurrency and interaction based on the pattern unification and
theory of CPC [12, 9].

Appendix A: Proofs of Section 3.2

Proof of Proposition 3.7 First of all, let us define an alternative (but equiv-
alent, up-to ≡) LTS for CPC, written

µ−→→ : it is obtained by replacing rep with
the following two rules (all the other rules are the same, with −→→ in place of
−→ everywhere):

P
µ−→→ P ′

!P
µ−→→ P ′ | !P

P
(νm̃)p−−−−→→ P ′ P

(νñ)q−−−−→→ P ′′

!P τ−→→ (νm̃, ñ)(σP ′ | ρP ′′) | !P

{p||q} = (σ, ρ)
m̃ ∩ ñ = ∅

We can prove that: (1) if P
µ−→→ P ′ then P

µ−→ P ′; and (2) if P
µ−→ P ′ then

P
µ−→→ P ′′, for some P ′′ ≡ P ′ (both proofs are done by a straightforward in-

duction on the derivation of the premise, whose only interesting case is when
P = !Q, for some Q).

Now define the following measure associated to a process:

‖0‖ = 0 ‖p → P ‖ = 1 ‖(νn)P ‖ = ‖P ‖

‖P1 | P2 ‖ = ‖P1 ‖ + ‖P2 ‖ + ‖P1 ‖ · ‖P2 ‖ ‖!P ‖ = ‖P ‖ + ‖P ‖ · ‖P ‖

42

By induction on the structure of P , we can prove that |{P ′ : P
µ−→→ P ′}| ≤‖P ‖.

By exploiting this fact and (2) above, it follows that there are finitely many
(up-to ≡) P ′ such that P

µ−→ P ′.

Proof of Lemma 3.8 The proof is by induction on the inference for

P
(νm̃)p−−−−→ P ′. The base case is when the last rule is case, with P = (p →

P1)
p−→ P1 = P ′; conclude by taking ñ = ∅ and Q1 = P1 and Q2 = 0. For the

inductive step, consider the last rule in the inference.

• If the last rule is resnon then P = (νo)P1
(νm̃)p−−−−→ (νo)P ′

1 = P ′, where

P1
(νm̃)p−−−−→ P ′

1 and o /∈ names((νm̃)p). By induction, there exist ñ′ and Q′
1

and Q′
2 such that P1 ≡ (νm̃)(νñ′)(p → Q′

1 | Q′
2) and P ′

1 ≡ (νñ′)(Q′
1 | Q′

2)
and ñ′ ∩ names((νm̃)p) = ∅ and bn(p)∩ fn(Q′

2) = ∅. As o /∈ names((νm̃)p)
and by α-conversion o /∈ ñ′, conclude with Q1 = Q′

1 and Q2 = Q′
2 and

ñ = ñ′, o.

• If the last rule is resin then P = (νo)P1
(νm̃′,o)p−−−−−−→ P ′

1 = P ′, where

P1
(νm̃′)p−−−−→ P ′

1 and o ∈ vn(p)\(m̃′ ∪ pn(p) ∪ bn(p)) and m̃ = m̃′, o. By
induction, there exist ñ′ and Q′

1 and Q′
2 such that P1 ≡ (νm̃′)(νñ′)(p →

Q′
1 | Q′

2) and P ′
1 ≡ (νñ′)(Q′

1 | Q′
2) and ñ′ ∩ names((νm̃′)p) = ∅ and

bn(p) ∩ fn(Q′
2) = ∅. Conclude with ñ = ñ′ and Q1 = Q′

1 and Q2 = Q′
2.

• If the last rule is parext then P = P1 | P2
(νm̃)p−−−−→ P ′

1 | P2, where

P1
(νm̃)p−−−−→ P ′

1 and fn(P2) ∩ (m̃ ∪ bn(p)) = ∅. By induction, there ex-
ist ñ′ and Q′

1 and Q′
2 such that P1 ≡ (νm̃)(νñ′)(p → Q′

1 | Q′
2) and

P ′
1 ≡ (νñ′)(Q′

1 | Q′
2) and ñ′ ∩ names((νm̃)p) = ∅ and bn(p) ∩ fn(Q′

2) = ∅.
As bn(p) ∩ fn(P2) = ∅, we can conclude with ñ = ñ′ and Q1 = Q′

1 and
Q2 = Q′

2 | P2.

• If the last rule is rep then P =!Q
(νm̃)p−−−−→ P ′, where Q | !Q (νm̃)p−−−−→ P ′. We

easily conclude by induction and by the fact that P ≡ Q | !Q.

Proof of Proposition 3.9 The first claim is proved by induction on the
inference for P

τ−→ P ′. The base case is with rule unify: P = P1 | Q1,

where P1
(νm̃)p−−−−→ P ′

1 and Q1
(νñ)q−−−→ Q′

1 and P ′ = (νm̃, ñ)(σP ′
1 | ρQ′

1) and
{p||q} = (σ, ρ) and m̃∩ fn(Q1) = ñ∩ fn(P1) = ∅ and m̃∩ ñ = ∅. By Lemma 3.8,
it follows that P1 ≡ (νm̃)(νõ)(p → P ′′

1 | P ′′
2) and P ′

1 ≡ (νõ)(P ′′
1 | P ′′

2),
with õ ∩ names((νm̃)p) = ∅ and bn(p) ∩ fn(P ′′

2) = ∅; similarly, Q1 ≡
(νñ)(νr̃)(q → Q′′

1 | Q′′
2) and Q′

1 ≡ (νr̃)(Q′′
1 | Q′′

2), with r̃∩names((νñ)q) = ∅ and
bn(q) ∩ fn(Q′′

2) = ∅. By exploiting α-conversion on the names in õ, r̃, we have
õ, r̃ ∩ (names((νm̃)p) ∪ names((νñ)q)) = ∅; thus, P1 | Q1 ≡ (νm̃, ñ)(νõ, r̃)(p →
P ′′

1 | P ′′
2 | q → Q′′

1 | Q′′
2) 7−→ (νm̃, ñ)(νõ, r̃)(σP ′′

1 | P ′′
2 | ρQ′′

1 | Q′′
2). Since σ avoids

õ, dom(σ)∩fn(P ′′
2) = ∅ and ρ avoids r̃, dom(ρ)∩fn(Q′′

2) = ∅ and õ∩fn(Q′′
1 | Q′′

2) =
r̃ ∩ fn(P ′′

1 | P ′′
2) = ∅, conclude P 7−→ (νm̃, ñ)(νõ, r̃)(σP ′′

1 | P ′′
2 | ρQ′′

1 | Q′′
2) ≡

(νm̃, ñ)(σ((νõ)(P ′′
1 | P ′′

2)) | ρ((νr̃)(Q′′
1 | Q′′

2))) ≡ (νm̃, ñ)(σP ′
1 | ρQ′

1) = P ′.
For the inductive step, reason on the last rule used in the inference.

43

• If the last rule is parint then P = P1 | P2, for P1
τ−→ P ′

1 and P ′ = P ′
1 | P2.

Apply induction to the transition P1
τ−→ P ′

1 to obtain that P1 7−→ P ′
1;

thus, P 7−→ P ′.

• If the last rule is resnon then P = (νn)P1, for P1
τ−→ P ′

1 and P ′ = (νn)P ′
1.

Again, trivial by induction.

• If the last rule is rep then P =!P1, for P1 | !P1
τ−→ P ′. By induction,

P1 | !P1 7−→ P ′ and easily conclude, since P ≡ P1 | !P1.

The second claim is by induction on the inference for P 7−→ P ′. The base case
is when P = p → P ′

1 | q → Q′
1 and P ′ = σP ′

1 | ρQ′
1, for {p||q} = (σ, ρ). By the

unify rule in the LTS

(p → P ′
1)

p−→ P ′
1 (q → Q′

1)
q−→ Q′

1

p → P ′
1 | q → Q′

1
τ−→ σP ′

1 | ρQ′
1

{p||q} = (σ, ρ)

and the result is immediate. For the inductive step, reason on the last rule used
in the inference.

• If P = P1 | P2, where P1 7−→ P ′
1 and P ′ = P ′

1 | P2, then use the induction
and exploit the parint rule.

• If P = (νn)P1, where P1 7−→ P ′
1 and P ′ = (νn)P ′

1, then use the induction
and exploit the resnon rule.

• Otherwise, it must be that P ≡ Q 7−→ Q′ ≡ P ′. By induction, Q
τ−→ Q′

for some Q′′ ≡ Q′. We now have to prove that structurally equivalent
processes have the same τ -transitions, up-to ≡; this is done via a second
induction, on the inference of the judgement P ≡ Q. The following are
two representative base cases; the other base cases are easier, as is the
inductive case.

– P = !R ≡ R | !R = Q: since Q = R | !R τ−→ Q′′, for Q′′ ≡ Q′, we can
use rule rep of the LTS and obtain P

τ−→ Q′′; we can conclude, since
Q′′ ≡ Q′ ≡ P ′.

– P = (νn)P1 | P2 ≡ (νn)(P1 | P2) = Q, that holds since n 6∈ fn(P2):
by the first inductive hypothesis, (νn)(P1 | P2)

τ−→ Q′′, for Q′′ ≡ Q′.
Moreover, by definition of the LTS, the last rule used in this inference
must be resnon; thus, P1 | P2

τ−→ Q′′′ and Q′′ = (νn)Q′′′. There are
three possible ways to generate the latter τ -transition:

∗ P1
τ−→ P ′

1 and Q′′′ = P ′
1 | P2: in this case

P1
τ−→ P ′

1

(νn)P1
τ−→ (νn)P ′

1

P = (νn)P1 | P2
τ−→ (νn)P ′

1 | P2

and conclude by noticing that (νn)P ′
1 | P2 ≡ (νn)(P ′

1 | P2) =
Q′′ ≡ Q′ ≡ P ′.

∗ P2
τ−→ P ′

2 and Q′′′ = P1 | P ′
2: this case is similar to the previous

one, but simpler.

44

∗ P1
(νm̃)p−−−−→ P ′

1 and P2
(νñ)q−−−→ P ′

2, and Q′′′ = (νm̃, ñ)(σP ′
1 | ρP ′

2),
where {p||q} = (σ, ρ), m̃∩ fn(P2) = ñ∩ fn(P1) = ∅ and m̃∩ ñ = ∅:
this case is similar to the base case of the first claim of this
Proposition and, essentially, relies on Lemma 3.8. The details
are left to the interested reader.

Appendix B: Proofs of Section 3.5

Proof of Lemma 3.23 It is necessary to prove that the relation

< = {(p → P, p → Q) : P ∼ Q} ∪ ∼

is a bisimulation. The only possible challenge of p → P is p → P
p−→ P such

that bn(p)∩ fn(Q) = ∅; moreover, fix any σ such that dom(σ) = bn(p). The only
possible reply from p → Q is p → Q

p−→ Q, that is a valid reply (in the sense of
Definition 3.12). Indeed, p, σ � p, σ, by Proposition 3.15, and (σP, σQ) ∈ <,
because P ∼ Q and ∼ is closed under substitutions by definition.

Proof of Lemma 3.24 It is necessary to prove that the relation

< = {((νñ)(P | R), (νñ)(Q | R)) : P ∼ Q}

is a bisimulation. Fix any transition (νñ)(P | R)
µ−→ P̂ that, by definition of

the LTS, has been inferred as follows:

P | R
µ̄−→ P̄

...

(νñ)(P | R)
µ−→ P̂

(?)

where µ = (νm̃)µ̄ and P̂ = (ν ñ\m̃)P̄ and the dots denote repeated applications
of resnon (one for every name in ñ \ m̃) and resin (one for every name in m̃).

If µ̄ = τ , then m̃ = ∅; moreover, P | R µ̄−→ P̄ can be generated in three ways:

• If the transition is
P

τ−→ P ′

P | R
τ−→ P ′ | R

then by P ∼ Q there exists Q
τ−→ Q′ such that P ′ ∼ Q′; conclude with

(νñ)(Q | R) τ−→ (νñ)(Q′ | R).

• If the transition is
R

τ−→ R′

P | R
τ−→ P | R′

consider (νñ)(Q | R) τ−→ (νñ)(Q | R′) and conclude.

45

• If the transition is

P
(νl̃)p−−−→ P ′ R

(νõ)r−−−→ R′

P | R
τ−→ (νl̃, õ)(σP ′ | θR′)

with {p||r} = (σ, θ) and l̃∩ fn(R) = õ∩ fn(P) = l̃∩ õ = ∅. Now, there exist

(q, ρ) and Q′ such that Q
(νl̃)q−−−→ Q′ and p, σ � q, ρ and σP ′ ∼ ρQ′. By

Lemma 3.17, {q||r} = (ρ, θ) and so

Q
(νl̃)q−−−→ Q′ R

(νõ)r−−−→ R′

Q | R
τ−→ (νl̃, õ)(ρQ′ | θR′)

where, by α-conversion, we can always let õ ∩ fn(Q) = ∅ (the other side
conditions for applying rule unify already hold). By repeated applications
of rule resnon, infer (νñ)(Q | R) τ−→ (νñ)(νl̃, õ)(ρQ′ | θR′) and easily con-
clude.

If µ̄ = (νl̃)p, it must be that (bn(p)∪ l̃)∩ fn((νñ)(Q | R)) = ∅. Then, fix any
σ such that dom(σ) = bn(p) and fn(σ) ∩ l̃ = ∅. The transition P | R

µ̄−→ P̄ can
be now generated in two ways:

• The transition is

P
(νl̃)p−−−→ P ′

P | R
(νl̃)p−−−→ P ′ | R

(l̃ ∪ bn(p)) ∩ fn(R) = ∅

By P ∼ Q there exist (q, ρ) and Q′ such that Q
(νl̃)q−−−→ Q′ and p, σ �

q, ρ and σP ′ ∼ ρQ′. By α-equivalence, let bn(q) ∩ fn(R) = ∅; thus,

Q | R
(νl̃)q−−−→ Q′ | R. By applying the same sequence of rules resnon

and resin used for (?) (this is possible since fn(p) = fn(q), see Proposi-

tion 3.13), conclude with (νñ)(Q | R)
(νl̃,m̃)q−−−−−→ (ν ñ\m̃)(Q′ | R) = Q̂.

Since dom(σ) ∩ fn(R) = bn(p) ∩ fn(R) = ∅ and substitution application is
capture-avoiding by definition, obtain that σP̂ = σ((ν ñ\m̃)(P ′ | R)) =
(ν ñ\m̃)(σP ′ | R). Similarly, ρQ̂ = (ν ñ\m̃)(ρQ′ | R). This suffices to
conclude (σP̂ , ρQ̂) ∈ <, as desired.

• The transition is

R
(νl̃)p−−−→ R′

P | R
(νl̃)p−−−→ P | R′

(l̃ ∪ bn(p)) ∩ fn(P) = ∅

By α-equivalence, let (l̃ ∪ bn(p)) ∩ fn(Q) = ∅; this allows us to infer

Q | R
(νl̃)p−−−→ Q | R′. Now, by the same sequence of rules resnon and

resin used for (?), we obtain (νñ)(Q | R)
(νl̃,m̃)p−−−−−→ (ν ñ\m̃)(Q | R′) = Q̂.

By Proposition 3.15, p, σ � p, σ. Moreover, since dom(σ) ∩ fn(P,Q) = ∅
and substitution application is capture-avoiding, obtain that σP̂ = (ν ñ\
m̃)(P | σR′) and σQ̂ = (ν ñ\m̃)(Q | σR′). This suffices to conclude
(σP̂ , σQ̂) ∈ <, as desired.

46

Proof of Lemma 3.25 This proof rephrases the similar one in [31]. First,
define the n-th approximation of the bisimulation:

∼0 = Proc× Proc
∼n+1 = {(P,Q) :

∀ P
µ−→ P ′

µ = τ ⇒ ∃ Q
τ−→ Q′. (P ′, Q′) ∈ ∼n

µ = (νñ)p ⇒ ∀σ s.t. dom(σ) = bn(p) ∧
fn(σ) ∩ ñ = ∅ ∧
(bn(p) ∪ ñ) ∩ fn(Q) = ∅

∃ (q, ρ) and Q′s.t. Q
(νñ)q−−−→ Q′∧

p, σ � q, ρ ∧ (σP ′, ρQ′) ∈ ∼n

Symmetrically for transitions of Q}

Trivially, ∼0 ⊇ ∼1 ⊇ ∼2 ⊇ · · · .
We now prove that, since the LTS is structurally image finite (see Proposi-

tion 3.7), it follows that
∼ =

⋂
n≥0

∼n (4)

One inclusion is trivial: by induction on n, it can be proved that ∼ ⊆ ∼n

for every n, and so ∼ ⊆
⋂

n≥0 ∼n. For the converse, fix P
µ−→ P ′ and con-

sider the case for µ = (νm̃)p, since the case for µ = τ can be proved like in
π-calculus. For every n ≥ 0, since P ∼n+1 Q, there exist (qn, ρn) and Qn

such that Q
(νm̃)qn−−−−−→ Qn and p, σ � qn, ρn and σP ′ ∼n ρnQn. However, by

Proposition 3.19, there are finitely many (up-to α-equivalence) such qn’s; thus,
there must exist (at least) one qk that leads to infinitely many Qn’s that, be-
cause of Proposition 3.7, cannot be all different (up-to ≡). Fix one of such

qk’s; there must exist (at least) one Qh such that Q
(νm̃)qk−−−−−→ Qh and there are

infinitely many Qn’s such that Q
(νm̃)qk−−−−−→ Qn and Qn ≡ Qh. Fix one of such

Qh’s. It suffices to prove that σP ′ ∼n ρhQh, for every n. This fact trivially
holds whenever n ≤ h: in this case, we have that ∼n ⊇ ∼h. So, let n > h. If
Qn ≡ Qh, conclude, since ≡ is closed under substitutions (notice that ρn = ρh

since qn = qh = qk) and ≡ ⊆ ∼n, for every n. Otherwise, there must exist
m > n such that Qm ≡ Qh (otherwise there would not be infinitely many Qn’s
structurally equivalent to Qh): thus, σP ′ ∼m ρhQh that implies σP ′ ∼n ρhQh,
since m > n.

Thus, !P ∼!Q if and only if !P ∼n!Q, for all n. Let Pn denote the parallel
composition of n copies of the process P (and similarly for Q). Now, it can be
proved that

!P ∼n P 2n and !Q ∼n Q2n (5)

The proof is by induction on n and the details are left to the interested reader.
By repeatedly exploiting Lemma 3.24, it follows that P 2n ∼ Q2n and so by (4)

P 2n ∼n Q2n (6)

Now by (6) it follows that P ∼ Q implies that P 2n ∼n Q2n, for all n. By (5) and
Lemma 3.20 (that also holds with ∼n in place of ∼), it follows that !P ∼n!Q,
for all n. By (4), conclude that !P ∼!Q.

47

References

[1] bondi programming language. http://bondi.it.uts.edu.au/.

[2] CppLINDA: C++ LINDA implementation, 2010. Retrieved 18 November
2010, from http://sourceforge.net/projects/cpplinda/.

[3] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1 – 70, 1999.

[4] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the
asynchronous π-calculus. Theoretical Computer Science, 195(2):291–324,
1998.

[5] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. Studies
in Logic and the Foundations of Mathematics. Elsevier Science Publishers
B.V., 1985.

[6] J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: a frame-
work for mobile processes with nominal data and logic. Logical Methods in
Computer Science, 7(1), 2011.

[7] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java package for
distributed and mobile applications. Software – Practice and Experience,
32(14):1365–1394, 2002.

[8] M. G. Buscemi and U. Montanari. Open bisimulation for the concurrent
constraint pi-calculus. In Proc. of ESOP, volume 4960 of LNCS, pages
254–268. Springer, 2008.

[9] Concurrent bondi. Concurrent bondi, 2011. Retrieved 1 June 2013, from
http://www-staff.it.uts.edu.au/~tgwilson/concurrent_bondi/.

[10] R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus
for global computing. Information and Computation, 205(10):1491–1525,
2007.

[11] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[12] T. Given-Wilson. Concurrent Pattern Unification. PhD thesis, University
of Technology, Sydney, Australia, 2012.

[13] T. Given-Wilson and D. Gorla. Pattern matching and bisimulation. In
Proc. of COORDINATION, volume 7890 of LNCS, pages 60–74. Springer,
2013.

[14] T. Given-Wilson, D. Gorla, and B. Jay. Concurrent pattern calculus. In
Proc. of IFIP-TCS, volume 323 of IFIP Advances in Information and Com-
munication Technology, pages 244–258. Springer, 2010.

[15] D. Gorla. Comparing communication primitives via their relative expressive
power. Information and Computation, 206(8):931–952, 2008.

[16] D. Gorla. Towards a unified approach to encodability and separation results
for process calculi. Information and Computation, 208(9):1031–1053, 2010.

48

[17] K. Honda and N. Yoshida. On reduction-based process semantics. Theo-
retical Computer Science, 151(2):437–486, 1995.

[18] B. Jay. Pattern Calculus: Computing with Functions and Data Structures.
Springer, 2009.

[19] B. Jay and T. Given-Wilson. A combinatory account of internal structure.
Journal of Symbolic Logic, 76(3):807–826, 2011.

[20] B. Jay and D. Kesner. First-class patterns. Journal of Functional Pro-
gramming, 19(2):191–225, 2009.

[21] JoCaml. The JoCaml system, 2010. Retrieved 1 February 2011, from
http://jocaml.inria.fr/.

[22] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[23] R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of
Specification, volume 94 of Series F. NATO ASI, Springer, 1993.

[24] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part
I/II. Information and Computation, 100:1–77, 1992.

[25] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP,
volume 623 of LNCS, pages 685–695. Springer, 1992.

[26] R. Milner, M. Tofte, and R. Harper. The definition of Standard ML. MIT
Press, 1990.

[27] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry
in mobile processes. In Proc. of LICS, pages 176–185. IEEE Computer
Society, 1998.

[28] G. Picco, A. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In
Proc. ICSE, pages 368–377. ACM Press, 1999.

[29] B. C. Pierce and D. N. Turner. Pict: A programming language based on
the pi-calculus. In Poof, Language and Interaction: Essays in honour of
Robin Milner, pages 455–494. MIT Press, 1997.

[30] D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Informatica,
33(1):69–97, 1996.

[31] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[32] A. Unyapoth and P. Sewell. Nomadic Pict: Correct communication infras-
tructures for mobile computation. In Proc. of POPL’01, pages 116–127.
ACM, 2001.

[33] L. Wischik and P. Gardner. Explicit fusions. Theoretical Computer Science,
340(3):606–630, 2005.

49

