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ABSTRACT
Despite recent improvements of the capabilities of Wireless
Sensor Networks (WSN) nodes, network protocol support
for key management is still lagging behind. While in tradi-
tional networks well known protocol suites (e.g., IPsec IKE
and the TLS handshake), are commonly used for flexible ne-
gotiation of the cryptographic and key exchange protocols,
to the best of our knowledge no similar support has been
provided for the same operation in WSNs. The goal of this
paper is therefore threefold. We discuss the design of a flex-
ible security negotiation protocol for WSNs, and we suggest
to adapt TLS handshake ideas to obtain maximum flexibil-
ity. We design and implement a security association set up
protocol, tailored to the resource constraints and limits of
WSN nodes. Finally, we run an experimental assessment of
this protocol operations in support of RSA key transport,
Elliptic Curve Diffie-Hellman key agreement, and Identity
Based Encryption key agreement.

Categories and Subject Descriptors
D.4.4 [Communications Management]: Network com-
munication; D.4.6 [Security and Protection]: Crypto-
graphic controls.

General Terms
Security, Design.

Keywords
Sensor network security, secure communication architecture,
identity based encryption.

1. INTRODUCTION
Application scenarios for wireless sensor networks (WSNs)

are extremely diverse and heterogeneous [1, 2], ranging from
smart environment to perimeter sensing, to weather and am-
bient control, to healthcare, to military applications, and so
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on. With so much diversity, a one-size-fits-all general design
paradigm for WSN security appears far from being effective,
if even possible.

Even restricting (as in this paper) to point-to-point uni-
cast communication protection, only a careful analysis of the
specific requirements emerging in a given scenario may tell
whether protection should take place at link layer, for hop-
by-hop communications, or at network/transport layer, for
end-to-end communications, or at both layers. Similarly, a
“better than nothing”level of protection may fulfill the needs
of some deployments, but may turn out to be largely insuffi-
cient in hostile environments or in mission critical scenarios
such as military or healthcare ones. Finally, the huge het-
erogeneity in the sensor nodes capability (in terms of mem-
ory, computational, or energy requirements) further plays
against the identification of a “unique” or “common” secu-
rity solution set, whereas they call for a large spectrum of
security level versus resource consumption trade-offs.

The above discussion underlines the need for the research
community not only to limit its investigation on the identifi-
cation and design of new security protocols or suites, but also
to complementarily address approaches devised to permit
flexibility and extensibility in the choice (i.e., negotiation) of
which specific algorithm or cipher suite fits the actual need
of a target WSN deployment.

The aim of this paper is to test, through implementation
and experimental assessment, design ideas for the specifica-
tion of a security protocol for the establishment of (dynamic)
security associations across pairs of possibly heterogeneous
WSN nodes. We specifically focus on the case of unicast as-
sociations. Albeit restrictive and not sufficient to cover the
variety of WSN communication security needs, the design
of a WSN unicast security protocol nevertheless represents
a first step which can be exploited in a variety of scenarios.
Moreover, the problem of unicast security has been exten-
sively addressed in traditional networks throughout several
years of evolution, yielding extremely mature security as-
sociation management protocols such as the Internet Key
Exchange (IKE) protocol [3] employed in the IPsec frame-
work, or the handshake phase of the Transport Layer Secu-
rity (TLS) protocol [4], proven adaptable to contexts (e.g.,
layer 2 authentication with EAP-TLS/TTLS) other than
web security for which it was originally conceived. However,
extending these approaches to resource-constrained wireless
nodes requires careful investigation and is the subject of this
work. More specifically, we make the following contributions
to flexible security provisioning for WSNs.

• We define a new protocol for key management and
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cipher suite negotiation. The protocol draws several
basic concepts from the TLS handshake, because of
its capability to support the negotiation of the crypto-
graphic key management approach itself in addition to
the negotiation of symmetric cipher suites for message
authentication and encryption.

• To demonstrate the viability of our design, we im-
plement it on TelosB and MICA2 sensor nodes. Our
proof-of-concept implementation supports three differ-
ent key management mechanisms: A key transport and
a key agreement schemes based on traditional RSA
and Elliptic Curve Cryptography (ECC), respectively,
and a key agreement approach based on Identity Based
Cryptography (IBC) [5].

• We experimentally assess the performance of our im-
plementation vs. message and energy consumption over-
head, showing that the extra complexity and overhead
posed by our proposed negotiation scheme is minimal.

The paper is organized as follows. In the next section we
review works on security for WSNs. Section 3 provides the
necessary background and considerations for the definition
of our negotiation protocol, then described in Section 4. In
Section 5 we evaluate the costs of our mechanism associated
to RSA, ECC and ID-NIKDS, a dialect of IBC. Section 6
concludes the paper.

2. RELATED WORKS
Security in WSNs has been extensively addressed, both in

terms of message encryption and integrity, as well as node
authentication and key exchange, including the support of
public key based approaches which is considered viable since
at least 6 years [6, 7] even on severely resource constrained
sensor nodes.

WSN security frameworks supporting symmetric encryp-
tion and message authentication have been largely deployed,
the most known perhaps being TinySec [8] and MiniSec [9].
The former is the first fully implemented protocol for link
layer cryptography in WSNs. It provides security services
similar to IPsec (header authentication and authenticated
encryption). It achieves low energy consumption and mem-
ory usage through tailored optimizations (e.g. reusing part
of the packet header as Initialization Vector) and weak-
ened security (e.g. no protection against replay attacks).
MiniSec deploys security at network layer, for both unicast
and broadcast communications, and improves the protection
level at the expense of a slightly higher sensor node resource
commitment.

However, neither TinySec nor MiniSec are integrated in a
comprehensive security architecture that includes a specifi-
cally devised protocol for key management support. These
frameworks are thought for static environments: Security
services must be set at compilation time, and use a pre-
established cryptographic key, which makes the whole net-
work insecure even by compromising a single node.

To the best of our knowledge, Sizzle [10] and Tiny-3TLS
[11] are the only works that have addressed the design of
a security architecture for WSNs. Both these works, how-
ever, focus on the porting of the TLS protocol as is over
WSNs, and specifically on the development of secure web
servers over sensor nodes and on the specification of gateway
functionalities for providing end-to-end security and secure

querying from “legacy” clients to sensor nodes. TLS is ex-
tended to support Elliptic Curve Cryptography [12] to make
it viable in a WSN environment. Unlike these works, we do
not promote the porting of TLS to the WSN environment.
Rather, we inherit TLS cipher suite negotiation ideas apply-
ing them to a protocol purely dedicated to key exchange and
security association set-up (i.e., a protocol whose goals are
similar to those of IPsec IKE), and not necessarily meant to
operate on a end-to-end basis (although, of course, it could).

3. BACKGROUND

3.1 IPsec IKE and TLS
Widely employed standard-based security association/ses-

sion set up protocols, such as the IPsec Internet Key Ex-
change (IKE) protocol [3], or the handshake phase of the
Transport Layer Security (TLS) protocol [4] and its UDP-
based version (DTLS) [13], do not restrict their operations
to the exchange of cryptographic information for symmetric
key derivation. Rather, they further permit to flexibly nego-
tiate the specific security services and relevant cipher suites
to be employed.

Roughly speaking, the peer starting the handshake in-
forms the other peer about the supported or desired cipher
suites. The responding peer commits the decision of which
specific cryptographic algorithms, among the offered ones,
shall be employed. The handshake then proceeds with the
usual exchange of information needed to establish a com-
mon cryptographic secret, from which detailed per-session
keys are derived. The session set up is concluded by au-
thenticating the previous information exchange and cipher
suite negotiation phase, thus preventing attacks to the ne-
gotiation protocol.

Besides technical details, the most notable difference be-
tween IPsec IKE and the (D)TLS handshake resides in the
fact that IPsec IKE assumes Diffie-Hellman as key agree-
ment mechanism and only permits negotiation of the au-
thentication and encryption algorithms, whereas (D)TLS
has the further flexibility of permitting to choose which
specific approach shall be employed for cryptographic key
management (e.g., RSA-based key transport, Diffie-Hellman
Key agreement in one of its variants—Anonymous, Fixed,
Ephemeral—, etc). As such, an approach inspired to the
TLS handshake appears more exploitable in the WSN envi-
ronment.

For the convenience of the reader, we now briefly review
the TSL negotiation and key management operation. In
TLS, the handshake starts with a client sending an Clien-

tHello message to the server. This message carries three
kinds of information: Protocol-specific information (e.g., SS-
L/TLS version used, length, session, compression algorithms
supported, etc.), a 32B nonce made up of 28B random num-
ber plus 4B timestamp, and a list of supported cipher suites.
Each cipher suite specifies three1 algorithms for key ex-
change, symmetric encryption, and message authentication,
respectively. For instance, the cipher suiteTLS RSA WITH

RC4 128 SHA implies key transport via RSA (Figure 1),
RC4 symmetric encryption with 128b key to be used for the
encrypted data transfer following the TLS handshake phase,

1 Since TLS version 1.2 [4], a fourth algorithm for the Pseudo
Random Function used in the subsequent key derivation
phase may be optionally further specified.
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Figure 1: TLS key transport with RSA.

Figure 2: TLS key agreement with Fixed Diffie Hell-
man over Elliptic Curves.

and message authentication via SHA-1. Alternatively, a ci-
pher suite TLS ECDH ECDSA WITH ... would mandate
for a “Fixed” Elliptic Curve Diffie-Hellman key agreement,
i.e., with public coefficients signed with Elliptic Curve DSA
signatures (Figure 2) [12].

The server replies with a ServerHello message which
contains the server nonce, the chosen cipher suite, and sup-
plementary data such as the session identifier etc. After the
ServerHello message, the TLS handshake proceeds dif-
ferently, depending on the specific key exchange algorithm
selected.

In case of RSA key transport (Figure 1), the server sends a
Certificate message containing its RSA public key inside
an X.509v3 Certificate signed by a Certification Authority
(or a Certificate chain), and closes the Server hello phase
with a ServerHelloDone message. Once the client suc-
cessfully checks that the RSA certificate has a valid signa-
ture, and that the signing Certification Authority is trusted,
it sends back a ClientKeyExchange message containing
a 46B Pre-Master Secret, generated by the client, and en-
crypted using the RSA Public Key of the Server. As a re-
sult, both client and server can derive (using the exchanged

nonces, through Pseudo Random Functions - refer to the
standard [4] for details) the session key (Master Secret),
the needed cryptographic keys for symmetric encryption and
message authentication, and, when applicable, initialization
vectors.

In case of ECDH, the messages sent by the Server depend
on which specific ECDH key exchange algorithm has been
selected. If “Fixed” ECDH ECDSA (Figure 2), the Server
sends a certificate containing the ECDH-capable public key
signed by the Certification Authority with ECDSA. If an
“Anonymous”ECDH exchange is selected, the ECDH public
key is delivered in a message called ServerKeyExchange.
If, finally, an“Ephemeral”ECDH key exchange is performed,
say ECDHE RSA, then the ECDH public key delivered in
the ServerKeyExchange message is signed with RSA,
whose Public Key Certificate is delivered in the Certifi-

cate message. Similarly, the Client reply depends on the
key exchange algorithm chosen. For instance, in the “Fixed”
ECDH case, the certified ECDH client public key (obviously
a point belonging to the same Elliptic Curve used by the
Server) is delivered in a Certificate message (Figure 2),
while the most consuming exchange is the “Ephemeral” case
where both a Certificate and a ClientKeyExchange

message are required. The Pre-Master Secret is then de-
rived as usual (Figure 2), and cryptographic keys are derived
exactly as described above for RSA.

Independently of the specific key exchange algorithm em-
ployed, the TLS handshake concludes with a further ex-
change that is crucial to prevent attacks to the negotiation
process. All the above described messages are plaintext,
and as such can be trivially tampered through a man-in-the-
middle (MITM) attack. Specifically, a MITM might attack
the negotiation procedure deployed through the exchange of
the plaintext ClientHello and ServerHello messages,
by modifying the ClientHello message removing all but
the weakest cipher suites in the list of offered ones, i.e., leav-
ing only the cipher suites that the attacker could break. This
is prevented by exchanging two further messages on both
sides. A first 1b long message, ChangeCipherSpec, sim-
ply tells the other peer to switch to authenticated/encrypted
mode using the negotiated algorithms. The message imme-
diately following is called Finished. It contains a message
authentication code (MAC) of the hash of all the previous
sent and received handshake messages as seen by the peer.
Specifically, a pseudo-random function (PRF) keyed with
the master secret and expanded to at least 12B [4]. The
other peer will decrypt the received Finished message, and
will verify the hash and the related MAC before proceeding
further with the actual TLS data transfer session.

3.2 Cryptographic Primitives
Public key cryptography is widely deployed to secure com-

puter systems and networks. One of the most known and
used asymmetric cryptosystem is RSA [14], whose security
is based on the computational hardness of factoring large
numbers and on the RSA problem (taking the eth root mod-
ulo a composite number n). Other cryptographic schemes
are recently used that are more suited for devices that are
severely resource-constrained like wireless sensor nodes.

One example is Elliptic Curve Cryptography (ECC). A
cryptosystem based on elliptic curves is defined by a finite
field Fq, a small set of parameters that describe the ellip-
tic curve E/Fq , a point P ∈ E(Fq), and the order n of P .
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These parameters are chosen in such a way that the ellip-
tic curve discrete logarithm problem (ECDLP) cannot be
solved by the adversary in reasonable time. In the suite
of algorithms based on ECC we have both protocols for
key exchange (ECDH) and protocols for digital signatures
(ECDSA). ECC promises to deliver the same security of
RSA with much shorter keys. A comparison between differ-
ent cryptographic systems [15] shows that RSA with a key
size of 622b offers the same security as ECC with a key only
105b long. More recently, NIST recommended an RSA key
size of 3072b and an ECC key size of 256b to build cryp-
tosystems that can be safe until the year 2030 [16]. Clearly,
shorter keys are important in WSNs since they use less mem-
ory in the device and consume less energy for transmission
when sent over the wireless channel.

Another important cryptographic scheme is Identity Based
Cryptography (IBC). IBC is a public key cryptosystem where
any string is a valid public key. In particular, the ID of the
sensor can be the public key. With IBC, certificate manage-
ment is greatly simplified: Two sensors can communicate
securely by exchanging their IDs and not large certificates,
with a clear advantage in terms of energy used to set up the
secure communication channel.

The most efficient IBC schemes are based on bilinear pair-
ings on elliptic curves. Let E/Fq be an elliptic curve over
a finite field Fq, E(Fq) the set of points of this curve, and
#E(Fq) the order of the group. Let n be a positive integer,
G an additive group of order n with identity 0, and GT a
multiplicative group of order n with identity 1. A bilinear
pairing is an efficiently computable and non-degenerative
mapping such that ∀P,Q ∈ G and ∀a, b ∈ Z

∗,

e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P,Q)b = e(P,Q)ab.

This latter property is called bilinearity. In this work we
use pairings of type 1 (as defined in [17]), that also have the
following property: e(P,Q) = e(Q,P ).

In an IBC system anyone is able to generate a public key
from a known identity by using the master public key. Each
public key is associated with a secret key that the Trusted
Authority (TA) can generate by using the master secret key.
In our setting, sensors can be preloaded with the master pub-
lic key and the private key associated to their identity. Once
the network is deployed, the trusted authority does not need
to be online, and sensors and other nodes can get the pub-
lic key of each other just by exchanging their IDs, with a
clear advantage in terms of energy that has to be consumed
for setting up a confidential and authenticated communica-
tion channel. Adding more sensors later is made possible
by assigning new IDs and corresponding private keys. Due
to these advantages, IBC is more and more used in security
protocols designed for wireless sensor networks [18].

4. OUR NEGOTIATION PROTOCOL
A key exchange protocol for WSNs should be defined with

the following core requirements in mind.

• It should enable the negotiation of the specific key ex-
change protocol employed.

• it should be decoupled from the encrypted/authen-
ticated message delivery, i.e., it should be security-
association oriented rather than session-oriented.

• It should minimize message transmission overhead and
energy consumption, and be optimized for sensor node
support.

The first requirement suggests to devise a negotiation mech-
anism more flexible than that used by IPsec IKE (based on
Diffie-Hellman) and, rather, similar to the TLS handshake
protocol. In other words, we should prefer a key exchange
protocol that provides the flexibility to permit the negoti-
ation of the preferred or most appropriate public key algo-
rithm for key transport or key agreement.

The second requirement implies protocol operations quite
different from those of TLS (where the handshake is inte-
gral part of the encrypted/authenticated bulk data transfer
session). It rather implies a functionally similar to that of
IPsec IKE, whose goal is limited to the set up of a security
association across a pair of nodes, whereas the task of deliv-
ering authenticated or protected data packets is demanded
to one or more different dedicated protocols (e.g., the IPsec
Encapsulated Security Payload or the IPsec Authentication
Header). In other words, our proposed key exchange proto-
col should provide negotiation for cryptographic algorithms,
as well as keying material, to existing data security protocol
specific for sensor nodes, such as TinySec [8] or MiniSec [9].

Finally, the third requirement mandates the tailored de-
sign and optimization of the protocol messages for limited
overhead and energy consumption. Schemes such as IBC are
appealing candidates for key management in WSNs, as they
permit a reduction of the communication overhead.

In designing our negotiation protocols, although based on
general principles whose implementation should be easily
portable among different platforms, we have taken a prag-
matic view, and started from the analysis of the capabili-
ties of popular, off-the-shelf sensor nodes, thus providing a
proof-of-concept protocol implementation on actual wireless
sensor motes. We have specifically focused on two family
of nodes: The TelosB and MICA2 motes. TelosB features
an 8MHz MSP430 micro-controller, a 16b RISC processor
and the IEEE 802.15.4 compliant transceiver, the Chipcon
CC2420. The MICA2 motes are equipped with the 4MHz
Atmel ATmega128L 8b micro-controller and the Chipcon
CC1000 low-power wireless transceiver.

Our program code has been written in a combination of
nesC, C and assembly language. We have used as much
as possible existing public domain implementation of the
employed cryptographic algorithms.

4.1 Cipher Suite Negotiation Procedure
Figure 3 depicts the negotiation procedure of our protocol.

This is similar to that employed in both TLS and IPsec IKE.
The node initiating the security association set up, called
the Initiator, sends an InitiatorHello message. This mes-
sage fits a 28B packet, as this is the default payload size in
TinyOS, the OS used by both TelosB abd MICA2 motes.
The specific fields included in the packet are shown in Fig-
ure 4. They are the following.

• The first three bytes of the message specify the hand-
shake protocol and the version used, the type of mes-
sage among those available in the protocol (Hello,
Certificate, KeyExchange, Finished, etc.), and
the message size (in bytes).

• The next two bytes provide the network layer identifier
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Figure 3: Cipher suite Negotiation procedure.

of the sensor node, enabling multiple protocols at both
data link and network layers.

• A session identifier field (two bytes) is used to guar-
antee that the security association set up among two
arbitrary nodes is unique for each party. To this pur-
pose, the two bytes are set by both parties: The Ini-
tiator fills the first byte with a value unique for that
node, whereas the Responder is in charge to fill the
second byte. Note that a security association identi-
fier can use the session identifier as well as the name
of the involved peers, i.e., the single byte chosen by a
node is not a limiting factor even in the case of nodes,
such as a sink, which needs to establish a large amount
of security associations.

• For lack of packet payload space, the size of the nonce
is reduced to 16B, compared to the 32B of TLS. In-
stead of using the TinyOS random number genera-
tion function (RandomLFSR), nonces have been gen-
erated through TinyRNG [19], as this is a crypto-
graphic pseudo-random number generator that uses
the received bit errors (unpredictable and difficult to
manipulate) as the main source of entropy.

• The final five bytes are reserved for the specification
of the supported cipher suites. A compact bit-wise en-
coding format has been chosen to retain a constant
size irrespective of the number of cipher suites sig-
naled. The first two bytes specify the asymmetric key
exchange algorithms. Each algorithm is indicated with
a bit set to one in the appropriate position 0 . . . 15,
so that up to 16 asymmetric algorithms can be sup-
ported. The next two bytes indicate the symmetric ci-
pher. Again, 15 possible ciphers plus the “null” cipher
can be signaled. Finally, the last byte indicates the
hash to be used in the message authentication code.

The drawback of the proposed cipher suite specification
approach is that a relative preference list for the Initiator,
as given in TLS by the order in which cipher suites are listed,
cannot be now supported. We therefore rely on an absolute
preference list, where stronger ciphers are assumed to be
coded as most significant bits in the relevant packet fields.

Figure 4: Negotiation packet format.

The ResponderHello message has the same structure,
and specifies which (single) cipher suite is employed. As a
result, at most three bits in the last five bytes are set to 1.

A difference with respect to TLS is that the closing Fin-

ished message is not encrypted using the negotiated sym-
metric cipher. This is in line with the principle that the
proposed key exchange protocol is decoupled from the fol-
lowing data delivery phase, and it permits to save bytes.
The Finished message contains an HMAC computed over
the whole set of messages exchanged during the handshake,
keyed with the master secret computed at the end of the
key exchange algorithm, and derived from the Pre-Master
Secret exchanged (RSA) or agreed upon (ECDH, IBC) us-
ing the usual TLS PRF-based key derivation [4]. The size of
the HMAC depends on the digest size of the hash function
employed, 16B or 20B for MD5 or SHA-1, respectively, and
hence fits the packet payload size (if hash functions with
larger digest are eventually employed, truncation to fit the
packet size is advised).

4.2 Key Exchange with RSA and ECDH
Messages exchanged after the ResponderHello depend

on the negotiated asymmetric algorithm, and may include
a Certificate message and/or a KeyExchange message.
To cope with the stringent resource limits of sensor motes,
the main target of the protocol implementation consisted
in reducing as much as possible the number and size of
the exchanged messages. In the case of RSA key trans-
port or ECDH key agreement, the number of messages can-
not be reduced with respect to the TLS handshake (be-
sides the straightforward removal of the ServerHelloDone

TLS-equivalent message, which could be managed by using
header bits). Hence, the most effective reduction concerns
the size of the messages themselves, and especially of the
Certificate message size. For the RSA-1024 case, a cer-
tificate of at least 262B is needed [10], whereas an ECC-160
certificate can be packed into as little as 86B [10]. These
sizes do not prevent message fragmentation to occur because
of the TinyOS 28B payload size. However, they provide a
consistent reduction with respect to the relevant X.509v3
certificates (approximately 700B for RSA-1024 and 530B for
ECC-160).

In our implementation the cryptographic algorithms con-
sidered, namely, RSA public key encryption, ECDH key
agreement, and ECDSA signatures, have been adapted from
the public domain libraries RELIC [20] and TinyECC [21].

4.3 Key Exchange with IBC
Our negotiation protocol can easily support key exchange

based on Identity Based Cryptography (IBC). As mentioned
earlier, IBC allows the nodes to exchange significantly less
messages as the protocol requires only the exchange of four
messages (the two Hello from both Initiator and Respon-
der, and the two Finished messages for negotiation authen-
tication).

59



Table 1: Energy consumption of cryptographic al-
gorithms [mJ].

Signature Key Exchange
Mote Algorithm

Sign Verify Initiator Resp.

RSA-1024 292.0 11.8 16.7 292.0
MICA2 ECC-160 23.4 44.5 25.2 25.2

ID-NIKDS / / 49.2 49.2

RSA-1024 68.9 2.7 3.5 68.9
TelosB ECC-160 6.3 12.4 6.2 6.2

ID-NIKDS / / 18.1 18.1

We have exploited the very efficient and compact ID-
NIKDS implementation [22] of IBC for MICA2 motes, and
our own custom implementation for the TelosB nodes. Com-
putation of the Pre-Master Secret is performed once the
node identifier (the public key for IBC) is received at both
sides. At the Initiator side, the Pre-Master Secret is com-
puted as PMSI,R = ê(SI , PR), whereas at the Responder
side the same secret is computed as PMSR,I = ê(SR, PI).
Here, PMSR,I = PMSI,R is a 24B Pre-Master Secret com-
puted by the pair of nodes and PX = φ(idX) is the public
key of node X directly derived from its identifier through
an hash function φ(.) that maps the node identifier onto the
Elliptic curve2. SX is the private key assigned to node X
by a trusted third party deploying the IBC scheme. Finally,
ê(SX , PY ) is the pairing function employed. In our case this
function is ηT pairing computed over a supersingular Elliptic
Curve. These types of curves are particularly appealing for
WSN environments, as they permit an extremely efficient
implementation in terms of memory and processing require-
ments, when compared with implementations on ordinary
curves [23, 24].

5. EXPERIMENTAL PERFORMANCE AS-
SESSMENT

To assess the practical feasibility of our proposed secu-
rity negotiation protocol we have first computed the com-
munication overhead associated to our protocol when RSA,
ECC or ID-NIKDS are selected by the two peers. We have
also measured the energy consumed during the negotiation
phase, distinguishing between the energy needed to compute
the cryptographic primitives and the energy due to message
exchange.

Table 1 shows the energy consumed for the considered
cryptographic algorithms. In order to estimate the energy
needed for signature generation and verification we use the
formula E = U ∗I ∗t. For MICA2 motes, when the processor
is in active mode I = 8mA. TelosB consumes I = 1.8mA
when in active mode. Typically, U = 3.0V with two new
AA batteries3.

2 In our implementation we have assigned node identifiers
so that the hash φ(.) provides a point over the elliptic curve,
i.e., so that the resulting quadratic equation needed to derive
the y-axis value from an x-coordinate has a solution. Note
that, in general, this may not be guaranteed by an arbitrary
node identifier.
3 The energy consumption of the cryptographic operations
has also been obtained experimentally by taking the voltage
difference between the sensor and a set of resistors used to
clean up the signal from the noise coming from the lab envi-

Table 2: Energy cost of handshake.

Handshake overhead

Algorithm Communication [byte] Energy cost [mJ ]
MICA2 TelosB

RSA 468 364.88 89.98
ECC 276 151.46 43.68

ID-NIKDS 100 110.62 39.19

During a RSA handshake the Initiator performs two oper-
ations: Responder’s certificate verification, and encryption
of the Pre-Master Secret with the responder public key. The
Responder instead executes only the operation of decrypt-
ing the KeyExchange message delivered by the Initiator.
When using ECC the Initiator verifies the ECDSA signature
on the Responder certificate and executes an ECDH opera-
tion to obtain the Pre-Master Secret. Identical procedures
are executed at the Responder side. With ID-NIKDS, both
Initiator and Responder are required to perform a bilinear
pairing to compute the Pre-Master Secret.

The total energy consumption during the handshake is
listed in Table 2, which also shows the total overhead in
bytes. Results are separately displayed for RSA, ECC and
ID-NIKDS and refer to our implementation both on the
TelosB and on the MICA2 platforms. The protocol with the
higher overhead is RSA. Using ID-NIKDS the overhead de-
creases by a factor of four. As for energy consumption, RSA
is also the worst solution, since ECC and ID-NIKDS con-
sume around three times less (see also Figure 9, commented
below). The difference of energy consumption between ECC
and ID-NIKDS is due to the higher number of operations of
ECC and to its higher communication overhead. The im-
provement of ID-NIKDS over ECC on MICA2 motes is a
order of magnitude higher than the same on TelosB motes
because of the tailored code optimization of ID-NIKDS re-
alized through RELIC libraries. This optimization is not
available for TelosB motes.

Figures 5 and 6 depict the percentage of energy consumed
by the Initiator and by the Responder, respectively, during
the handshake phase, on the two mote platforms considered.
This allows us to quantify how much we pay to support the
negotiation of the cryptographic key management approach
itself. In all cases, the cost imposed by public key cryptog-
raphy is by far the dominant one: 88% for RSA, 83% with
ECC, and 92% using ID-NIKDS on MICA2 motes. Similar
figures are obtained on the TelosB platform: 84% with RSA,
and 79% and 93% using ECC and ID-NIKDS, respectively.
Conversely, the cost of the negotiation ranges between 2%
and 7% of the handshake total cost.

Figures 7 and 8 show the fraction of the energy cost corre-
sponding to the handshake over the global cost of handshake
and data communication. As expected, as the amount of
communicated data (i.e., the transaction size) increases, the
impact of the handshake decreases. On MICA2 motes, the
communication cost is higher than that of the handshake af-
ter 4KB have been transmitted for RSA, 1.7KB with ECC
and 1.2KB with ID-NIKDS. On TelosB nodes, instead, using
RSA the handshake cost becomes less than the communica-

ronment. During the measurements the sensor was powered
by a 3V generator. We have observed a negligible difference
between the used formulas and the actual measurements.
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Figure 5: Decomposition of energy consumption on
Mica2 motes.

Figure 6: Decomposition of energy consumption on
TelosB motes.

tion cost after 3.3KB, the ECC cost after 1.6KB and 1.5KB
are enough when using ID-NIKDS.

Figure 9 shows the execution time of the algorithms for
public key cryptography used throughout the handshake.
RSA is, as well expected, the slower solution on both plat-
forms, although the time it executed on the TelosB nodes
is half of the time it takes to run it on the MICA2 motes,
because the former have a faster processor than the latter
(8MHz vs. 4MHz and 16b vs. 8b). On MICA2 motes ex-
ecuting ECC and ID-NIKDS take very similar times: 2.2s
and 2.05s, respectively. On the TelosB motes the difference
is greater: 1.7s for ECC and 3.33s for ID-NIKDS. Less time
is required to run ID-NIKDS on the MICA2 nodes because
its implementation is based on the RELIC libraries, which
are more efficiently implemented than the MIRACL libraries
used on the TelosB.

Finally, Table 3 shows the memory occupancy of the code
for the considered protocols, and for both MICA2 and TelosB
motes (supporting 128KB and 48KB ROM, respectively).
The asymmetric cryptographic protocols are the most space

Figure 7: Fraction of the Energy Spent in the Hand-
shake Depending on the Transaction Size on Mica2
motes.

Figure 8: Fraction of the Energy Spent in the Hand-
shake Depending on the Transaction Size on TelosB
motes.

consuming, total occupancy being about four times higher
than what needed by the rest of our protocol (included the
hash function, SHA1 on Table 3).

6. CONCLUSIONS AND FUTURE WORK
We have investigated efficient and flexible security negoti-

ation protocols for WSNs. Based on typical characteristics
of WSNs and of sensor nodes we have proposed to adopt
a tailored TLS handshake for these networks. A security
association set up protocol has been detailed and its imple-
mentation and feasibility has been assessed through experi-
ments on MICA2 and TelosB nodes. Our results, carried on
the two platforms by using different public key cryptogra-
phy protocols (RSA, ECC and ID-NIKDS), have shown that
the energy consumption of the proposed negotiation phase
is minimal with respect to the cost needed for the execution
of the protocol itself. Therefore, the advantages that the
negotiation introduces, maximum flexibility in primis, are
worth the minimal extra cost.

An important research and deployment direction opened
by our work consists in adapting leading WSN security pro-
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Figure 9: Handshake time on MICA2 and TelosB
motes.

Table 3: Code size.

Code size [bytes]

MICA2 TelosB
RSA 12,542 7,350
ECC 29,976 18,148

ID-NIKDS 20,344 16,744
SHA1 3,834 2,602

Our protocol 13,426 10,788

tocols such as TinySec and MiniSec, so that their operation
is governed by a dynamically established session state, i.e.,
taking advantage of a preliminary security association set
up phase comprising cipher suites negotiation provided by
our proposed protocol.
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