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ABSTRACT
Mobile Ad Hoc networks, due to the unattended nature of the net-
work itself and the dispersed location of nodes, are subject to sev-
eral unique security issues. One of the most vexed security threat
is node capture. A few solutions have already been proposed to ad-
dress this problem; however, those solutions are either centralized
or focused on theoretical mobility models alone. In the former case
the solution does not fit well the distributed nature of the network
while, in the latter case, the quality of the solutions obtained for
realistic mobility models severely differs from the results obtained
for theoretical models. The rationale of this paper is inspired by
the observation that re-encounters of mobile nodes do elicit a form
of social ties. Leveraging these ties, it is possible to design effi-
cient and distributed algorithms that, with a moderated degree of
node cooperation, enforce the emergent property of node capture
detection. In particular, in this paper we provide a proof of concept
proposing a set of algorithms that leverage, to different extent, node
mobility and node cooperation—that is, identifying social ties—to
thwart node capture attack. In particular, we test these algorithms
on a realistic mobility scenario. Extensive simulations show the
quality of the proposed solutions and, more important, the viability
of the proposed approach.
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1. INTRODUCTION
Ad Hoc networks are an ideal candidate for the deployment in

harsh environments, due to their capacity of operating without an
existing infrastructure. The application scenarios include law en-
forcement, search-and-rescue, disaster recovery, and others. In
these cases, Ad Hoc Networks have the additional appealing fea-
ture to be able to operate in an unattended manner. However, this
comes at a cost: Ad Hoc networks are vulnerable to different kinds
of novel attacks. For instance, an adversary could eavesdrop all
the network communications, or it might capture (i.e. remove)
nodes from the network. Captured nodes can be re-programmed
and re-deployed in the network area, with the goal of subverting
the data aggregation, the decision making process, or other opera-
tions. Moreover, they can be re-programmed, replicated in many
copies, and re-deployed in the network to perform any sort of vi-
cious attack, amplified by the presence of many malicious devices.
In this paper, we start from the observation that all of these attacks
start from the capture of one of the nodes. Therefore, being able
to detect this malicious activity becomes a formidable way to stop
many of the threats to Ad Hoc networks.

The node capture attack may also be of independent interest, an
example comes from the LANdroids [16] research program by the
U.S. Defense Advanced Research Projects Agency (DARPA). This
research program has the goal of developing smart robotic radio
relay nodes for battlefield deployment. LANdroid mobile nodes
are supposed to be deployed in a hostile environment, establish an
ad-hoc network, and provide connectivity as well as valuable infor-
mation for soldiers that would later approach the deployment area.
An adversary might attempt to capture one of these nodes to reduce
the efficiency of the network.

The unique requirements of the Ad Hoc network context call for
efficient and distributed solutions to the node capture attack. We
believe that any solution to this problem has to satisfy the follow-
ing requirements: (i) to detect the node capture as early as possible;
(ii) to have a low rate of false positives—nodes that are believed to
be captured and thus subject to a revocation process, but that were
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not actually taken by the adversary; (iii) to have a low rate of false
negatives–nodes that are believed to be not captured, but that were
actually captured; (iv) to introduce a small overhead. The solutions
proposed so far are not efficient [20]. Moreover, naïve centralized
solutions, although they can in principle be applied, present draw-
backs like single point of failure and non uniform energy consump-
tion.

In this paper we tackle the problem of detecting the node capture
attack in the context of mobile Ad Hoc networks of devices like
smart-phone or PDAs carried by individuals. These networks have
attracted the attention of a large number of researchers in the field
of networking. They are often called Pocket Switched Networks,
and they are part of the class of the Delay Tolerant Networks. In
Pocket Switched Networks the contacts between devices are used
as opportunities of message forwarding. Actually, a large part of
the work in this field has the goal of designing multi-hop routing
mechanisms that are able to deliver messages between any arbitrary
pair of devices in the network efficiently. In these networks the mo-
bility pattern has some unique features. Since devices are carried
by humans, the pattern of contacts between devices mimic the so-
cial nature of human mobility. This observation has been used to
build forwarding mechanisms that use the notion of community to
make messages find their way from source to destination.

In particular, this paper describes how to make use of the so-
cial nature of contacts to get a network stronger against the node
capture attack. To the best of our knowledge, this is the first work
that demonstrates that social-based mobility has a strong impact
on security. In our solution, nodes are responsible, in a distributed
fashion, to monitor the presence of one or more other peers. If the
mobility pattern were irregular, or arbitrary, or if every node moved
independently, like in the random way-point mobility model, then
any choice of pairs of monitoring and monitored node would essen-
tially be the same. Our key observation is that social mobility has
a unique pattern, and so there is a way to assign responsibilities in
the network to improve considerably the efficiency of our protocols
for the node capture attack. Quite naturally, we will see that the the
best performance is achieved when the monitoring node and the
monitored node have a strong social tie. Just like in the real life, if
we disappear for some time the first persons that get worried are our
family members and our friends at work. Or just like what happens
in small villages, where social ties are traditionally very strong and
where, if something wrong happens, very quickly someone real-
izes and alert everybody. This is why we call this phenomenon the
Smallville effect. We underline that while our solution has emer-
gent properties that resemble those of human-based interactions,
the solution actually outperforms the human capabilities. For in-
stance, a human being has some difficulties in remembering the
last encounter time (even approximate) of each member of a big
community (e.g. made of hundred or thousand of members)—in
particular, if she has not been in that community for a long time
(e.g. a soldier that joins a battalion for a peacekeeping mission, or
a person that joins a team for rescue operations).

We will describe the problem in terms of capture and revocation
of captured nodes. However, our solution can be applied also in
more general scenarios. As an example, there could be a trust re-
lationship established between a group of users such that they stop
trusting nodes that disappear from the network for a given time-
interval. The node, in case its absence was not due to a capture,
could be asked to go through some expensive and secure procedure
(e.g. obtaining a new communication key form a central server)
in order to join again the group in the trust-relationship. We also
underline that it is a safe choice to assimilate nodes subject to fail-

ure (either permanent or transient) to captured ones—the latter case
allowing a treatment equal to that just exposed above.

We will validate our solution with a large set of experiments per-
formed using real traces publicly available, those collected at IN-
FOCOM 2005, and we will see that the Smallville effect can be
considerably strong.

The rest of the paper is organized as follows. In Section 2 we
review the related work in the area. In Section 3 we present the
system model and the assumption used in this work. Our proposal
is presented in Section 4, while the performances results are dis-
cussed in Section 5. We conclude the work in Section 6.

2. RELATED WORK
Wireless social community networks are emerging as an alterna-

tive to traditional networks to provide wireless data services. This
type of networks relies on users—a wireless community can rapidly
deploy a high-quality data access infrastructure in an inexpensive
way. To the best of our knowledge, no security issues have been in-
vestigated in the particular context of social wireless communities
networks. Interest in wireless social communities network has been
recently shown by the research community from different point of
views, like network coverage [18] or the detection of the source-
starvation [12]. Also the identification of communities in more tra-
ditional network, such as the file sharing peer-to-peer network, has
been of interest for the research community [15].

Mobility as a means to enforce security in mobile networks has
been considered in [3]. In [17], the authors identified social and sit-
uational factors which impact group formation for wireless group
key establishment. Further, note that a few solutions exist for node
failure detection in ad hoc networks [10, 11]. However, such solu-
tions assume a static network, missing a fundamental component
of our scenario, as shown in the following.

Node capture attack is considered as major threat in many se-
curity solutions for WSN. In particular, in [13] both oblivious and
smart node capture is considered for the design of a key manage-
ment scheme for WSN. A deeper analysis on the modeling of the
capture attack has been presented in [24].

Node mobility and node cooperation in a mobile ad hoc set-
ting has been considered already in Disruption Tolerant Networks
(DTNs) [8, 22]. However, such a message passing paradigm has
not been used, so far, to support security. We leverage the con-
cept introduced with DTN to cooperatively control the presence of
a network node.

In [6,7] a proof of concept that it is possible to design a node cap-
ture detection protocol leveraging the network mobility is given—
more specifically leveraging the expected “re-meeting” time be-
tween nodes. However, [6, 7] present capture detection solutions
focusing on a specific mobility model, the Random Waypoint Mo-
bility (RWM) model [2]. RWM shown different problems. One
of these is that the average speed of the network tends to decrease
during the life of the network itself and, if the minimum speed that
can be selected by the nodes is zero, then average speed of the
system converges to zero [26]. In [26] it is also suggested to set
the minimum speed to a value strictly greater than zero. In this
case, the average speed of the system continue decreasing, but it
converges to a non-zero asymptotic value. Other problems related
to spatial node distribution have been considered by different au-
thors [14, 26]. Finally, the RWM model can be far from describing
realistic mobility patterns [5, 14, 26]. The work in [5] highlighting
that in realistic mobility:

1. Some single nodes meet all the other nodes with a very low
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frequency. In the following we will refer to such a type of
node as to isolated nodes.

2. There are subset of nodes that meet between them with a
significantly higher frequency than the average. We will refer
to such a type of subset as to communities. As examples of
everyday life, we can think to students that attend the same
class or people that work or live in the same building.

In this work we do not consider mobility traces synthesized using
the RWM model. Instead, we consider only real traces. Among
the publicly available traces for mobile nodes (e.g. from [1]), we
consider the traces collected at INFOCOM 2005 conference [21],
already used in previous research works [4]. In particular, the traces
of mobile nodes were gathered using Bluetooth devices distributed
to 41 people attending the INFOCOM 2005 conference.

3. SYSTEM MODEL AND ASSUMPTIONS
In the following we state all the assumptions used throughout this

paper as well as the overhead model used to assess the performance
of the proposal.

First, we clearly state the threat we are going to address.

DEFINITION 3.1. Node Capture. An adversary physically re-
moves a node from the network—or just tamper with the node—in
a way such that the node can not communicate with the other nodes
in the network. The attack can last forever or just for a given period
of time.

Table 1 resumes the notation used in this paper.
Network assumptions We assume that the system provides a

broadcasting primitive. This primitive is easily implementable by
using a flooding mechanism. Further, we assume that nodes in the
systems have a protocol abiding behavior, and that no compromised
node is present when the protocol starts—indeed, node capture is a
pre-requisite for node compromise.

Moreover, in the proposed solution every node maintains its own
clock. To embrace the more general case, we also assume that
nodes are not equipped with localization devices, like GPS. How-
ever, we require that clocks among nodes are loosely synchronized.
Note that there are a few solutions proposed in the literature to pro-
vide loose time synchronization, like [23]. Therefore, in the fol-
lowing we will assume that skew and drift errors are negligible.
Finally, security of network communications is out of the scope of
this work; however, note that in order to enforce required security
properties, we could rely on one of the many protocols proposed
in the literature. For instance, the solution in [9] could be used to
provide node authentication.

Message overhead model The main overhead introduced by the
protocol due to message broadcast. In [25] a classification of the
different solutions for broadcasting scheme is provided: (i) Simple
Flooding; (ii) probabilistic-based schemes; (iii) area based schemes
that assume location awareness; (iv) neighbor knowledge schemes
that assume knowledge of two hop neighborhood. Analyzing or
comparing broadcasting cost is out of the scope of this paper. How-
ever, for a better comparison of the solutions proposed in this paper,
we need to set a broadcast cost that will be expressed in terms of
unicast messages. In fact, the overhead associated to the broadcast-
ing varies with different network parameters (for instance, node
density and communication radius). A deeper analysis on the over-
head generated for different broadcasting protocols is presented
in [19].

Finally, note that a message could be received more than once,
for instance because the receiver is in the transmission range of

Table 1: Time-related notation

Symbol Meaning
σ Message propagation delay.
τ Interval time between presence claim

for the Benchmark protocol.
λ Alarm time-out.
δ Time available to the allegedly captured node

to prove its presence.
γ Interval time for node cooperation requests

in the AdaBo protocol.
n Number of nodes in the network.
K Total number of nodes tracked by each node
KA Number of nodes tracked by each node

using adaptiveness.
KB Number of nodes tracked by each node

using booking.

different rely nodes. However, in the following we assume that a
broadcasted message reaching all the nodes is received (then counted)
only once for each node—it costs as 1 sent and 1 received message
for each node. A similar assumption is used for example in [19].

4. THE PROTOCOL
In this section, we present our solution. In particular, to help the

reader capture the insights of our final proposal, we refer to the case
where just one node is captured and describe in the following two
reference solutions:

• Benchmark protocol. The benchmark protocol is a simple
solution that does not use node mobility and contact pat-
terns [7]. We briefly report this solution in Section 4.1.

• Base protocol. Similarly, the base protocol introduced in [6,
7] is briefly recalled in Section 4.2.

We use both the Benchmark and the Base protocol as simple
reference protocols to compare with. After these simple solutions,
we present other two protocols, each of them capturing different
aspects of the realistic mobility model introduced:

• Booking protocol. This protocol addresses the isolated nodes
that can result in realistic mobile environments. It is de-
scribed in Section 4.3.

• Adaptive protocol. This protocol leverages the communities
that naturally emerge in realistic mobile environments. It is
described in Section 4.4.

Finally, we combine the two previous protocols as building blocks
of our final proposal, the AdaBo protocol.

4.1 Benchmark Protocol
In this section, we report a naïve solution for the node capture de-

tection that does not make use of node mobility. First, assume that
a Base Station is present in the network—we will show later how to
remove this assumption. Each node periodically (for instance, ev-
ery τ seconds) sends a message to the BS carrying some evidence of
its own presence. In this way, the base station can check whether
a node is present. If a node does not send the claim of its pres-
ence to the BS when it is assumed to do that (after t seconds from
the previous claim), the base station will revoke the corresponding
node ID from the network (for instance, flooding the network with
a revocation message).
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To remove the centralization point given by the presence of the
BS, we require each node to notify its presence to any other node
in the network (instead of just to the BS). A node can prove its
presence throughout a broadcasted and flooded message. A node
receiving this claim would restart a time-out set to τ+σ, where σ
accounts for network propagation delay. Should the presence claim
not be received before the time-out elapses, the revocation proce-
dure would be triggered. However, note that if a node is required to
store the ID of any other node as well as the receiving time of the
received claim message, O(n) memory locations would be needed
in every node. To reduce the memory requirement on node, it is
possible to assume that the presence in the network of each node
is tracked by a small subset of the nodes of the network. Hence,
if a node is absent from the network for more than τ seconds, its
absence can still be detected by a set of nodes.

Note that for the Benchmark protocol the average number of
messages m(tu) each node sends (the equation actually holds also
for the number of received messages) over a time unit tu obeys to
the following equation:

m(tu) =
tu
τ
·n (1)

where n is the number of nodes, and τ is the time-interval between
presence floodings sent by a single node. Assuming a smart at-
tacker that captures the node a just after the presence claim flooded
by node a, τ also corresponds to the detection time.

4.2 Base Protocol
In this section, we report a recent protocol [6,7] designed for the

RWM model [2]. In the present work, we refer to this previous pro-
posal as the base protocol. The approach in [6, 7] is based on the
following observation. First, if node a has eavesdropped a trans-
mission originated by node b, at time t, we will say that a meet-
ing occurred. Now, nodes a and b are mobile, so they will leave
the communication range of each other after some time. However,
these two nodes are expected to re-meet again within a certain time-
interval, or at least with a certain probability within a certain time-
interval.

In the Base protocol, each node a is given the task of witness-
ing for the presence of a specific set Ta of other nodes (we will say
that a is tracking nodes in Ta). In particular, the node a selects the
nodes to be in Ta as the first K nodes a meets (where K is the de-
sired cardinality of Ta). For each node b ∈ Ta that a gets into the
communication range of, a sets the corresponding meeting time to
the value of its internal clock and starts the corresponding time-out,
that would expire after λ seconds. As a protocol option, the meeting
nodes can also cooperate, exchanging information on the meeting
time of nodes of interests—that is, nodes that are tracked by both a
and b. If the time-out expires (that is, a and b did not re-meet within
λ seconds), the network is flooded with a node-missing alarm trig-
gered by node a. If node b does not prove its presence within δ
seconds after the broadcasted node-missing alarm is flooded, every
node in the network will revoke node b.

4.3 Booking Protocol
In this section, we address the first characterization of realistic

mobility model. That is, there are some isolated nodes that meet
all the other nodes with a very low frequency (compared to the
meeting frequency the other nodes have). In particular, an isolated
node can appear for the first time in the network (i.e. having the first
meeting with another node) a while after the network operations
are started. Observe that, if such a node is captured before the
first meeting, there would be no node tracking it (hence its capture
would go undetected), for the Base protocol. An evidence of the
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Figure 1: INFOCOM traces: Nodes meetings

presence of isolated nodes can be seen in Figure 1. In fact, Figure 1
shows for each node (INFOCOM traces) on the x-axis, the number
of meetings for that node, on the y-axis. From Figure 1 it is possible
to note how node 13, as well as node 18, can be considered as
isolated nodes.

Leveraging this observation, we introduce the Booking protocol.
Actually, this protocol is just a slightly modification of the Base
protocol. In particular, the only difference is in the way the K nodes
that a node is going to track are selected. In particular, we assume
that the network administrator decides for every node what are the
IDs of the other nodes it is going to track. In this way, the network
administrator can guarantee that every node is tracked by a fixed
number of other nodes. The Booking protocol not only guarantees
that every node is going to be tracked by someone (property not
satisfied by the Base protocol); it is also possible for a node a to
revoke a node b that it never meets (e.g. b could had been captured
at the network deployment time or before the node a met it for the
first time).

We observe that in the Booking protocol communities are not
leveraged to optimize the node tracking.

4.4 Adaptive Protocol
In realistic mobility pattern, it has been observed [5] that there

are subsets of nodes which elements meet between them with higher
frequency than the average (here, communities emerge).

Differently from the base protocol, that has been designed for the
RWM model, we can actually leverage this behavior in the design
of the capture detection protocol for a realistic mobile environment.
In fact, we expect that the capture detection protocol would have
better performances if we were able to let the nodes track the other
nodes that they meet with higher frequencies, instead of just any
K out of the N nodes. In general, this improvement can lead to a
more efficient protocol (lower number of node-missing alarm) or to
a more effective protocol (lower detection time).

As the communities cannot be always predicted (e.g. by the net-
work administrator), we would also like that the nodes autonomously
discover who are the nodes that they meet with higher frequency.
Furthermore, a nice property of the protocol would be for the node
to adapt its set of tracked nodes in the case that the mobility pattern
changes.
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With all these observations as a rationale, we design the Adaptive
protocol. The aim of this protocol is that while the time goes by,
the K nodes that a node is tracking are the K better nodes for it to be
tracked, i.e. out of the N nodes, the K nodes for which it does not
raise node-missing alarm. The behaviour of the Adaptive protocol
can be summarized as follow:

• Node a starts tracking the first K nodes it meets (the first
selection of the tracked nodes is as for the Base protocol).

• When a raises a node-missing alarm for a node, say b, while
b actually proves it presence, a stops tracking node b and
start tracking the next node it meets.

As an enhancement to this protocol, we let the nodes using some
memory slots to silently track nodes. We will refer to such type of
slots as Silent Memory Slots (SMSs). In particular, a node a uses
these slots as follows:

• The SMSs are populated as for the regular tracking slot, con-
sidering the IDs of the first nodes that a meets.

• For each node in the SMSs, node a keeps note of the number
of meetings (normalized for a time unit). In the following,
we refer to such statistical value as the score.

• When node a raises a node-missing alarm for a node, say b,
that actually proves its presence, the next node to be tracked
is not chosen as the first newly encountered node. Instead,
the next node to be tracked is the first in the SMSs list. Note
that we consider the SMSs list ordered based on the scores.
In this way, node a will track the nodes that it met with higher
frequency; intuitively, the best one to be tracked among the
nodes a has in the SMSs.

• At regular time-intervals (a protocol parameter), a removes
from its SMSs the node with the lower score, and put-in the
next node it meets.

4.5 The AdaBo Protocol
On one hand, the Booking protocol aims to guarantee that all the

nodes (including the isolated ones) are tracked. However, its effi-
ciency could be questionable. On the other hand, the Adaptive pro-
tocol aims to let each node be efficiently tracked while not giving
the guarantee provided by the Booking protocol. In this section, we
describe the AdaBo protocol that gives the guarantee of the Book-
ing protocol—i.e. that all the nodes are tracked—while being quite
efficient. Further, optimization are also introduced.

The simple idea we start from is to dedicate: (i) part of the node’s
memory slot to be managed according to the Booking protocol; (ii)
the remaining portion of the node’s memory to managed according
to the Adaptive protocol.

As for the number of memory slots to be dedicated to the Book-
ing protocol, we just observe that for each node a, having one other
node to track it is enough to guarantee that every node is tracked by
at least one node. Indeed, for any captured node there will be a node
detecting the capture and raising the corresponding node-missing
alarm. As a result, we need that each node tracks in booking mode
just one other node to have the above property holding. For ease
of exposition, in the results presented in Section 5 we will consider
the AdaBo protocol where just one memory slot is dedicated to the
booking approach. In this section, we refer to the example of Fig-
ure 2.

As pointed out in Section 4.3, the booking approach does not
leverage the communities. That is, it does not aim to efficiently as-
sign the tracking of a node a, to the best node that can track it—e.g.

a

a’s memory
 booking
    part
(one slot)

   adaptive
      part
(only SMSs)

b ; score(b)

d

b’s memory  

...

c ; score(c)

c ; score(c)

...

f ; score(f)
a meets d:

a proposes to
exchange

token for b with
token for c

Figure 2: AdaBo protocol: booking token exchange proposal

the node that meets a with higher frequency. We further observed
(Section 4.2) that for a node a, tracking the first node that it meets,
is a naïve choice to leverage communities. In the AdaBo proto-
col, we optimize the way the booking part of the memory is used.
In particular, all the memory dedicated by the AdaBo to the adap-
tive approach will be considered as SMSs. The information about
nodes in SMSs will be used to optimize the booking part—allowing
nodes to exchange the nodes they are tracking in booking. AdaBo
protocol can be described as follows:

• Initialization. First, we let each node start having in book-
ing the token—i.e. the ID—of himself. Of course, this is
done just as a set-up choice. The node will not actually track
himself—there would be no utility in doing it as the node
should detect the capture of himself. Furthermore, we as-
sign to each node a maximum number of available token ex-
changes it can be part of. When the protocol starts each node
has not participated in any exchange yet.

Each node uses all the memory dedicated to the adaptive ap-
proach in the silent mode (Section 4.4)—i.e. just keeping
note of the number of meeting over a time unit for the nodes
in this memory.

• Start-up. We give to the nodes a set-up time-interval (that
is a protocol parameter) during which the nodes just collect
statistics of the meetings with other nodes (for the score in
the SMSs). No node-missing alarms are raised in this time-
interval; no token exchanges are made as well. As soon as
the set-up time expires. Each node will try to pass-it-on the
token it holds (referred to himself) to the node in the SMSs
with higher score—the node he met more frequently. The
token exchanges occurs based on node meeting and one-hop
communication only. That is, in this case the exchange will
be done as soon as the node meets its first node in the SMSs,
c. Note that in this case the node’s aim is to be tracked by
some other node.

• Iterated step. After the first token exchange (previous point),
the node, say a, continues improving the quality of its track-
ing; that is, to track the best node it can track, from the score
point of view—let c be this node. Note that, as a consequence
of the previous exchanges, this condition can not yet hold
for all the nodes just after the first exchange. Furthermore,
this condition can also be unachievable for some node a: this
happens either if (i) a never meets the node that is having c in
booking; or, (ii) the node that is tracking c in booking is not
available for the token-exchange, accordingly with the evalu-
ation described in the following. Despite this, the node a tries
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to reach its final (potential) target (tracking the node with the
highest score in its SMSs) in a greedy way: as soon as it has
the chance to improve the quality of its tracking, a attempt to
improve it. For example, assume node a meets node d, that
it is currently tracking node c. Assume that a checks that
it can track the node c with higher performance when com-
pared to the quality of the tracking of node b that is currently
booking (a checks that it is having with c an higher num-
ber of meetings compared to the meetings with b). In this
case, node a proposes to the node d to exchange the tokens—
i.e. the IDs—of the nodes they are respectively tracking in
booking. Whether the exchange actually succeeds depends
on node d. In particular, on whether node d will decrease the
performance over the booked node. To evaluate this, node d
checks, for the currently booked node c, its score value (if
any; a node in booking is not necessary also in the SMSs). If
a node proposed for the exchange (c or b) is not in d’s SMSs,
it is assigned score =−∞. Finally, node d will agree for the
exchange iff:

score(c)≥ score(b).

Note that, if node d does have neither c nor b in its SMSs,
the previous equation accounts for d helping a improving its
tracking performances. Finally, observe that in any case an
exchange happens, both exchanges counter of a and d are
incremented. Also, note that if a node reached the maximum
number of exchanges it can participate in, it will not be able
to propose exchanges.

In the AdaBo protocol we also consider an improvement on the
way a node sends the node-missing alarm. That is, assume a time-
out λ relative to node b is expiring on node a. Node a, before
flooding the network with a node-missing alarm for b, will ask the
nodes it meets in the last small time-interval γ of λ, if they can prove
him the presence of b within the last λ time-interval. If the latter
is the case, a will update b’s presence with the time just proved to
him. Otherwise, as it happens for all the other presented protocols,
a will flood the network with a node-missing alarm relative to the
capture of node b.

We observe that for the described solution the following prob-
lems could arise. If a node is captured while it has the token of
himself, no one will detect its capture. Such a problem could be
solved by considering one more booking slot (used only for the
set-up time-interval) where IDs in booking are assigned by the net-
work administrator in such a way that each node does not have its
own token. After the set-up time—i.e. after the nodes have given
the token referred to themselves to some other nodes—this second
booking slot can be used as SMSs.

A similar problem can also be found if we want to deploy more
nodes in subsequent times. A solution similar to the one just de-
scribed for the initial phase can be used. In this case, an undesir-
able property will hold: the new set of deployed nodes would be
considered as an independent network itself. That is, at the time of
the new deployment, a node belonging to the set of newly deployed
nodes will be tracked just by nodes from the same set. However,
note that as soon as the newly deployed nodes meet the previously
deployed ones, the former ones will exchange tokens with the latter
ones, so removing the initial undesired property. However, if a sin-
gle alone node is deployed, we should use some other mechanism;
e.g. the BS could communicate with a node already in the network
to exchange the booking token with the newcomer.

Finally, note that we described our solution privileging ease of
exposition. However, the proposed solution could also address the
problem of the changes in mobility patterns. Such pattern mobility

changes can be captured by the proposed protocol re-running the
start-up phase at regular time-interval. We leave as future work a
detailed investigation of this issue, together with an assessment of
the efficiency of such mechanisms.

5. SIMULATIONS AND DISCUSSION
In this section, we present the results of the simulations that we

made in order to asses the performance of the proposed solution. In
particular, the main aim of the simulation has been to investigate the
protocol effectiveness (i.e. the detection time) versus the protocol
efficiency (i.e. the cost in terms of messages). Furthermore, we
also investigated the false negative rate of the different protocols
presented in Section 4. We point out that our protocols do not have
false positives. In fact, assume that node a floods the network with
a node-missing alarm related to node b while b is actually within
the network—we assume in this case b can communicate with the
other network nodes. In our protocols, b has δ seconds to prove its
presence: δ accounts for the propagation time of both (i) the node-
missing message sent by a; and, (ii) the presence proving message
sent by b. Hence, on the one hand, if node b can not be reached
by the flooded node-missing alarm it means b is isolated from the
other nodes: correctly considered as captured, indeed. On the other
hand, if it is reached by the node-missing alarm, it can prove its
presence—preventing false positives to occur.

We implemented a simulator of our protocols that takes as in-
put a trace of nodes mobility—every nodes meeting is described by
the couple of participating nodes ID and the time of the meeting.
We ran multiple simulations of the protocols we proposed in Sec-
tion 4. We used as an input traces derived from the mobility traces
collected at INFOCOM 2005 [21]. We describe the traces in Sec-
tion 5.1. The setting of the simulation are described in Section 5.2.
Finally, the simulation results are presented in Section 5.3.

5.1 Real Traces
The traces considered in our simulation have been obtained from

the mobility traces collected during the INFOCOM 2005 Confer-
ence [21]. Information for the traces in [21] has been gathered
using Bluetooth devices distributed to 41 people attending the con-
ference. In particular, we are interested in the mobility and the
social interaction between people during the daylight. Thus, we se-
lected from these traces the events within the 73,000th second and
the 115,000th second. Then, we removed: (i) the events related
to Bluetooth devices not explicitly involved in the experiment (that
are, devices not assigned by the experiment organizer [21]); and,
(ii) events related to devices involved in the experiment but not re-
porting any meeting in the selected time-interval (node with IDs
21 and 41). The resulting traces have 39 nodes. To run extensively
simulation, we considered 10 times the subsequent repetition of the
obtained events. This choice is motivated by the fact that nodes of
social networks tend to repeat their mobility pattern. The resulting
traces consists of 420,000 seconds of events. Finally, we assume
that the events in the traces are symmetric: if node a meets node
b (that is node a knows to be in the communication range of node
b), then node b meets a too. Observe that the resulting traces we
used in our simulation still maintain the characteristics of a social
network: it shows a power-law inter-meeting time.

5.2 Simulation Setting
We simulated different node captures, varying the captured node

and the capture time. In particular, starting from 100,000 seconds
after the network deployment, we have considered the events split
in 13 intervals of 6 hours each. For each of the 39 nodes in the
traces, we simulated the capture at the beginning of each of these
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intervals. In other words, the first capture is simulated at 100,000
seconds from the network deployment, and the last capture is simu-
lated at 359,200 seconds from the network deployment (12 ·6 hours
later). These resulting in a total of 507 simulated captures for every
combination of the protocol and λ chosen. For every simulation, we
run the protocol and measured the detection time and the number
of messages sent from the nodes in the network.

In the simulation results, we count the number of messages sent
by the nodes when a node-missing alarm or a presence-claim is
broadcasted. Moreover, in the AdaBo protocol we count the mes-
sages sent when two nodes exchange their tokens, and the messages
sent when a node asks for cooperation in the last small time-interval
γ of λ before sending a capture alarm. As we do not want that the
set-up phase influences the evaluation of the general cost of the pro-
tocol (that in practice could last more that the simulated time), we
start measuring the performance of the protocols from the 84,000th
second onwards. That is, the messages sent before the 84,000th
second are not considered in the final mean value of sent messages.

Note that we assume that a node becomes aware of the nodes
that are in its communication range, thanks to the communication
activity of the nodes, or thanks to the control messages of the net-
work; as in the case of the INFOCOM traces, the bluetooth proto-
col. Thus, we do not consider the communication activity for the
meeting event as an overhead of the capture detection protocol.

As for the number of memory slots used by the protocols, we
considered a small value because we observed that increasing the
number of tracked nodes would just lead to an higher protocol over-
head while not improving the protocol performance in terms of
detection. This characterization is common for all the protocols
we considered in this work. Furthermore, we observe that using a
small value as for memory slots is particularly suitable for resource-
constrained devices like sensor network. In particular, we used one
slot for the tracked node, and 5 slots for the SMSs of the Adaptive
and AdaBo protocols.

In the simulation performed for the AdaBo protocol, the nodes
start exchanging their token after 42,000 seconds from the network
deployment. Furthermore, a node can propose a token exchange
with another node if its exchange counter is not greater than 3. The
time-interval γ during which a node asks for cooperation before
sending a node-missing alarm is equal to 3,600 seconds.

5.3 Protocol Overall Performance
In Figure 3, we plot the results of the simulations: the mean

of the messages sent by each node per hour (y-axis) for multiple
resulting detection times (x-axis). Each point is obtained as the
mean of the results of 507 simulations executed for each specific
protocol and a fixed λ. In particular, for each protocol we report the
results for 6 different values of λ: 12,600, 14,400, 16,200, 18,000,
19,800, and 23,400 seconds.

We observe that the Benchmark protocol has the worst perfor-
mance with respect to the other simulated protocols. In fact, chosen
a desired detection time, it required the higher number of messages
per hour. For example, given a detection time equals to 12,000 sec-
onds, each node has to send almost 12 messages per hour. Mean-
while, the other protocols send about 5.2 messages per hour in the
worst case (i.e. the Booking protocol). Note that the protocols we
implemented, that are the AdaBo, the Adaptive, the Base, and the
Booking protocol, all leverage the meeting events to detect a node
capture. This confirms our intuition that mobility and social ties
can be leveraged to increase the performance of the protocols used
in the network.

A fair comparison between the AdaBo, the Adaptive, the Base,
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Figure 3: INFOCOM traces: Cost vs. Detection

and the Booking protocols can be made dividing these protocols in
two classes:

• first class. AdaBo and the Booking protocols.

• second class. Adaptive and the Base protocols.

The protocols in the first class guarantee that all the nodes of the
network are monitored. The protocols in the second class do not
guarantee that all the nodes of the network are monitored. When
a protocol of the first class is used, we can always detect a node
capture. While, when a protocol of the second class is used, it
could be possible that a node capture goes undetected. That is, a
false negative can occur. Because there is not a first class protocol
that has better performance than the ones in the second class, there
is not a protocol without false negative and with performance better
than the others. Thus, assuming that the network administrator can
not tolerate false negative detection, she has to adopt a protocol
of the first class; otherwise, she can use a protocol of the second
class, depending on the number of false negative the network can
bear (discussed later). From the results reported in Figure 3, we
can observe that the property of the first class protocols, that is to
guarantee that all the nodes are tracked, comes at the prize of more
messages sent. In fact, the AdaBo and the Booking protocols, on
the contrary of the Adaptive and the Base protocol, monitor all the
node in the network. Consequently, they monitor also the isolated
nodes, even if these isolated nodes cause a high number of node-
missing alarm.

In the Booking protocol, we assume that the network adminis-
trator decides for every node what is the ID of the other node it is
going to track. In particular, in our simulation the node with ID i
monitors the node with ID i+ 1 modulo 39. Figure 3 also shows
that between the two protocols of the first class, the AdaBo has
better performance than the Booking one. We remind the reader
that, the Booking protocol, differently from the AdaBo one, does
not leverage the communities to optimize the node tracking. The
results support our thesis that the social characteristics of the net-
works can be leveraged to increase the protocols performance.

Comparing the protocols of the second class, the Base and the
Adaptive ones, the Adaptive is better than the Base protocol under
two points of view. In the first place, from the point of view of the
performance. In fact, in Figure 3 we can see that, fixed a capture de-
tection time, in the Adaptive protocol the number of messages sent
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per hour is lower than the ones in the Base protocol. In the second
place, from the point of view of the false negative percentage. In-
deed, from our simulation results, we observed that the mean of the
false negative of the Base protocol over all the simulations is about
43.6%, while the mean of the Adaptive protocol is about 42.9%.
Thus, the Adaptive protocol not only has better performance re-
spect to the Base one, but it has also a lower percentage of false
negative.

6. CONCLUSIONS
In this paper we have showed that it is possible to leverage both

node mobility and communities of nodes that naturally emerge in
mobile networks to enforce security properties. In particular, we
have designed two class of protocols that take into consideration
realistic mobility models to thwart node capture attack. The first
class of protocols provides the monitoring of the whole nodes in the
network, sacrificing some efficiency, while the second one releases
the control on isolated nodes, achieving efficiency gains.

The proposed protocols have been tested on real traces, and the
results confirmed our intuition: protocols leveraging emergent so-
cial ties provide better performances than protocols leveraging mo-
bility only. To the best of our knowledge, this is the first result in
the area and could open up a vein of research aimed at combining
mobility and emergent social ties in mobile networks to enforce
security properties.
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