
Triton: a Peer-Assisted Cloud Storage System

Antonio Davoli
Computer Science Department
Sapienza University of Rome

davoli@di.uniroma1.it

Alessandro Mei
Computer Science Department
Sapienza University of Rome

mei@di.uniroma1.it

ABSTRACT
In these days, we are witnessing the evolution of cloud stor-
age systems. One of the most intriguing research branches is
focusing on merging these systems with peer-to-peer (P2P)
networks, absorbing their benefits and thus creating new
hybrid architectures. In this work, we present Triton1, a
peer-assisted cloud storage system designed to reach fast
operations on users’ data. By taking advantage of a direct
communication channel among users, performed via the P2P
network that interconnects all of them, Triton reaches two
main goals. First, provides an acceleration on sharing oper-
ations and second, reduces the level of trust users must give
to the cloud storage providers. Our solution also improves
consistency constraints on users’ data and reduces the la-
tency requested to reach an agreement among peers. In the
experimental results, we show how our prototype widely en-
hances the bandwidth usage for data sharing operations and
also achieve important reduction on latency for the agree-
ment operations.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.3.4 [Information Storage and Retrieval]:
Systems and Software—Distributed Systems

Keywords
Cloud storage, Convergence Consistency, P2P Networks

1. INTRODUCTION
In the recent years, the massive growth of cloud users

contributed to change the design process of storage systems.

1Triton is the largest moon of the planet Neptune. It is the
only large moon in the Solar System with a retrograde orbit,
which is an orbit in the opposite direction to its planet’s
rotation. Similarly, we see the trust of clients toward the
cloud.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PaPEC’14 April 13 - 16 2014, Amsterdam, Netherlands
Copyright 2014 ACM 978-1-4503-2716-9/14/04 ...$15.00
http://dx.doi.org/10.1145/2596631.2596644.

Cloud technologies indeed have turned mainstream. Com-
panies like Apple, Amazon, and Google are increasing the
number of their cloud based services. The popularity of tools
such as iCloud and Dropbox is reaching a growing number of
users. The benefits of cloud services, such as cost reduction,
rapid and elastic deployment, and an easy management, are
widely recognized and many enterprise users are planning
to port their solutions on cloud infrastructures. These sys-
tems run now on an impressive number of machines, often
replicated on multiple geographical locations [5]. Therefore,
satisfying the high availability requirements for a huge num-
ber of users spread all over the world, as well as declared in
service level agreements (SLAs), has become an important
task.

In order to improve performance and quality of service of
these distributed solutions, researchers and designers started
to follow several opportunities. One of the most interesting
approach, which is rising in the last times, tries to incre-
ment overall system performance by incorporating the ben-
efits of peer-to-peer (P2P) networks [2]. Network clients
can achieve faster downloads by using smarter applications
which are able to cooperate and directly exchange data dur-
ing the download phase from the primary site. The overall
system performance is thus improved by offloading part of
the distribution task directly to users bringing to a more
efficient use of the network bandwith.

However, even though this approach is appealing from
the distribution point of view, it remains mainly employed
to deliver static files (e.g. peer-to-peer live streaming solu-
tions [15]). But, what happens when users need to modify
their shared data? How can we exploit this hybrid architec-
ture in order to achieve faster data consistency and better
sharing performance?

To answer these questions, we propose Triton, a peer-
assisted cloud storage solution appositely designed for hy-
brid scenarios where a high number of players, who are in-
terconnected by a P2P network, collaborate on data in the
cloud resources. Users can share contents among themselves
and use the cloud resource as coordination rendezvouz for
the update operations and for sharing a common base of
information (e.g. files’ metadata). Triton exploits the di-
rect communication among users to push update informa-
tion in order to converge to a global consistency without
waiting that the updates are propagated in the cloud’s in-
ternal servers, thus minimizing the inconsistency window.
This inconsistency window comes from the usage of eventual
consistency models, that in order to provide high-availability
in case of network partitions, relax the consistency require-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2596631.2596644&domain=pdf&date_stamp=2014-04-13

Figure 1: A Peer-Assisted Cloud Storage Deploy-
ment

ments. In Triton, instead of waiting that all the updates
are propagated in the cloud’s internal servers, and thus risk-
ing to access to stale data, peers start to push also the new
information updates among themselves by exploiting a di-
rect communication channel. Triton operations are based
on a state machine replication protocol that poses minimum
trust requirements in the cloud and also in the other peers.
Our solution is designed to ensure interoperability with one
or more cloud providers and does not require to run any
special code on the cloud storage provider, as often hap-
pens when employed solutions such as Depot [16]. We build
a prototype application that uses our protocol to provide a
file sharing mechanism. The main contributions of this work
are:

• proposing a new architectural model built upon a
peer-assited cloud solution,

• designing a new agreement protocol for preventing
concurrent accesses on shared data,

• creating a new consistency model for data and a file
system implementation resistant to forking attacks [4].

In the next sections, first we describe the motivation behind
this work, then we propose the design characteristics of Tri-
ton system, and finally we show the performance results for
sharing operations and for latency reduction obtained by our
Triton prototype.

2. MOTIVATION
Earlier work proposed many solutions for cloud storage

with minimal trust assumptions [16]. However, these re-
sults do not consider a dynamic environment where users
can show up and disappear continuously. In addition many
of these solutions are designed to provide consistency mod-
els derived from fork* consistency [14]. fork* consistency
is a weaker safety property than linearizability [9], and can
be achieved when less than two thirds of the replica popu-
lation are faulty. SUNDR [13] showed how to achieve fork
consistency (slightly stronger than fork*, but still weaker
than linearizability) in the presence of a faulty server and

non-faulty clients [4]. However, a faulty server can mount
a forking attack by concealing operations, which causes the
system state to diverge into multiple possibilities for differ-
ent clients. Even though these solutions permit to recovery
from forking, performance are always influenced by latency
of the recovery operations. Indeed, in the case of a fork
event they require interaction, based on a gossip-based pro-
tocol, among users in order to overcome the fork status. In
this work, we wanted to principally address this problem
preventing the possibility of these faulty behaviors by ex-
plicitly enabling communication among nodes.

On the other hand, Byzantine fault tolerance solutions re-
quire to work with a fixed set of replicas, which are chosen
at the beginning of the deployment phase and then rarely
changed. In this way, it is impossible to change the total
number of failures after the starting procedure. Alvisi et.
al [1] proposed a solution with a faulty threshold variable in
a fixed range and many other solutions rely on a monitor-
ing node to manage the nodes participation in the replicas
group. These solutions, however, do not address a dynamic
and hybrid network where clients act also as replicas.

Moreover, to meet high-availability requirements cloud
storage solutions often provide a weaker consistency model,
called eventual consistency [18]. This model does not guar-
antee that updates are available as soon as the update op-
erations have finished, leaving a temporal window of incon-
sistency. The Brewer’s conjecture has aroused great inter-
est among the scientific community. In fact, shortly after
Gilbert and Lynch [8] provided a formal proof of the state-
ment by proving that is indeed impossible to achieve all three
properties in the asynchronous network model. The result’s
reformulation in according to the Gilbert and Lynch’s work
is:

Theorem 1 (CAP Theorem). In a network subject to
communication failures, it is impossible for any web ser-
vice to implement an atomic read/write shared memory that
guarantees a response to every request.

The CAP Theorem illustrates a more general trade-off
that often appears in the study of distributed computing:
the impossibility of guaranteeing both safety and liveness
in an unreliable distributed system [7]. With Safety, we in-
tend that an algorithm is safe if nothing bad ever happens.
The consistency properties of the CAP Theorem is a clas-
sic safety property. With Liveness, an algorithm is live if
eventually something good happens [7]. The result simply
expresses that it is not possible to achieve both safety and
liveness in an unreliable distributed system [7]. In the last
decade, researchers and designers have used the CAP results
as motivation to push their efforts towards the exploration of
new tradeoffs and solutions for distributed system. This new
generation of systems, with few or no isolation guarantees,
have been termed NoSQL 2, as opposed to the more tradi-
tional SQL systems. The NoSQL movement proposes alter-
native designs with less constrained consistency models and
first focuses on producing high-availability solutions. The
model adopted by NoSQL solutions is the BASE (as opposed
to the ACID). The BASE properties are: Basically Avail-
able, Soft state, and Eventual Consistency. In [6], authors
describe the design of Dynamo, a highly scalable distributed
data store built appositely to statisfy high-availability con-
straints but that, however, sacrifice consistency in presence
2http://en.wikipedia.org/wiki/NoSQL

of network partitions by risking to propose to users stale
version of data.

On the other hand, there are several peer-to-peer (P2P)
systems that have looked at the problem of data storage
and distribution. The first generation of P2P systems, such
as Freenet and Gnutella3, were predominantly used as file
sharing systems. These were examples of unstructured P2P
networks where the overlay links between peers were estab-
lished arbitrarily. In these networks, a search query is usu-
ally flooded through the network to find as many peers as
possible that share the data. P2P systems evolved to the
next generation into what is widely known as structured
P2P networks [4].

Oceanstore [11], for example, provides a global, transac-
tional, persistent storage service that supports serialized up-
dates on widely replicated data. To allow for concurrent
updates while avoiding many of the problems inherent with
wide-area locking. Oceanstore resolves conflicts by process-
ing a series of updates, choosing a total order among them,
and then applying them atomically in that order. It is built
for an environment where the data is replicated on an un-
trusted infrastructure. However, Oceanstore does not con-
sider consistency requirements in its design and works with
a hierarchical overlay of nodes. Triton, instead, gives to
users a mechanism to reduce this window by understand-
ing if the data received by the cloud match effectively the
last updated version. Furthermore, Triton design is directed
to hybrid and peer-assisted cloud architectures where data
are shared among the peers by also exploiting the cloud re-
sources.

3. TRITON DESIGN
In this section, first we present the system model and the

design goals behind Triton, together with an overview the
Castro and Liskov’s PBFT protocol [3], a mechanism for
implementing a practical state machine replication solution.
Then, we introduce Triton protocol details, its operations
workflow and finally, we describe the consistency model em-
ployed by our solution.

3.1 System Model
The state machine approach is a general method for im-

plementing a fault-tolerant service by replicating servers and
coordinating client interactions with server replicas. State
machine replication is an abstraction that represents a de-
terministic service, in which a starting state (e.g., an empty
database) and the sequence of read-compute-write opera-
tions at the service determine precisely the state of that
service at the end of the operation sequence. Such state ma-
chines are relatively straightforward to implement on a sin-
gle, single-threaded server at an individual computer, though
any faults at that computer always cause a service failure.

State machine replication solutions work with a fixed num-
ber of replicas [3, 10]. This number is selected during the
deployment phase and it represents the upper bound of con-
temporary faulty replicas the system is able to afford. Usu-
ally, protocols protect against f faulty nodes by working
with at least 3f + 1 replicas. Safety and liveness guarantees
are thus no valid when more than a third of the replicas is
faulty [12]. Estimation a priori of this number is a hard task
and the result is an inflexible work environment.

3http://freenetproject.org, http://www.gnutella.org

Figure 2: Three Phases Practical Byzantine Fault
Tolerance

In this work, we investigated how a solution can be flexible
and work in according to network changes. Moreover, we
considered a system where replicas and clients are the same
entities, and they sharing the same cloud resources. In our
model indeed, we assume that nodes connection is based on a
asynchronous network (e.g. Internet) and the network model
may corrupt or fail to deliver messages and can introduce
delay on communications. The adversary can take control
of nodes but is not able to break the cryptographic schemes
adopted. We also assume that nodes and also the cloud can
act arbitrarily in according to a Byzantine failure model.

3.2 Background: PBFT
Castro and Liskov’s PBFT protocol [3] is a replicated,

fault tolerant mechanism for implementing a state machine [17].
For fault-tolerance reasons, it often makes sense to imple-
ment the state machine abstraction over a population of
such potentially faulty computers interconnected via a po-
tentially faulty network, hoping that even if some computers
fail, the service as a whole can continue functioning correctly.
Unfortunately, implementing the state machine abstraction
over such a population and network is no simple task. In
PBFT, each participating computer implements the entire
state machine on its local replica of the service state, and
replicas communicate with each other to ensure that they
all execute the same sequence of operations, and mask indi-
vidual computers faults [4].

In PBFT, a client c multicasts a request message:

< REQUEST, t, o, c >c,R,1

to the N service replicas in replica set R, where o is the
operation requested, and t is the timestamp. The client
accepts a reply for its request (and only then can submit
another) when it receives bN−1

3
c+1 valid matching REPLY

messages, forming the reply certificate:

< REPLY, v, n, t, c, r >
R,c,bN−1

3
c+1

,

where v is the view number, n is the assigned sequence
number, and r is the result of the request. A view is a
particular assignment of roles to replicas: the single active
primary vs. the passive backups; when the primary changes,
so does the view number v.

Replicas linearize requests via a three-phase agreement
protocol (Figure 2), starting when the primary (chosen to
be the replica with identifier p ≡ v modN and indicated

Figure 3: Zyzzyva: Speculative version of BFT

with 0 in Figure 2) multicasts to R a newly received request
message req, encapsulated within a message

< PREPREPARE, v, n, req >p,R,1.

When backup replica i receives this PREPREPARE, it mul-
ticasts to R a: < PREPREPARE, v, n, req >i,R,1 message.
Once replica j has collected 2bN−1

3
c+ 1 PREPREPARE or

PREPARE messages from distinct replicas for this request
(which constitute the prepared certificate for this request of
the form < PREPARE, v, n, req >

R,R,2bN−1
3
c+1

), the re-

quest becomes prepared. To complete the protocol, a replica
with a prepared request then multicasts to R a:

< COMMIT, v, n, req >j,R,1

message. When replica k collects 2bN−1
3
c + 1 such mes-

sages (which constitute the committed certificate of the form
< COMMIT, v, n, req >

R,R,2bN−1
3
c+1

), the replica has es-

tablished the linearized sequence for this request, commit-
ting to execute it as soon as it can; this concludes the agree-
ment portion of the PBFT protocol for this request, whose
purpose is to ensure that the replicas agree on a single opera-
tion sequence for the service, as more clients submit requests
for further operations. A replica can execute the request in
its local state as soon as it has finished executing the com-
mitted requests for all sequence numbers lower than n. It
packages the result in a REPLY message, which it sends to
the client directly. When the client has received a quorum of
such matching replies – the reply certificate described above
– the execution portion of the protocol concludes; the pur-
pose of the execution portion is to represent to the client
accurately the service state (and reply to the client request
accordingly), as determined by executing the sequence of
operations that the agreement protocol portion maintains.
Furthermore, the PBFT suite also contains a view-change
protocol that is used to change the system primary when
the primary is suspected faulty.

3.3 Triton Protocol
Triton design is based on a state machine replication pro-

tocol designed for environments with an high variable num-
ber of players. In this hybrid environment, it is hard to deal
with clients who, even though they act also as replicas, can
not be imposed to stay always connected.

We designed Triton to work with a variable number of
replicas, aiming at closing each round with the maximum,

even if dynamic, quorum size available. Replicas number
can increase or decrease during the time, and that brings
two main problems. Keeping the leader always online, and
cooperate in presence of byzantine behaviors. We developed
this protocol with three main goals: (a) create a fast algo-
rithm for replication, (b) manage an high variable number
of members, (c) deal with environments where clients are
simultaneously replicas. Solutions with fixed quorum are
hard to tune when replicas are able to appear in late rounds
or to close the connection early. On the other hand, in lit-
erature exist speculative approaches of state machine repli-
cation, such as Zyzzyva [10], that rely on clients to detect
inconsistency. As showed in Figure 3, Zyzzyva uses spec-
ulation to reduce the cost of BFT replication. In Zyzzyva,
replicas reply to a client request without first running an
expensive three-phase commit protocol to agree on the or-
der to process requests. Instead, they optimistically adopt
the order proposed by a primary server, process the request,
and reply immediately to the client. If the primary is faulty,
replicas can become temporarily inconsistent with one an-
other, but clients detect inconsistencies, help correct replicas
converge on a single total ordering of requests, and only rely
on responses that are consistent with this total order [10].
We designed Triton to adopt a speculative approach, but
with a control mechanism that permits to other nodes to
understand the status of operations. In Triton, indeed, ac-
tive clients are part of the system and they try to work
cooperatively in order to conclude the protocol steps. Forc-
ing the peers to wait until the end of three phases increases
delays, since the dynamic environment in Triton requires to
finish the round as soon as possible.

3.4 Protocol Specifications
Triton acts as a funnel and helps to serialize accesses to

shared cloud resources. The protocol has been designed to
achieve a result as soon as possible, considering that often
peers are online only for a limited amount of time. We devel-
oped a replication structure which permits to have different
rounds happening at the same time. Thus, instead of using
a global view for all the system, as proposed in classical BFT
solutions, we propose a series of different topics, indipendent
from each other and with different advancing statuses and
different groups of clients involved. In any case, groups can
have overlapping set of peers. We define as the leader for a
particular topic the one who proposes a new round update.
With this choice, we wanted to empower the leader so that
he has the responsibility to care about the real commit of
its updates.

Therefore, the only information peers need to know are
the number of elements that are going to participate to
each round and the time information (i.e. the last times-
tamp approved) about the last agreement. These fields are
always updated and stored in the cloud resources. Triton
protocol is composed by an agreement phase and a check-
topic algorithms. The agreement part is a hybrid approach
which merges a speculative commit with quorum require-
ments. The Figure 4 shows the protocol’s steps.

An user who wants to update a topic creates a request
message and broadcasts it to the other users sharing the
same topic. The message contains:

< REQUEST, t, o, n,H, timestamp@c, c >c,

where t is the topic, o is the operation, n is the sequence

Request Proxy Req Commit

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 4: Triton Protocol Steps

number, H is the hash of history, timestamp@c is the times-
tamp for the operation, and c symbolizes the user ID. The
packet is protected with user’s signature. Other members
that received the message prepare a proxy-request, which is
created by extending the initial requests with the id of re-
ceiver, by

< PROXY REQ, t, o, n,H, timestamp@c, c, p >p.

When a peer received a quorum of at least 2f + 1 message,
it proceeds to the send a commit message. The commit
message,

< COMMIT, t, o, n,H,R, timestamp@c, c, p >p,

contains, other the other fields, an array R of all the proxy
requests received. The leader node proceeds to commit the
operations and uploads the new info on the cloud if the num-
ber of commit messages is bigger than the 2f + 1 quorum.

In case of a number of messages under the described thresh-
old, the requester node starts to contact peers that did not
answered. In case of a new missing answer a new request
with a less quorum threshold will be send. This permits to
achieve an agreement with a smaller quorum but, as we dis-
cuss in the next section, permits to the system to guarantee
liveness.

In the cloud are also stored meta information about the
number and identities of peers for each topic. In order to up-
date these information we use a check-topic algorithm that
it is similar to the agreement phase but contains heartbeats
information to check if elements are still connected to the
network.

3.5 Triton Operations and Consistency
In this section, we describe how we use the Triton pro-

tocol to build a distributed storage system that achieves
better consistency performance. Modern systems, such as
Dynamo [6], are designed aiming at high availability perfor-
mance. When a system is designed to provide high availabil-
ity, consistency constraints get relaxed creating new forms
of eventual consistency.

Therefore, by supposing that cloud storage provides even-
tual consistency guarantees, Triton increases performances
and prevent users to access to stale data. Triton proposes
a new consistency model that aim at reaching consistency
of data faster than others model presented in literature. In-
deed, one of the most important issue of eventual consistency
model is related to the access to a file as a whole resource.

In our system, we propose instead to logically split the
files, which are shared among the users, in smaller blocks of
fixed size in order to decrease the amount of data exchanged
by the peers after a file update. We use the cloud as coordi-
nation rendezvous where are stored only the meta informa-
tion about files, such as the list of users who are sharing the
files and a Merkle Tree computed by the file blocks to track
the file updates4.

There are two main reasons that motivate this result.
First, files are subdivided in blocks, the little amount of
size of these blocks permits the cloud storage to work with
a less amount of data in its operation, propagating the up-
dates faster in the data center. Second, users are an active
part of the system, and through our pushing system, they
will be aware of files modifications as soon as possible and
directly from the actor who produced them. Furthermore,
read operations are also improved because peers know which
blocks are under a write operations. The selected tree node
represents the topic of the protocol, as described in the pre-
vious section. If received a correct number of certificates, it
proceeds to update the meta information in the cloud stor-
age and push directly to the peers the diff data needed to
update the file to the last version. The timestamp inserted
into the messages permits to avoid the multiple clients win
the round and modify the resources at the same time. Af-
ter the winning of the round, peers are going to expect the
message from the winner with the data information related
to that operation. If this does not happen, they can raise
an exception and block that update. The last data message
actually acts as a further prevention against a malicious win-
ner. If instead the cloud provides different information the
network is able to understand the quality of cloud answer
by communicating and checking the latest updates.

In the cloud are kept all the information to build the last
version of the files. Thus, read operations are organized to
be as fast as possible. A peers who wants to obtain a files
retrieve the information about the hash tree that composes
the blocks and a list of the peers who own the data blocks.
In this way, it can start multiple downloads from multiple
peers in order to receive the data as soon as possible and
minimizing the cloud’s access. When a peer receives a data
block request it is aware if some round it proceeding related
to that block (or some level higher), so it can wait to receive
the new updates or give to the peers the last valid update.

Consistency When cloud provides eventual consistency
guarantees, Triton achieves a faster convergence consistency.
Suppose two users p1 and p2 share the same file f in the sys-
tem. When p1 starts a write operation, that means p1 won
the agreement round and proceeds with the update of the
blocks set B of f . Now suppose that p2 needs to read f . If
the blocks requested by p2 are not in the same subtree of B,
the system guarantees that p2 can ask to other peers the lat-
est version of the blocks without any consistency violation.
If p2 accesses to some block in in the same subtree of B, we
must consider two options. First, the update of p1 has been
delivered and the system returns the newest value, second,
in case p2 receives a stale data is always able to recognize
it by checking the metadata received during the agreement
steps. If a new client asks to the cloud information about a
file and, once received the meta information, tries to recom-
pose the file, peers can send to it a message to invalidate

4We are also working on a extended version where the cloud
also keeps data incremental backups.

some blocks because in some update operation. In this way,
clients can reach a faster consistency by reducing the cloud
inconsistency window.

Triton architecture consistency model converges faster by
exploiting communication and hierarchical data structures.
Let suppose a user A uploads a file f of size N on the cloud
storage provider. In a real world scenario this operation is
going to take an amount of time tN , which is related to
the file size. Now consider that A alter a portion of file
and must upload again on the cloud. This operation will
require, again, around tN . In case this file will be shared
with another peer B, this needed times are going to increase.
When Triton is employed, A will send to the cloud only a
portion of the metadata required to the cloud to update the
information on the file in less the tN .

Forking Topics Triton system permits a stronger defense
against forking behaviors and also limit the users to read
stale data. Suppose that the cloud provides a modified ver-
sion of the meta information to different users. This scenario
will be detected as soon as users interact, because a request
with an irregular value will raise a check by users on the
contents. In this case, peers start a check-topic round to
update all the users contents to the last committed version.

4. EXPERIMENTAL RESULTS
In this section, we describe the implementation details of

our prototype system. We built Triton as a client library and
created a file system based on the protocol’s access policies.
In this way, we guarantee a interoperability with several
cloud storage providers. Many other systems instead require
to run part of the code on a centralized server.

Triton Library We implemented a prototype version of the
library by using the event-driven paradigm and it has been
coded using the libevent5 library. Thus, the main body can
manage efficiently several connections, with the peers and
the cloud, at the same time. In the experimental setup,
we used our system interacting with the APIs provided by
Amazon S3. Nonetheless, it is extremely easy to change the
module and to work with other providers or private clouds.

TritonFS The prototype version of the Triton file system
has been designed as a file system in user space (FUSE).
It connects all the file systems calls to the Triton library
functions in order to interact with the peers and the cloud
resources and proposes a transparent interface to final users.

We present two kinds of experiments we conducted. The
first was intented to compare protocol performance against a
classical implementation of the previously described PBFT
state replication protocol. The testbed used was a Intel
Xeon Quad-Core, where we created up to eight virtual ma-
chines, each one running an instance of Triton and PBFT
client. The Figure 5 presents the result of the run of Tri-
ton and BFT, which refers to an implementation of PBFT,
with a 0/0 scenario. This signature means that message
exchanges had no real payload, but the test aimed at under-
standing how latency increases just for the protocol usage
with empty messages. As it is possible to see in Figure 5, by
using a reduced numbers of messages and thus converging
faster to the commit, Triton reaches the commit with 8 repli-
cas in almost the half time required by BFT, 0,18 seconds
against 0,24 seconds of BFT.

The Figure 6, instead, presents a similar test done in

5http://libevent.org

Figure 5: Triton vs BFT Latency Test without Pay-
load

Figure 6: Triton vs BFT Latency Test with variable
Payload

the same environments with eight but with an increasing
amount of payload used in both the protocols. It is possi-
ble to see how Triton overcomes BFT in the scenario with
a payload of 8k. This result is a consequence of the cryp-
tographic additional payload that both the protocols use,
but by having a bigger number of messages to manage BFT
tends to slow the performance down than Triton, that is
able to complete a commit in less than the half amount of
time required by BFT. Indeed, we obtained a total of 0,95
seconds for BFT against only 0,41 seconds of Triton.

Then, as second experiment, we wanted to investigate the
performance of Triton compared to the usual cloud access.
In the experiment, we employed six clients sharing the same
cloud storage instance. Four of the clients were set up in vir-
tual instances in the Amazon EC2 datacenter located in Ore-
gon, and the other ones in our laboratory located in Rome.
The Figure 7 shows the results of the read performance us-
ing Triton compared with the direct usage of the S3 cloud.
The experiment presents the results the read time for dif-
ferent file sizes. We employed data size in the range from
16Mb to 512Mb. In our system, data blocks were asked to
all the available peers. As it is possible to see in the Figure 7
in the case of file size equal to 512Mb, Triton, by exploit-
ing the direct channel among the users and by using the
network bandwidth more efficaciously, achieves a download
time of 93 seconds in respect to 232 seconds required by the

Figure 7: Triton Performance

S3 direct download. By using Triton we increased the read
performance of a 2.5x factor.

5. CONCLUSION
In this work we presented Triton, a peer-assisted cloud

storage systems that provides concurrent read and write op-
erations. In addition, we showed how Triton consistency
model decreases the inconsistency window of cloud data, by
achieving faster downloads and also faster commit opera-
tions. Triton represents a first step of our investigation pro-
cess of these new hybrid solutions, where peers and remote
systems are closely interconnected each others forming more
complex and challenging systems.

Further work. Considering the dynamism of the network,
we are investigating two main directions: protocol perfor-
mance under more complex failures models based on a game
theoretic approach such as where peers behaviors are influ-
enced by the previous rounds, and protocol security against
membership and identity attacks. We are also planning to
incorporate geographical locations of peers in the sharing
process. In addition, we have planned to improve our proto-
type to study the performance results in large scale deploy-
ments. Another possible improvement we are investigating
regards the integration of Triton with fully distributed social
network, like Diaspora6.

6. REFERENCES
[1] L. Alvisi, E. T. Pierce, D. Malkhi, M. K. Reiter, and

R. N. Wright. Dynamic byzantine quorum systems. In
DSN 2000.

[2] N. Carlsson, G. Dan, D. Eager, and A. Mahanti.
Tradeoffs in cloud and peer-assisted content delivery
systems. In P2P 2012.

[3] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In OSDI ’99.

[4] B.-G. Chun, P. Maniatis, S. Shenker, and
J. Kubiatowicz. Attested append-only memory:
making adversaries stick to their word. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating
systems principles, SOSP ’07, pages 189–204, New
York, NY, USA, 2007. ACM.

[5] J. C. Corbett and al. Spanner: Google’s
globally-distributed database. In OSDI’12.

6https://joindiaspora.com/

[6] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
SOSP ’07.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. In Journal of the ACM, 32(2):374âĂŞ382,
1985.

[8] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent available partition-tolerant
web services. In In ACM SIGACT News, 2002.

[9] M. P. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[10] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative byzantine fault
tolerance. In SOSP 2007.

[11] J. Kubiatowicz, D. Bindel, C. Chen, Y., S., P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
C. Wells, and B. Zhao. Oceanstore: an architecture for
global-scale persistent storage. In SIGARCH Comput.
Archit. News 28, 5 (Dec. 2000), 190-201.

[12] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, July 1982.

[13] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (sundr). In OSDI’04.

[14] J. Li and D. Maziéres. Beyond one-third faulty replicas
in byzantine fault tolerant systems. In NSDI’07.

[15] N. Magharei, R. Rejaie, and Y. Guo. Mesh or
multiple-tree: A comparative study of live p2p
streaming approaches. In INFOCOM 2007.

[16] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: cloud storage with
minimal trust. In OSDI’10.

[17] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. In ACM
Computing Surveys, 22(4):299âĂŞ319, 1990.

[18] W. Vogels. Eventually consistent. Commun. ACM,
52(1):40–44, Jan. 2009.

