N.B. Ciascun esercizio può ammettere più risposte corrette. Mettete una croce

Nome e Cognome

su tutte quelle che ritenete tali.
Esercizio 1. Sia A l'insieme $\{\{a\}, \{\{a\}\}\}\$, e sia $\mathcal{P}(A)$ l'insieme dei suoi sottinsiemi.
$ \Box \{a\} \subseteq A \Box \{a\} \in A \Box \{\{\{a\}\}\} \subseteq A \Box \{a\} \in \mathcal{P}(A) \Box \{\{a\}\} \in \mathcal{P}(A) \Box \{\{\{a\}\}\} \in \mathcal{P}(A) \Box \{\{\{a\}\}\} \subseteq \mathcal{P}(A) $
Esercizio 2. Siano A e B due insiemi tali che $A \cap B = \emptyset$; quali tra le seguenti equazioni è corretta?
$\Box A = A - B$ $\Box A \cup B = A \cup (B - A)$ $\Box A = (B \cup A) - B$ $\Box \mathcal{P}(A) \cap \mathcal{P}(B) = \emptyset$
Esercizio 3. Per quali delle seguenti equazioni è possibile trovare opportuni insiemi A e B che la rendono vera?
$\Box A = ((A \cup B) \cap (A - B)) \times ((A \cap B) \cup (B - A))$ $\Box A = A \cup \mathcal{P}(A)$ $\Box A = A \cup \mathcal{P}(B)$
Esercizio 4. Sia $A = \{a\}$. Quali delle seguenti affermazioni è vera?
 □ Ogni relazione binaria su A è transitiva □ Ogni relazione binaria su A è simmetrica □ Ogni relazione binaria su A è antisimmetrica □ Ogni relazione binaria su A è riflessiva □ Ogni relazione binaria su A è una funzione iniettiva
Esercizio 5. Sia $\mathcal N$ l'insieme dei numeri naturali, e $\mathcal P(\mathcal N)$ l'insieme delle sue parti. Trovare, se esiste, una relazione di equivalenza su $\mathcal P(\mathcal N)$ tale che l'insieme delle sue classi di equivalenza sia in corrispondenza biunivoca con $\mathcal N$. Nel caso una tale relazione non esista, spiegare perché.
Rispondere qui
Esercizio 6. Dimostrare per induzione che qualunque numero naturale n maggiore di 1 si scompone in al più $\log_2 n$ fattori primi.
Rispondere qui

Rispondere qui	
Esercizio 8. Quella logica propos	nali delle seguenti affermazioni è vera? Date due formule arbitrarie ϕ izionale,
	oddisfacibile allora ψ è soddisfacibile; n'è soddisfacibile allora ψ non è soddisfacibile.
Esercizio 9. Us	sando la deduzione naturale, derivare la formula:
	$(A \to (B \to C)) \to ((A \to B) \to (A \to C))$
Rispondere qui	