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Abstract. Machine Translation Systems are today used to break down
linguistic barriers. People from different countries and languages can
now interact with each other thanks to state-of-the-art translators from
prominent software companies like Google and Microsoft. However, these
tools are also used to expand the audience for phishing attacks, scam
emails or to generate fake reviews to promote a product on different
e-commerce platforms. In all these cases, detecting whether a text has
been translated can be crucial information. In this work, we tackle the
problem of the detection of translated texts from different angles. On
top of addressing the classic task of machine translation detection, we
investigate and find common patterns across different machine transla-
tion systems unrelated to the original text’s source language. Then, we
show that it is possible to identify the machine translation system used
to generate a translated text with high performances (F1l-score 88.5%)
and that it is also possible to identify the source language of the original
text. We perform our tasks over two datasets that we use to evaluate our
models: Books, a new dataset we built from scratch based on excerpts
of novels, and the well-known Europarl dataset, based on proceedings of
the European Parliament.

Keywords: Machine Translation Systems - Machine Learning -
Natural Language Processing

1 Introduction

Today, hundreds of thousands of people use commercial machine translation sys-
tems (MTSs) worldwide for personal or working purposes. They help bridge the
gap in language barriers, especially on the Web, by facilitating communication
between people. However, bad actors use these systems to target potential vic-
tims of email-phishing [32] massively or generate fake reviews of products to
trick recommendation systems [16] and people into buying or choosing a specific
product. For all these reasons, machine translation detectors are actively used
to infer spam emails or to detect poor quality web pages [13].

In this work, we put automatically translated texts under the lens. We study
the impact of the MTSs and the source language of the translated text on the
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Machine Translation Detection (MTD) task leveraging Books, a novel dataset
built from excerpts of novels. We find that MTSs have common patterns that
can be learned by training on a single MTS; thus, we are able to identify trans-
lated text regardless of the MTS used for the translation, suggesting that the
automatic translation process introduces recognizable patterns in the transla-
tion. Similarly, we discover that we can learn these patterns regardless of the
source language of the translated text. We can train on a single MTS using text
from a single source language and still detect the translated text on multiple
MTSs and source languages with comparable performances.

We then investigate the possibility of identifying the MTS used to produce
the translation and the source language of the original text. To explore these
questions, we introduce, to the best of our knowledge, two new tasks: Machine
Translation Identification (MTI) and Source Language Identification (SLI). In
the former (MTI), we want to identify which MTS has been used to generate a
translation, while in the latter (SLI), we want to identify the source language of a
translated text. For the first task, MTI, we built a classifier that shows promising
results, with an average Fl-score of 83.5%. In the second task, SLI, we propose
a stacked classifier able to identify the source language of a machine-translated
text with an average Fl-score of 78% among 4 languages. We believe that these
tasks could be helpful in forensic analysis, where malicious actors attempt to
obfuscate their writing style using MTSs [17,25]. In particular, in this paper, we
try to answer the following research questions:

Q1. Is it possible to identify a translated text regardless of the MTS used or the
source language of the text?

Q2. Is it possible to identify which translator has been used to translate the
text?

Q3. Is it possible to recognize the source language of the translated text?

2 Datasets

Since we need specific information to explore our questions, we build new
datasets. Indeed for Q1 and Q2, we need the translation of an original sam-
ple both by a human and an MTS, while for Q3, we need to know the source
language. In particular, to assess our experiments over different settings and
topic domains, we perform our study using two datasets: one extracted from
novels and the other based on speech transcriptions. The first dataset we use
is Books, a novel dataset we introduce. To build Books, we collect 100 books
originally written in 4 different languages by 100 different established writers
of the XX/XXI century [37]. In particular, we select 25 books for each of the
following source languages: Italian, French, Spanish, and German. The selected
books belong to several different domains and authors. Thus, they have very
different writing styles. From each book, we select an excerpt of approximately
10,000 characters (on average 1642.67 words per novel) and their corresponding
translation from the English edition. Finally, we produce 3 more English trans-
lations for each original excerpt using the APIs of 3 state-of-the-art commercial
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Machine Translation Systems: Google Translate [12] (GT), Microsoft Transla-
tion [26] (MT), and DeepL [7] (DL). At the end of the process, the Books dataset
is made of 400 different samples.

The second dataset we use for our experiments is Europarl [18]. It is a parallel
corpus extracted from the proceedings of the European Parliament containing
speech transcripts of European parliamentarians and the corresponding profes-
sional translations into each of the 20 European languages. The texts on this
dataset include many speech-distinctive elements such as hesitations, broken sen-
tences, and repetition [5]. Consistently with Books, we obtain 100 seed samples
by extracting from Europarl 25 samples for each of the 4 languages we consider.
Every sample is made using transcripts of speakers of the same source language
and contains about 10,000 characters (on average 1512.81 words per sample). We
pre-process the dataset using Moses [19], a statistical machine translation system
that includes different tools and utilities to parse and parallelize the Europarl
dataset. Then, we collect the parallel English translation of each seed sample.
Finally, we translate each seed sample using the selected MTSs. Figure 1 sum-
marizes the process of building the Books and Europarl dataset. Both datasets
at the end contain 400 samples in English, which are produced starting from 100
seeds (25 for each language), of which 100 were made by translating the orig-
inal seed by professional human translators and 300 using machine-translation
systems (100 for each MTS).
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Fig. 1. Step by step representation of the process used to build Books dataset. The
same pipeline was applied to build the Europarl dataset.
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3 Experimental Settings

In this section, we describe the experimental settings of the tasks in terms of
train/test splits, the pre-processing we apply, and the features we use. For all
the experiments, we use 60% of the dataset as train and 40% as test. We use
Python Scikit-learn [33] to implement all the models and the feature selection
techniques. Whenever the model parameters are not specified, we use the default
values.

3.1 Pre-processing and Feature Description

We apply three pre-processing techniques to extract our features. Firstly, we
tokenize the texts. Tokenization is the process of separating a piece of text into
smaller units called tokens (e.g., words, char). We then apply the following pro-
cesses:

— Stemming. It is the process of reducing inflected words to their root (words
stem). (e.g., writing — write; eating — eat)

— Part-of-Speech (POS) tagging. It is the process of identifying a word’s
appropriate part of speech in a text based on its definition and context.

— Distortion Text. It is a process where ASCII characters are replaced with
a special character [36]. Table 1 shows an example of this pre-processing step.

Table 1. Example of text distortion.

Original Text Distorted Text

I don’t know. Just making conversation | % ##¥7k sokorck ook sokoiciolor

with you, Morty. What do you think, Rk ko ok oekokk
I-I-I... know everything about A Ak K KRR KK RRERE
everything? B R R T T 3

Most of the features are based on n-grams, that are a sequence of N con-
tiguous elements, in our case, character (char-gram) or words (word-gram). We
use the notation Char-gram (i-k) (resp. Word-gram (i-k)) to denote all the char
n-grams (resp. word n-grams) with n € {7,...,k}. Table 2 shows the features we
use for our tasks and the feature number for the different tasks and datasets.
Below a description of each feature:

— Char-gram is a sequence of N contiguous characters.

— Sentence Length is the average length of the sentences for each text based
on the number of characters.

— Words avg is the average number of words for each sentence of the text.

— Adjectives avg is the average number of adjectives for each text.

— Dist Char-gram (i-k) are char-grams computed over the distortion text.

— POS Word-gram(i-k) are word-grams computed over Part of Speech (POS)
tagged text.
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— Type Token Ratio (TTR) is the ratio between the number of unique words
and the total number of words for a given text. The idea behind this feature
is to measure the vocabulary variety (in terms of words) of a text.

We use the Bag of Words to weigh the char-grams and word-grams, while we
use Tf-idf (term frequency-inverse document frequency) to weigh the distortion
text. The Bags of Words is a representation that creates vectors with the number
of occurrences of a specified element in the text (e.g., words), while the Tf-idf is
an weighting schema that gives a larger value (weight) to elements that are less
frequent in the document corpus.

Table 2. Features types and numbers of features for the MTI and SLI tasks on both
datasets.

Feature Type MTI SLI

Books | Euro Books | Euro
Char-gram (1-6) 318,250 | 220,593 | 261,895 | 175,247
Sentence Length 1 1 1 1
Words avg 1 1 1 1
Adjectives avg 1 1 1 1
Dist. Char-gram (5-8) | 15,134 | 12,080 |— -
Dist. Char-gram (2-8) | — - 13,897 |9,522
POS Word-gram (1-6) | - - 187,481 | 145,473
TTR 1 1 - -
All 333,388 (232,677 | 463,276 | 330, 245

4 Machine Translation Detection

The goal of the Machine Translation Detection (MTD) task is to automatically
detect whether a text has been translated by a machine translation system or is
human-generated. This task was broadly studied in the literature with different
approaches such as using fixed features [1,23], n-gram [2,34], coherence score [27]
and similarity with round-trip translation [28]. In this section, we first want to
replicate similar results to the state-of-the-art on our datasets Books, to verify
that it is suitable for our purposes. Then, we design two experiments to explore
further the underlying patterns of machine-translated texts.

For all the experiments in this section, we use the following model. We train
a Multilayer Perceptron [15] with a single hidden layer made of 10 neurons
and a BFGS optimizer [3] for weights optimization. Regarding the features, we
compute all the char n-grams with n € {1,...,6} and then select the 2,500 more
relevant n-grams according to the chi-square metric [9]. We finally normalize the
features with the SkLearn StandardScaler. Figure 2 shows the results on Books
and Europarl datasets.
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We obtain a high Fl-score on both corpora (0.9 on Books and 0.97 on
Europarl), showing that our model can achieve excellent results in distinguishing
machine-translated and human-translated texts.

1.0 0.97 mmm Books
Europarl
0.9 089 0.8
o 0.82
50.8
b
0 0.7
0.6
05 MTI SLI
Task

Fig. 2. Fl-score for the Machine Translation Detection (MTD), Machine Translation
Identification (MTTI), and Source Language Identification (SLI) tasks on the Books and
Europarl datasets.

4.1 Learning from a Single MTS

The next interesting point to explore is if there are any common patterns among
the different MTSs that could be learned to identify a translated text, even if
it is generated by an MTS that was not included in the training set. To verify
this idea, we train our model using only samples translated by a single MTS
and human-translated samples. We repeat the experiment 3 times, training the
model at each iteration with samples produced by a different MTS and testing
it only on the samples of the remaining MTSs.

Table 3(a) shows the results of this experiment for the different combinations.
As we can see, the model is able to achieve good results (on average 88% of F1-
score) when tested on samples generated by machine translators that are not
represented in the training set. Interestingly, the model trained on MT achieves
similar (average delta 0.015) results to those obtained by training the model
using the whole dataset (i.e., training on all the MTSs).

These results suggest that there are some common patterns among the MTSs
that the model can learn from a single MTS.

4.2 Learning from a Single Language

Since we have 4 different source languages in our dataset, we want to under-
stand the impact they might have on the MTD task. In this experiment, we
train our model using only the translation from one source language and test it
against the sample produced by the translation from other source languages and
the human-translated samples. Table 3(b) shows the F1-score using the different
source languages.
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Table 3. 3(a): Fl-score for Task 1 training on a single MTS’ samples and testing on
the others. 3(b): Fl-score for Task 1 training on a single language and testing on the
others.

3(a) Task 1 - single MTS 3(b) Task 1 - single language
Train | Books | Europarl
GT |0.85 |0.82

MT |0.89 0.95

DL |0.84 [0.94

Train | Books | Europarl
1T 0.91 0.93
FR |0.85 |0.74
ES 0.88 10.78
DE |0.73 |0.81

Results show that the model can learn machine translation patterns even
when training only on one language, suggesting that these patterns are unrelated
to the source language but rather unique to the machine translation process.

5 Machine Translator Identification

Results from the previous section suggest common patterns exist among the
different MTSs that allow us to differentiate machine-translated texts from
human-translated ones. In this section, we investigate if MTSs translations dif-
fer enough from each other to be able to identify which one has been used to
translate a sample (Question Q2). Thus, given a machine-translated text T”,
our goal is to identify the MTS M that generated the text T’. We call this
task Machine Translator Identification (MTI). In particular, we focus on
identifying the 3 MTSs used to build the Books and Europarl datasets: Google
Translate, Microsoft Translation, and DeepL. Given the task’s goal, we use a
sub-set of Europarl and Books datasets for the following experiments, removing
the 100 samples representing the class of human translations from each dataset.

For this task, we build an ensemble classifier. The first level comprises three
different classifiers: a Support Vector Machine, a Logistic Regression, and a
Random Tree. Then, the outputs of the classifiers are used as input to feed
a hard voting layer (SkLearn VotingClassifier) for the final prediction. Table 2
shows the type and the number of features we use to train the three classifiers
at the first level of our architecture. For all the n-gram type features, we select
only the 85% most significant ones using SelectPercentile of SkLearn, and we
standardize them with the SkLearn StandardScaler. Figure 2 reports the F1-score
for the two datasets. As we can notice, our classifier performs similarly on both
datasets, with an F1-score of 0.89 and 0.88 for Books and Europarl, respectively.
To better understand the results, we analyze the confusion matrices of the two
classifications. The confusion matrix of Books (Table4) shows that GT is the
hardest MTS to identify, and its misclassified samples are mostly assigned to the
MT class.

We found a possible explanation for these errors by analyzing the BLUE
score [31]. The BLEU Score is an algorithm for evaluating the quality of a trans-



Translated Texts Under the Lens 229
Table 4. Confusion Matrix on Books for the MTI task.

Predicted
GT MT DL
- GTBO 6 4
SMT 1 B8 0

~“pL 0 2 B8l

lation. It measures the similarity of the translation to a reference one. For each
pair of the MTSs, we measure the BLEU score, obtaining a value of 69 for the
pair GT-MT, 63 for GT-DL, and 62.4 for DL-MT (Table 5).

Table 5. BLEU score for the MTS pairs.

MT DL | GT
GT 69 |63 |-
DL 624 - |-

The high BLEU score between GT and MT shows that they have similar
translations, which could be the reason for the incorrect classification of the GT
samples. Conversely, the low similarity between the MT and DL classes could
lead to the high accuracy we observe in our experiment. Finally, we obtain similar
results by analyzing the confusion matrix and the BLUE score for the Europarl
dataset.

6 Source Language Identification

As a final task, we propose the Source Language Identification (SLI). The
goal of the task is to identify the source language of a given machine-translated
text. Thus, given a machine-translated text 7" in a language L2 (in our case
English), the goal of the task is to identify the language L1 of the text T.
This task could be considered a variation of other tasks already studied in the
literature, such as Native Language Identification (NLI), where the goal is to
identify the native language (L1) of a person who writes in another language
(L2) or determining the source language of a human-translated text (see Sect. 7),
where the goal is to identify the source language of a text that has been human-
translated. However, unlike the previous studies, our task focuses on identifying
the source language of a text that is translated by a Machine Translation System
and not by a human. For our experiments, we consider English as L2, and the
possible L1 languages are: Italian, French, Spanish or German. Since we only
care about translations of MTS (i.e., text not translated by human), we modify
our dataset in the same way as we did for the MTI task (Sect.5).
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For this task, we use the stacking ensemble technique. In particular, we
stacked an AdaBoost [10] model with 50 LinearSVC [6] and a Logistic Regres-
sion [39] model as base estimators. Table 2 shows the type and the number of
features we use to train the stacking classifier. For all the n-gram features, we
select the top 70% according to their F-value, computed with the variance anal-
ysis (ANOVA) [35]. Then, we standardize them with a StandardScaler. Figure 2
shows the Fl-score of the model trained and tested on both our datasets. The
results suggest that identifying the source language is easier in Europarl than in
Books. As noted in [14], a possible reason could be that the Europarl dataset
may contain some distinctive patterns for the source language of the speaker
since it is a transcription of a talk. Instead, the Books dataset covers a wide area
of topics and contains fewer clues about the author’s source language. Table 6
shows the confusion matrices on the Books and Europarl dataset.

Table 6. Confusion Matrices on Books and Europarl for the SLI task.

Predicted Predicted
DE ES FR IT DE ES FR IT
DE251 0 5 0 _DER# 3 0 0
2ES 2 8] 4 1 2ES O 4 3 3
—FR 0 2 2@ 1 —~FR 0 3 [24] 3
IT 1 5 9 15 IT 0 9 1 20
Books Europarl

The most challenging source language to detect on both datasets is Italian,
frequently misclassified as Spanish or French. German is generally better iden-
tified than the other languages except for French on the Books dataset, with
five classification errors. Indeed, German has the highest F1-score among all the
classes, with a value of 0.86 in Books and 0.94 in Europarl. This is intuitive
and expected, since German is a West Germanic language while the other 3 are
Romance languages and have more features in common [30].

7 Related Work

Machine Translation Detection: The detection of automatic translations has
been investigated in the past using multiple techniques. Both Aharoni et al. [1]
and Li et al. [23] use fixed features taken from the English language that may
be used regardless of the language in which the content was originally written
(i.e., source language). They respectively achieve an accuracy of 90% and 83%.
Arase et al. [2] and Popescu et al. [34] use an n-gram based approach to perform
the task, reaching a high accuracy of 96% and 99%. Other works used words
distribution [22,29], that lead to a max accuracy of 98%, or coherence score [27],
with an accuracy of 73%. More recently, Nguyen et al. [28] propose a method
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to detect translated texts using text similarity with round-trip translation that
appears to be resistant for different translators and languages. In this case, they
were able to achieve an accuracy of 94%.

Machine Translator Identification: Bhardwaj et al. [4] test 18 classifiers to
detect translated text using commercial as well as in-house MTS. Looking at the
identification of the MTS, previous works [1] show that testing machine transla-
tion detection over different MTSs produces different results. This suggests that
these MTSs have different qualities of translation and that there are differences
between them. In the same way, Bizzoni et al. [5] found similar results study-
ing translationese ([11]) over different architectures. These studies show that
there could be enough differences in MTS systems to be able to identify which
translator has been used for a given translation.

Source Language Identification: We can have three slightly different settings
for the source language identification task. The first setting is the well-known
NLI task [38] where the goal is to identify the native language L1 of a person
who writes a text in a second language L2 [21]. The second setting is when the
translation has been performed by a person that is different from the one that
wrote the original text. In [14], the author shows that it is possible to identify
the source language of the translation of speeches in the Europarl corpus with
an accuracy of more than 87%, without testing if these results hold for trans-
lated text (i.e. it is possible to detect the source language of an automatically
translated text). Using human translation, also Lynch et al. [24] and Koppel
et al. [20] perform the same task showing that it is possible to determine the
original language of a human translation.

8 Conclusion and Future Work

In this work, we put translated text under the lens. We start by evaluating the
impact of MTSs and source languages on the Machine Translation Detection
task. We find that MTSs generate common patterns in the translated text that
can be learned by a machine learning model trained using a single MTS. Further-
more, we show that the performance of the task is not significantly influenced
by the MTS employed or the source language of the text. These results open
the possibility to employ machine learning models trained solely on a subset of
known MTSs or languages and identify text translated from any other MTSs
or languages. Then, to the best of our knowledge, we introduce two new tasks:
Machine Translator Identification and Source Language Identification. The goal
of the Machine Translator Identification task (MTI) is to identify the MTS that
has been used to translate a target text, while the Source Language Identifi-
cation (SLI) task aims to identify the source language of a machine-translated
text.

The models we propose for both tasks achieve an average F1-score of 88.5%
and 78%, respectively, for the MTI and the SLI task. These last two tasks can
help to characterize translated texts further and could be used as features for
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a classification task or give additional insights when studying potential threats.
Our results, although they represent a first attempt to tackle the newly presented
tasks, show that much more work can be done in this area.

While we achieve good performances, we believe there could be further
improvement by using deep learning models that are particularly effective in
NLP tasks, such as BERT, a pre-trained language representation model based
on transformers [8]. However, the number of samples in the datasets should be
increased to use deep learning techniques effectively. Furthermore, in our study,
we perform all the experiments at the document level, using a mean of 1642.67
words. In the future, it would be interesting to propose the same tasks in a more
challenging setting, using sentences rather than documents. This is particularly
important since it makes it possible to evaluate very short texts. We consider
only European languages (although with different origins) for the datasets: Ger-
man, French, Italian, and Spanish. However, there are other languages, such as
Arabic, Mandarin, or Hindi, that are widely used worldwide, and it could be
interesting to expand the datasets and test the classifiers performances with the
new data. Finally, with the recent popularity of Large Language Models (LLMs)
such as ChatGPT, it could be interesting to verify if our model can still identify
a text translated by ChatGPT and its original language, and also to introduce
a new task for the detection of text generated by LLMs.

Acknowledgements. This work was supported in part by the MIUR under grant
“Dipartimenti di eccellenza 2018-2022” of the Department of Computer Science of
Sapienza University.
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