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a b s t r a c t

In this paper we address the problem of local balancing in multi-hop wireless networks. We introduce
the notion of proactive routing: after a short pre-processing phase in which nodes build their routing
tables by exchanging messages with neighbors, we require that nodes decide the relay of each message
without any further interaction with other nodes. Besides delivering very low communication overhead,
proactive routing protocols are robust against some well known active attacks to network routing. In this
framework, we develop a proactive routing protocol that is able to balance the local load. Experiments
show that our protocol improves network lifetime up to 98% and that it delivers a network that is more
robust against attacks that have the goal of getting control over a large part of the network traffic.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The interest on multi-hop ad hoc wireless networks has been
largely growing in the last decade. In large multi-hop wireless
networks nodes communicate from source to destination using
other nodes as relays. Important examples of these kinds of
networks are sensor networks—networks made of low-end tiny
devices that are equipped with a battery and a radio transmitter.
Sensors are usually deployed in large numberswithin a geographic
area in order to perform some common task such as monitoring
environment properties, like temperature, humidity, presence
of people, etc. The scientific literature on multi-hop wireless
networks is vast. A large part of it is devoted to the problem
of routing—how to forward packets hop by hop from source to
destination in an efficient way.

Typically, routing protocols try to route packets through the
shortest path from source to destination so as to obtain small
delays and short traveled distances [28]. However, shortest-path
routing is not always the appropriate option as it can often cause
the appearance of large congested areas or the occurrence of local
hot-spots. The obvious consequence is that some nodes become
significantly more loaded that others, thus quickly discharging
their battery. This is a critical concern, especially in wireless
sensor networks. When a node dies, its neighbors experiment
an immediate increase in traffic volume due to the necessity of
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handling routes that were previously covered by the deceased
node. The congestion can then spread to a large area thus limiting
the network’s lifetime and efficiency. To avoid such an undesired
effect, researchers have designed a number of routing protocols
that attempt to distribute traffic evenly among nodes. Load
balancing protocols can assure longer operational functionality
and a more graceful decay of the network.

Moreover, congestion also raises security related issues, that
are important concerns in both wireless sensor networks and
multi-hop wireless networks. For instance, the disrupting effects
of jamming become more severe when the attack is directed
to an overloaded region of the network. In addition, if traffic
is concentrated in small areas, the attacker is further favored,
as jamming can disturb a large number of communications at a
limited cost [16].

In this paper, we introduce the notion of pro-active routing and
apply it to load balancing. A proactive routing protocol performs all
the decisions regarding how to route packets in the network in a
short pre-processing phase at the start of the network operations.
Then, routing tables and routingmechanisms are frozen, and every
node decides how to select the next relay only looking at the
destination of the packet and at its internal information, without
any further interactionwith other nodes. The rationale of proactive
routing is to have a routing protocol that is both efficient and
robust against some security attacks to the network. We assume
that the adversary is inactive for a short period of time at the
start of the network operations. This is a common assumption
(see [27] for an example among many others)—for a short period
of timewe are able to use expensive security techniques, including
physical surveillance, that avoid the presence of malicious activity.
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Afterwards, we expect the network to be robust against the
adversary.

In the literature, load balancing is usually obtained by using
reactive routing protocols. There is a very large number of such
protocols—we review only a few of them in Section 2. These
are protocols that dynamically use local information, like the
remaining energy of neighboring nodes, to repeatedly choose, time
after time, an appropriate relay for the goal of getting an even load
balance. However, this information can be easily spoofed, altered,
or replayed. In [11], these attacks are described and are shown
to be hard to stop. In particular, by altering routing information
it is usually easy to perform the sinkhole attack [11], where the
adversary’s goal is to attract a large amount of traffic in a particular
area through a compromised node. It is enough that the nodes
under the control of the adversary claim to have a high level
of remaining energy. Pro-active routing techniques, like the one
we introduce in this paper, is a simple and clean way to protect
the network against these attacks since no routing information
is exchanged, except in the very first pre-processing phase. A
positive side-effect of pro-active routing is that it is extremely
efficient, since the overhead due to control information is reduced
to virtually zero.

In this framework, our target is to obtain a fairly distributed
traffic on a strictly local basis. The problem is far from trivial since
we cannot rely on any dynamic information to achieve our goal.
The solutionwepropose in this paper takes advantage of pro-active
routing and allows an extraordinary result on network lifetime.
As our experiments will show, we are able to deliver 98% more
messages when comparing our protocol with standard, state of the
art shortest path routing protocols.

The rest of the article is organized as follows. In Section 2,
we briefly survey the related work. In Section 3, we discuss the
main general advantages achievable by routing pro-actively. At
the beginning of Section 4, we show how pro-active and reactive
routing specifically act on nodal load. We then distinguish two
levels at which load unbalance is generated, the macroscopic and
the microscopic level. We discuss the opportunity of separately
designing load balance at the two levels and introduce, in
Section 4.1, a tool that allows to isolate and cut out themacroscopic
unbalance. In Section 5, we address the microscopic load balance
problem through the notion of competence anduse this to propose,
in Section 6, a complete algorithm for competence balancing.
Finally, in Section 7, simulation results show that competence
balancing induces load balancing and enables improvements in
terms of load variance, network lifetime and protection against
adversaries.

2. Related work

In the last decade wireless ad-hoc networks have drawn the
attention of the research community. The capability of these
networks of scaling gracefully has permitted a wide range of
applications. In particular, there is now a great interest in sensor
networks [1], as the limited capacity of these devices raises a
number of challenging issues. One of the most relevant obstacles
to the exploitation of sensor networks is the limited battery supply
so that many efforts have been made in order to design energy
aware protocols [2]. In this paper we focus on the achievement
of a fair work load distribution among nodes, as it has been
broadly confirmed that load balancing has a considerable impact
on network lifetime [10].

The definition of appropriate routing schemes is obviously one
of the key solutions to energy saving.Many authors propose greedy
routing schemes as an approximation of shortest path routing,
often coupled with alternate awake-sleep states to a given duty
cycle [3,23,28]. In [4,24,25] the problem of load unbalance has
been tackled with the use of reactive routing protocols. Routes
are determined on-demand by forwarding messages to neighbors
with higher residual energy, thus smoothing the energy level
among neighbors. Some authors have also used multiple paths
for load balancing [19]. However, it is shown in [5] that a good
load distribution can be obtained only by using a large number
of paths, otherwise results remain much similar to those obtained
with single path shortest routing.

Recently, it has observed that shortest path routing leads to
several problems in terms of load induced by the relay traffic.
In [13], it is shown that straight-line routing in a network deployed
in a convex surface generates an irregular distribution of load
among nodes. As a matter of fact, centrally located nodes handle
many more packets than nodes situated in peripheral areas of the
network, and nodes with a large Voronoi set handle many more
packets than nodes with a smaller one.

The analysis of theoretical results reported in [13] also reveals
that load unbalance has two independent components: one at a
macroscopic, global level (distance of nodes from the center of the
network), the other at a microscopic, local level (size of Voronoi
sets, that is local distribution of nodes). The authors first give an
estimate of nodal load (defined as the number of packets served
at a node) in the case of straight line routing and then show that
nodal load is a function of the traffic pattern, of the nodes’ Voronoi
cells and of the location of nodes in the network.

The most efficient protocols addressing load unbalance at the
macroscopic level are pro-active in nature. Given a source–desti-
nation couple, those solutions envisage the use of longer routing
paths. The idea is to replace shortest paths with alternative routes,
computed in such away to improve load balance at the global level.
This task cannot be accomplished only using locally available data,
so that reactive procedures appear to be ineffective to this end.

In [14,20] wireless nodes on a disk are projected on a sphere
and routing decisions are made according to great circle distances.
Shortest paths defined on the sphere define paths on the given disk
and those paths avoid the central congested area, redistributing
load among nodes. A similar approach is adopted in [16]. Nodes in
a square network surface are mapped to a torus by the use of some
randomness and of an easily computable function. Using a simple
metric defined on the virtual toric space, each node chooses as next
hop relay the neighboring node closer to the destination. Authors
of [10] also address the crowded center problem and present a
general framework for analyzing traffic load and routing. They also
propose an heuristic solution were routing on a disk is carried out
by switching from the circle traversing the source to the circle
traversing the destination.

3. Pro-active vs. reactive routing and security implications

All of the above-mentioned works focus on the problem of
load balancing in multi-hop wireless networks. They define an
appropriate routing strategy in order to evenly distribute work
load among all nodes, so that overall energy endurance can be
preserved. As suggested, these routing protocols fall under two
distinguished paradigms: routes are either defined reactively or
pro-actively.

In the first case, nodes periodically inquire their neighbors
about their energy remainder, and load balance among nodes is
approached by routing to neighbors proving high power supply.
The network’s response to unexpected topology changes is swift,
but blind to the inner cause of the appearance of congested
areas, such as the position of node in a centrally located area. A
considerable drawback of this method is the high communication
overhead.

On the other hand, when routing is defined in a pro-active
fashion, the information that a node requires to decide which
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neighbor to rely on does not change during a network’s activity—
eachnode is only supposed to knowwhat is the shape of the surface
that carries the network and its position within such surface. This
data is then employed in the computation of an a priori known
function which finally returns a convenient relay node, without
further interaction with neighboring nodes.

The search for energy efficiency can possibly backfire on the
safety of the system, if the network’s security is not taken into
account at routing design time [11]. Reactive routing protocols
are vulnerable to those attacks that abuse the protocol itself.
When energy preservation is a crucial demand, it is not surprising
that an attacker can do serious damage by forging energy related
information. An attacker may be able to identify itself as a
network node and therefore communicate with other nodes in the
network. Once a node is captured, the adversary can make it look
attractive to neighbors by declaring a very high battery supply. All
neighboring nodes will then preferably choose the malicious node
as next-hop relay. The result is that most of the messages handled
by network nodes located within the communication range of the
attacker will be absorbed by the attacker itself, who may decide
to drop certain messages thus invalidating the overall accuracy of
data. These attacks are particularly vicious since the attacker can
make a lot of damage by controlling one or few nodes.

Pro-active routing proves to be more robust against this
sort of attack. The pre-processing stage is designed in order to
prevent an unfair use of energy among nodes by preventively
establishing how nodes have to be used in the routing phase.
After pre-processing, nodes no longer inquire their neighbors
about their energy remainder, therefore ignoring any malicious
neighbor advertising high battery levels. During pre-processing
we assume that major security measures are adopted, including
physical surveillance, if necessary. It is only in this stage that the
network is vulnerable to attacks based on energy scarcity. When
pre-processing ends, all nodes stop exchanging energy-related
information, thusmaking unfeasible for an attacker to intervene on
the construction of routing tables. Of course, pro-active protocols
cannot do much if the adversary can physically stop a large part of
the network nodes. These attacks are not the focus of this work.

There is a number of attacks that can be prevented, if nodes are
relieved from investigating their neighbors energy state or their
position [9,11,18]. We list a few of them.

Sinkhole attack A malicious node declares to have full or high
energy in order to drain all the traffic coming from its
neighbors. Damage to the network can be caused by
subsequently dropping all (blackhole behavior) or part
(selective forwarding) of the received packets. Data can be
also altered before retransmission.

Wormhole attack A captured node owns a private and direct link
with another distant captured node. Packets arriving at
one of the two malicious nodes can be dysfunctionally
diverted to the other malicious node, thus altering the
expected communication system.

Sybil attack A captured node forges multiple identities thus
resulting in different places simultaneously. In this case,
the malicious node promotes himself by increasing its
chance of being chosen, as it appears to be very often on
the direction of the packet’s destination.

Both wormhole and sinkhole attacks can be made more severe
by adopting the sinkhole strategy. Pro-active routing is an effective
counter-measure that can be used to stop the sinkhole attack
(nodes cannot attract more messages since routing tables are
frozen and the injection ofmalicious information regarding energy
and positioning does not influence routing decisions). In this way,
we also mitigate the possible damage caused by the wormhole
attack and the sybil attack, whose severity also depends on the
possibility of launching a sinkhole attack.

A limitation to the robustness of a network under a pro-active
routing protocol could be the necessity of joining new nodes to
the existing ones in order to replace exhausted nodes. In this case,
the pre-processing procedure must be repeated and the adversary
can then actively participate, therefore having the opportunity
to heavily influence routing decisions. However, if the initial
pre-processing procedure is well designed, then nodes end their
battery charge almost simultaneously. In this case, there is no sense
in linking the old nodes to the new ones. It is more convenient to
initiate a new network with a new set of cryptographic keys.

The above observations suggests what has been the direction
of our effort. This work introduces a novel approach to the load
balancing problem and proposes a pro-active new protocol to
resolve it, in order to take advantage of the benefits in terms of
network security and network performance that this technique
offers.

4. Macroscopic and microscopic level

A common assumption, when focusing on the dynamics ruling
traffic distribution, is to consider nodes uniformly distributed over
the surface of a convex polygon, usually a circle or a square.
We follow this assumption, but also anticipate that our balancing
procedure is not merely constructed for a uniform deployment of
nodes, as it can be applied unchanged to any distribution of nodes.

We also assume that each pair of nodes has the same chance of
being the sender and the final receiver of a communication andwe
call this a uniform traffic communication model. This type of traffic
distribution has been widely adopted in network simulations, for
instance in the analysis of the capacity of a wireless network, in
the study of routing optimality and for testing security properties
[7,8,26]. Moreover, there exist many applications that generate a
uniform traffic pattern, such as [17], a protocol for the selection
of witnesses for a node’s location in sensor networks, that uses
geometric probability to detect replicated nodes. Another example
of uniform traffic generation is given by the use of mobile sinks
in sensor networks [6,15]. Sensors typically send data to a limited
number of common sink collectors, so that nodes in the proximity
of a sink undergo heavy forwarding. If a sink is able to move
among several anchor points (for instance around the network
periphery), the role of bottleneck nodes is then distributed over
time, so that the distribution of nodal load can approximate the
uniform distribution.

The use of a uniform communication pattern, together with
shortest path routing, causes centrally located nodes to be much
more congested than others, as most of the routes will traverse
the central area of the network. From this point of view, it is
clear that the amount of traffic traversing a certain node strongly
depends on its position inside the network. We call this level
of sight the macroscopic level and underline that load unbalance
observable at this scale is a consequence of the global network
geometry. This problem has been investigated and a few efficient
solutions have been proposed recently [14,16,20]. Nevertheless,
local unbalance remains.With some sort ofmagnifying glass,we can
imagine to zoom in on different parts of the network. Most likely,
the resulting observation frames are going to look very different
from one another. Mutual location of nodes, density and surface
coverage are some of the varying general aspects resulting in hot-
spots scattered over the network.Wewill show, later in this paper,
that local irregularities have a conspicuous impact on load balance
and therefore on network lifetime.

Opposite to the macroscopic level, we then define the
microscopic scale, corresponding to a single node and its immediate
neighbors. When we talk about load unbalance produced at the
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microscopic level, we are therefore looking at load differences
among single nodes. At this scale, the problem is often addressed
through reactive protocols that define routes dynamically on
demand according to remaining energy at each node, however, we
already discussed the security problems of this choice.

In this paper, we attack the problem of designing a pro-active
routing protocol that guarantees load balancing of relay traffic at
the microscopic level. As far as we are concerned, this is the first
work proposing a pro-active procedure preventing congestion on
a local basis. In thisway, we deliver a low overhead, load-balancing
routing protocol that is robust against somewell-known attacks to
routing security.

4.1. Virtually routing

Motivated by the observations made so far, we propose
a completely distributed pro-active procedure for local load
balancing. We assume that a pro-active procedure acting at the
macroscopic level adjusts unbalance due to the global geometry
of the network. Our target is then to tackle the residual problem
of local load unbalance. We will show that our procedure
shows beneficial effects on both energy endurance and security
implications.

As far as we are concerned, local load unbalance has been
addressed exclusively through reactive routing protocols. The
drawbacks of reactive routing in terms of energy consumption and
network security have been already discussed. In our procedure,
nodes do not need to keep track of the residual energy of their
neighbors. They only need to gather local information on their
neighborhood before messages start to be sent. Each node uses the
gathered data to set the forwarding schedule it will subsequently
follow. Once the routes are set, they never change again, unless
changes in the network topology occur. Moreover, schedules
are constructed in such way that nodal load remains equally
distributed during all network activity. As a matter of fact, known
reactive protocols act on load unbalance only after its occurrence
and the adopted countermeasures need some time to produce their
effect.

The parallel use of certain pro-active protocols dealing with
congestion produced at the macroscopic level allows us to isolate
unbalance rising at the microscopic level. Hereunder wemake this
statement more precise.

Let N = (V, E) be an undirected graph. N represents a multi-
hop wireless network with the following features. N is deployed
within a plane convex polygon S and two nodes u, v ∈ V can
directly communicate if and only if δ(u, v) ≤ r where δ is the
Euclidean distance and r is the communication range, common to
all nodes, so that E = {(u, v) ∈ V × V | u ≠ v and δ(u, v) ≤ r}.

Among all routing protocols that are commonly employed for
load balancing control, virtual routing models have carved out a
space for themselves. In those models each node receives, through
an appropriate mapping function, new space coordinates which
take the name of virtual coordinates. Virtual coordinates can be
points in the original space, in our case S, or in another convenient
space. Whichever is the destination space, we call this virtual
space and denote it by Σ . Packet shipping then takes place as in
geographic routing protocols, except that nodes act as if they were
located at their virtual positions. Once routing in the virtual space
Σ is carried out, routing in the original space S is immediately
given. It is sufficient to trace routes defined on Σ back into the
original space S.

Suppose that a message has to be sent from s ∈ V to d ∈ V
and that geographic routing is the shortest path strategy fixed
for routing in the virtual space. Let f : S → Σ be some
easily computable function used to obtain virtual coordinates from
the real position of nodes in the network. Finally, let us denote
the real position of a generic node u with Pu. Then, s and d are
virtually located at f (Ps) and f (Pd) respectively. Let N(u) be the
set of nodes adjacent to u. Starting from u = s, each relay u
decides the next hop to destination selecting the neighbor v such
that δΣ (f (Pv), f (Pd)) = minw∈B⊆N(u) δΣ (f (Pw), f (Pd)), where δΣ is
some fixed distance defined onΣ . Then relays thus determined are
the same relays that will route the message in the real network.
In other words, routes determined on Σ are traced back in the
original space S.

Note that we have imposed the choice of the next hop within
some subset B of N(u). In fact, relays selected by the routing
protocol in the virtual space must be actual neighbors in the
original network, otherwise virtual paths will not correspond to
existing paths in the real network.

Various examples of virtual routing can be found in literature.
For instance, in [14,20] routing is virtually made over a sphere,
while in [16] paths are determined using a torus as virtual space.

Why is virtual routing interesting for us? If the mapping
function and the virtual spaceΣ are carefully chosen, the following
properties are ensured:

1. uniform distribution of (virtual) nodes overΣ;
2. absence of hot spots inΣ referable to its particular shape;
3. a uniform communication pattern on S results in a uniform

communication pattern onΣ .

Our idea is to directly consider the network to be deployed
on a virtual space producing the listed features. Obviously, we
are not saying that the network is actually located over some
odd virtual space! Instead we assume that an appropriate pro-
active virtual protocol is adopted, so that we can perform local
load balancing when nodes are mapped into the virtual space,
before any route is fixed. This expedient enables us to focus
exclusively on unbalance due to local topology difference among
neighborhoods, thus leaving out unbalance due to the global
geometry of the surface of deployment. For our convenience the
choice for the virtual space has fallen on a toric surface, as shortest
paths and distances can be easily visualized on it. However, the
same reasonings hold for other constructions.

An example of a mapping function f from the square S =

[0, 1] × [0, 1] to the torus Σ = [0, 2] × [0, 2] is the following.
Let P = (x, y) ∈ S and let px and py be two independent variables
assuming value 0 or 1 as the result of fair coin toss. Then the new
virtual coordinates are:

fx(P) = px · x + (1 − px)(2 − x)
fy(P) = py · y + (1 − py)(2 − y).

Under this mapping, Properties 1–3 hold, as proved in [16].

Routing over a torus
Let T = [0, 1] × [0, 1] be a two-dimensional torus constructed

from a unit square by pasting the opposite edges together with
no twist. An unfolded torus then appears exactly as a square, but
points on the vertical edges with same y coordinate coincide as
well as points on the horizontal edges with same x coordinate.
Given P = (xP , yP),Q = (xQ , yQ ) ∈ T we define on T the distance
δT as follows

δT (P,Q ) =


δ2x + δ2y

where

δx = min{|xQ − xP |, 1 − |xQ − xP |}
δy = min{|yQ − yP |, 1 − |yQ − yP |}.

Note that if the network deployed on T presents a grid topology,
then it is obvious that shortest path routing among all possible
pairs of nodes results in a perfect balance in nodal load.
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Fig. 1. Example of active-neighborhood construction. (a) Black dots represent nodes within the transmitting range of the central node u. The gray area is the locus of points
that are closer to node v than to any other neighbor of u. In other terms, it is the Voronoi cell of node v in the Voronoi diagram obtained by using neighbors of u as sites. —
(b) Outline of the Voronoi cells of nodes in N(u). — (c) Neighbors whose Voronoi cell is cut by the transmitting bound βr (u), here highlighted in gray, are taken as u-active
neighbors. Such nodes result to be closer to some point in the network surface T outside βr (u) and can be appointed by u as relays in a compass routing procedure.
5. Competence balancing

In the following, we briefly describe the compass routing
method and then introduce the notion of competence. We use
competences to give an approximate estimate of nodal workload
and claim that an even distribution of competences among nodes
leads to a fair workload distribution. In other words, the compass
routing scheme is optimized through the notion of competence, in
order to achieve a uniform traffic load distribution. The detailed
procedure is described in Section 6 and the foundation of our
intuition has been empirically tested. Simulation results can be
found in Section 7.

5.1. Shortest path routing

A similar alternative to geographic routing is given by compass
routing [12]: a node u that has to transmit a packet to a destination
d chooses the next hop to destination by picking among its
neighbors the node v that minimizes the angle formed by v, u and
d. If we compare paths between source and destination obtained
by routing geographically, with those defined by compass routing,
the latter appear to be closer to the source–destination connecting
straight line. This achievement is obtained at the cost of a higher
number of hops, as the selected node v can be very close to u.
To avoid brief hops we restrict the choice of relay v to a subset
of the set N(u) of neighbors of u. We call such subset NA(u) and
refer to elements in it as u-active nodes, as these are the only
neighbors that can be appointed by u as relays for any possible
packet shipping. If βr(u) is the circle of radius r centered at u
that defines the transmitting range of u, then it is obvious that u-
active nodes should be selected among those neighbors of u that
are located in the proximity of βr(u). In the following we describe
our choice for the active set NA(u).

Given u ∈ V and v ∈ N(u), consider the locus C of points
in βr(u) that are closer to v than to any other neighbor of u. If
the network is sufficiently dense, C is either the empty set or a
continuous line, precisely an arc of βr(u). As shown in Fig. 1(a), by
using nodes in N(u) as sites to construct a Voronoi diagram, arc C
can also be viewed as the intersection of βr(u) with the Voronoi
cell of v. Referring to this formalism, we can define our u-active set
as follows.

Definition 1 (Active Neighborhood). Given u ∈ V , consider the
Voronoi diagram constructed using nodes in N(u) as Voronoi sites.
A node v ∈ V is u-active if
(i) v is a neighbor of u;
(ii) the intersection of v’s Voronoi cell and βr(u) is non-empty.
Fig. 1 shows how to identify a node’s active-neighborhood using
the previous definition. Note that the set of neighbors that u selects
as relays when geographic routing is adopted is a subset of the set
of u-active nodes above defined and eventually agrees with it.

5.2. Estimating nodal work-load

Now we have fixed compass routing as routing strategy for
packet delivery, we are ready to introduce a tool to locally estimate
the potential load of a node in order to balance energy use among
nodes basing decisions exclusively on neighborhood evaluation.
For every node v ∈ N(u) let ru(v) be the segment-radius of βr(u)
passing through v. If u is located in (xu, yu), the coordinates of a
point v ∈ NA(u) can be expressed in the form (xu + r cosαv, yu +

r sinαv), with αv ∈ [0, 2π) and r ∈ [0, 1). We use the αv angle to
order u-active nodes counterclockwise.

Definition 2 (Angle of Competence). Given u, v ∈ V , if v ∈

NA(u), let vprev, vnext ∈ NA(u) be the u-active nodes that precede
and follow v in the given counterclockwise order. The angle of
competence (or simply competence) of v with respect to u is then
defined as

θu(v) :=


φ

2
+
ψ

2
if v ∈ NA(u)

0 otherwise

where φ is the angle formed by ru(vprev) and ru(v), andψ the angle
located between ru(v) and ru(vnext).

The abovedefinition is described graphically in Fig. 2. Intuitively
the angle of competence of a node v with respect to u expresses
a measure of the quantity of packets arriving at u and that u will
forward to v. In otherwords, the number of times that uwill choose
v as a relay. In fact, if the line that connects u to the destination of a
certain packet passes through the competence of v and we follow
the compass routing procedure, then the packet has to be handled
by v. We have extended the definition of angle of competencewith
respect to a node u also to those nodes v that are not adjacent to u
and to neighbors of u that are not u-active by setting θu(v) = 0.

For simplicity, from now on we will confuse the concept of
angle with the concept of magnitude of an angle each time the
disambiguation can be clearly established from the context. The
following is a key definition for our balancing procedure.

Definition 3 (Total Competence). The total competence of a node
v ∈ V is the sum

L(v) =


u∈V

θu(v)
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Fig. 2. Angle of competence assignment. Node v belongs to the active neighborhood of node u. u-active nodes are ordered counterclockwise: the angle of competence θu(v) of
v with respect to u depends on the position of the two u-active nodes, vprev and vnext , preceding and following v in the fixed ordering. Anglesψ and φ are enclosed between
the radius-segments passing through vprev, v and vnext (left figure). θu(v) is then obtained merging together the lower half of ψ and the upper half of φ (right figure).
Fig. 3. Mutual competence assignment between node couples. In a grid network
topology (top figures), nodes are symmetrically placed so that θu(v) = θv(u) for
all u, v ∈ V . When nodes are uniformly distributed (bottom figures), there is no
such correspondence and the total competence of a node may largely vary around
the round angle.

of all angles of competence assigned to v by other nodes in the
network.

L(v) then expresses an estimate of how frequently v is used as
a relay by its neighbors.

5.3. Towards local load balancing

Let us suppose for a moment that the given network presents
a grid topology. Then work-load is perfectly distributed among
nodes and the following identity holds.

Lemma 1. If N is a grid then

L(v) =


u∈V

θu(v) =


u∈V

θv(u) = 2π ∀v ∈ V.

Proof. The first equality is the definition of total competence of a
vertex. Because of the typical symmetries of a grid, it follows that a
node umakes a node v responsible for packets going into a certain
direction if and only if v makes u responsible for packets going
into the opposite direction (see Fig. 3, top). Therefore we have that
θu(v) = θv(u) for all u, v ∈ V . Finally, for every network node,
each possible shipping directionmust be covered so that the angles
of competence assigned from a node to its active neighbors sum up
to the round angle. �
Roughly speaking this means that each node is assigned angles
of competence whose sum is equal to 2π , which is also the total
angle assigned from a node to its neighbors.

As shown in Fig. 3 (bottom, left and right), when nodes
are uniformly distributed at random in the network space, the
regularity expressed by Lemma 1 is no longer assured. As a matter
of fact, the volume of packets traversing a node from opposite
incoming or outgoing directions does not agree in general; actually,
it can differ greatly is spite of the assumption of a uniform
traffic pattern. This is due to the local irregular distribution
of neighbors as well as on the impact of irregular distribution
of source–destination pairs. Unfortunately, we cannot intervene
locally on the latter aspect without expensive searches in the
network and our interest remains that of constructing a light and
completely distributed procedure for load balancing.

Not being able to relocate nodes, we tried to artificially
recreate a fair distribution of packets among different directions
through the achievement of the equi-distribution of the angles of
competence. In particular, our idea is to approach as closely as
possible the main feature observed in grid-networks: the equality,
stated in Lemma 1, of the full circle to the sum of competences
received by a node from its neighbors. We will show that the
approximate optimization of this factor allows to obtain excellent
results in the balancing of nodal load.

6. An approximate procedure for competence balancing

As we have seen, when nodes are distributed at random on
a continuous surface, many local topological irregularities occur.
Compass routing, as well as geographic routing, generates on a
torus a balanced load at a macroscopic level, while punctual load
analysis, i.e., load per single node, shows a considerable variance
of values.

Our aim is to intervene on punctual load by reducing the
variance around the mean load. To do so we modify for each node
u the set of nodes delegated by u to act as relays and therefore
modify the proportion of arc in βr(u) that those neighbors
serve. In compass routing the set of nodes that are capable to
receive packets from u are the u-active nodes. We recall that in
compass routing u sends a packet to the u-active neighbor v that
minimizes the angle between ru(v) and the line connecting u to the
destination. This line intersects circle βr(u), so each active node
is responsible for an arc of circumference. We act on the span of
the arc of circumference for which an active node is responsible by
reducing or enlarging it and we eventually modify the active set
in order to gain variance reduction in load distribution. The key to
variance load control is actually competence balancing. As amatter
of fact, simulation results will show that the attempt to reduce the
variance of quantity L(V) := {L(v) | v ∈ V} leads to a reduction of
load variance.
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Fig. 4. Insertion operation. Node v is u-eligible but not u-active. Subsequent u-active nodes near v in the fixed counterclockwise order are drawn with a full black dot, while
competences for u-active neighbors are highlighted in gray. If v is made u-active, half of the angle formed between the radius-segments passing through v and prevu(v) is
subtracted from.
Proposition 1. The mean value of L(V) is 2π whether nodes are
uniformly distributed or they form a grid topology.

Proof. For a grid network the result follows immediately from
Lemma 1. However, in both case, every node assigns all of its round
angle so that globally all nodes will have assigned an angle of
2π · n. �

Moreover, Lemma 1 proves that L(V) is exactly equal to 2π for
a grid configuration, so that it follows from the above proposition
that the variance of L(V) is zero in this case. Fig. 3 shows instead
that a uniform distribution of nodes does not necessarily lead to a
zero mean value for L(V). As argued at the end of Section 5.3, our
intent is to artificially make the given network N look like a grid,
imposing the equality between the total competence of a node and
the round angle and therefore reducing the variance of the total
competence of a node. Simulation results in Section 7 will show
that this strategy actually leads to a reduction of load variance, as
expected.

6.1. Neighborhood manipulation: insertion and removal operations

Our load balancing procedure is essentially constructed over
two basic operations, node removal and node insertion. Both
operations have effect on the active set of nodes. Loosely speaking
their behavior can be outlined as follows.

1. By node insertion, a non-active node is selected and appointed
as active if its insertion in NA(u) reduces the variance of L(V).

2. Node removal is carried out to eliminate a node from NA(u) in
the case that the variance of L(V) decreases after such removal.

As earlier mentioned, when using the compass routing
procedure it is advisable to restrict the choice of a next hop relay
to a subset of the involved neighborhood, or hops might be too
short. Therefore, as we will operate on the set of active nodes by
the insertion and removal of nodes, it is necessary to fix a reference
set of the nodes that can be added to the current active set. To this
extent, let us denote with N (0)A the initial and largest possible set of
active nodes and letN (0)A be constructed as specified in Definition 1.
NA(u), instead denotes the current u-active set. Any node to be
inserted inNA(u)will be chosen among nodes inN (0)A (u): any other
node in the neighborhood of u is to be considered too close to the
departure node u. A node in N (0)A (u)will be also called u-eligible. A
u-eligible node is also u-active if and only if it belongs to NA(u). To
summarize,

N (0)A (u) is the reference set of eligible nodes – nodes that u can
appoint as relays – and is fixed once and for all as in
Definition 1;
Fig. 5. Operation 1. The procedure evaluates and eventually executes the insertion
of an eligible node in a current active set.

NA(u) is the set of current active nodes for u and must be a sub-
set of N (0)A (u).

As usual, nodes in N (0)A (u) are considered numbered according
to the counterclockwise order specified at the beginning of
Section 5.2. Given a node v ∈ N (0)A (u), let prevu(v) and nextu(v)
be the u-active nodes immediately preceding and following v
according to the fixed progressive numbering and let us use symbol
≺ to precise the order relation between two eligible nodes.

Suppose that one has to check if the insertion in NA(u) of an
eligible non-u-active node turns out to be convenient and let Var
denote the current variance for competences. The operation is
then carried out as described by the algorithm in Fig. 5 and by
the drawing in Fig. 4. The insertion of v in NA(u) has effect on
the values of L(v), L(prevu(v)) and L(nextu(v)), enlarging the total
competence of v and reducing the total competence of prevu(v)
and nextu(v). In particular, v becomes responsible for a portion of
packets passing through u. Lines 3, 4 and 5 account for this task. The
term 2π that appears from line 6 is themean value of L(V). Notice,
at lines 6 and 7, that updating Var, a global variable, only requires
the knowledge of local variables that node u can trace from its
neighbors. It is sufficient to remove the addends that involve the
total competence of prevu(v) and nextu(v) and to add the terms
that are related to the inclusion of v in NA(u). At lines 8–10, the
inclusion of v in NA(u) is made final when competence variance is
reduced.

It might be worth to explain the assignments at lines 3 and 4.
If node v is not u-active, the angle enclosed between rprevu(v) and
rnextu(v) measures αprev + αnext. Let us call γ the angle between
rprev(prevu(v)) and rprevu(v), and σ the angle between rnextu(v) and
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Fig. 6. Operation 2. The procedure evaluates and eventually executes the removal
of a node from a current active set.

rnext(nextu(v)). Thenwe can compute the competence of prevu(v) and
nextu(v):

θu(prevu(v)) =
γ

2
+
αprev + αnext

2

θu(nextu(v)) =
αprev + αnext

2
+
σ

2
.

If v is inserted in NA(u) competences are updated as follows:

θ ′

u(v) =
αprev

2
+
αnext

2

θ ′

u(prevu(v)) =
γ

2
+
αprev

2
= θu(prevu(v))−

αnext

2

θ ′

u(nextu(v)) =
αnext

2
+
σ

2
= θu(nextu(v))−

αprev

2
.

In a similar way we check for node removal. We suppose that
prevu(v), nextu(v) and v are u-active nodes that are responsible
for three adjacent arcs of βr(u). The procedure described in Fig. 6
decides whether it is convenient to remove v from NA(u) and
eventually redistributes θu(v) to prevu(v) and nextu(v).

6.2. Operations scheduling

Operations are scheduled in a distributed manner, but for the
sake of simplicity in Fig. 7 we give the pseudo-code description of
the procedure in a sequential mode.

All nodes must define the angle of competence to be assigned
to their neighbors. We preferred not to adopt a fixed order of
assignment of competences to a neighborhood in order to answer
for a fair assignment flow. Consider a node u and the initial
assignment of competences defined byN (0)A (u). u associates to each
node v ∈ N (0)A (u) a state variable e such that

eu(v) =

0 if u needs to evaluate the convenience
of an insertion or removal operation on v

1 otherwise.

Initially eu(v) = 0 for all v ∈ N (0)A (u) and for all u ∈ V .
u selects at random a node v marked with eu(v) = 0. If v is
currently u-active, by performing Operation 2, u decides whether
to maintain or erase v from NA(u). Clearly v is actually removed if
and only if its removal decreases competence variance. Similarly,
if v is non-u-active, u checks for the convenience of restoring v
in NA(u), throughout Operation 1. Once the operation is executed,
eu(v) is set to 1.
Fig. 7. Basic competence balancing procedure.

An additional state variable is used to define the state of the
evaluation tasks of each node. To this extent we set

f (u) =


0 if ∃ v ∈ N (0)A (u) | eu(v) = 0
1 otherwise.

We initialize f (u) = 0 for all nodes in the network. Once all
nodes have assigned the convenient angle of competence to their
neighbors, we have f (u) = 1 for every v ∈ V and the procedure is
complete.

When a node v receives a new competence assignment θu(v)
from a neighbor u, the consequent change of L(v) might create
new opportunities of improvement in competence distribution,
i.e., the opportunity to further decrease competence variance. Our
competence balancing procedure is thoroughly described in Fig. 7
where the abovementioned additional checks are included in lines
16–20. The procedure selects at each round a node u such that
f (u) = 0 at random and carries out the above described routines.

In the Competence Balancing algorithm a naïf strategy is
adopted. As described in lines 16–20, each time the assignment
of a node v changes, all nodes u′ that contain v in N (0)A (u′) set the
elements in N (0)A (u′) as to be evaluated, through the appropriate
setting of the variable state e. This occurs whether or not the
evaluation and assignment of the competence of these neighbors
have been previously executed. Node u obviously knows that some
neighbors are to be checked and sets f (u) = 0. This sub-routine
may be optimized by reducing the number of neighbors set for
checking as in the following proposition.

Proposition 2. Suppose that the Competence Balancing algorithm
has just modified the value of θu(v) by an insertion or removal
operation and let u′ be such that v ∈ N (0)A (u′). Then
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(i) the only nodes w ∈ N (0)A (u) that require eu(w) to be set to zero
are such that

prevu(prevu(v)) ≼ w ≼ nextu(nextu(v)).

(ii) If v is u′-active, it is sufficient to set for checking only nodes
w ∈ N (0)A (u′) such that

prevu′(v) = w or nextu′(v) = w.

If v is non-u′-active, no node in w ∈ N (0)A (u′) requires eu′(w) to
be set to zero.

Proof. Suppose that a node v has been inserted back or removed
from NA(u) for some u ∈ V . Each time Operation 1 or Operation 2
are carried out on a node v ∈ N (0)A (u), it is necessary by
definition to modify the value of the competence of the two u-
active nodes preceding and following v in the counterclockwise
order established by u over its neighbors in N (0)A (u). Those nodes
are prevu(v) and nextu(v). Therefore it makes sense to check only
those nodesw for which either prevu(w) or nextu(w) has changed
as a consequence of the insertion of v. Then it is not difficult
to see that such nodes are namely the nodes included between
prevu(prevu(v)) and nextu(nextu(v)) in the counterclockwise
order set by u. Checks on any other node inN (0)A (u) are unnecessary
and this proves (i).

On the other hand if u′ is such that v ∈ N (0)A (u′) and u′
≠ u,

even less checks have to be imposed. Precisely, if v is non-u′-active,
prevu′(v) and nextu′(v) are unchanged for every w ∈ N (0)A (u′), so
no additional checks are necessary.

On the contrary, if v is u′-active then it is necessary tomarkw ∈

N (0)A (u′) for checking only if prevu′(w) or nextu′(w) are equal to v,
as v is the only u′-active node that has changed its competence.
And this proves (ii). �

6.3. Transition to a distributed procedure: holdbacks, checks and
termination

The complete transposition of the Competence Balancing
Algorithm into a completely distributed procedure is almost
immediate. This is due to the fact that each single node umaintains
its own state variable e and the set of f variables related to its
neighbors. When checking a node v marked with eu(v) = 0 for
eventual insertion or removal from its active set, u only needs to
know the value of the current angle of competence of three of
its neighbors, information that u can obtain with a simple 1-hop
request message. Yet, it may be of use to point out the possibility
of deadlocks. In order to avoid the corruption of data regarding
the value of competences, it is necessary to impose a lock on
the neighbors that receive a competence request. When a node
u asks for the value of the angle of competence of a neighbor v
for the execution of Operations 1 and 2, it also wants to be sure
that no other node will change such value while he is evaluating.
Therefore u will lock v to prevent it from giving information over
his total competence to another inquiring node until he has sent
an unlock message to v, eventually changing its total competence
by a different assignment of θu(v). This procedure can obviously
lead to deadlocks with nodes indefinitely waiting for information.
Procedures against the occurrence of deadlocks, such as ordered
labeling of nodes, are well known and able to avoid any possibility
of deadlock in our case.

An issue that regards the distributed version of our algorithm as
well as the centralized procedure, is termination. It is immediate to
prove that the network always reaches a configuration such that no
further insertion or removal operations lead to variance decrease.
Should the number of operation be infinite, then there would exist
two distinguished time units t1 and t2, t1 < t2, such that the same
assignment of competences occurs. As the Competence Balancing
Algorithm envisages the necessity of carrying out a new operation
only if the variance of L(V) decreases, then variance at time t2 must
be strictly smaller than variance at time t1. But this a contradiction
because at time t1 the network presents the same configuration of
time t2.

6.4. Dealing with node failures

A node can fail for software or hardware faults, or as a
consequence of malicious activity. In both cases, re-starting pre-
processing may be considered and countermeasures for the
acquisition of competence values should be adopted.

The communication of competence values is requested only
for pre-processing. If a competence value is not available as
a consequence of node failure, the failing neighbor is simply
considered as non-existing and its competence is split between
the two surviving adjacent active nodes. More precisely, on the
basis of the insertion and removal operations, a node u containing
the failing node v in its active neighborhood knows the angle
of competence personally assigned to v and contributing to the
definition of the total competence of v. Node u needs only
to split this part of v’s total competence among its residual
active neighbors; the rest of the failing node’s competence is
redistributed from the nodes that have assigned it. Once the
competence of failing node is re-assigned, pre-processing carries
on regularly.

When node failure occurs after preprocessing, unless pre-
processing is restarted, optimal competence balancing is disturbed.
A node can detect no longer operating neighbors by requiring
periodical hello messages (or simply ackmessages) and eventually
starts a re-distribution of its competences. However, inmost of the
network competence values are equally distributed, so that only
very local countermeasures are sufficient in order to contain load
inequalities and avoid an excessive surcharge of nodes adjacent to
the failing one. In Section 7 we will see that the pre-processing
stage only requires a number of operations per-node that is atmost
linear in the number of neighbors. Moreover, we believe that the
cost of pre-processing is largely compensated by the suppression
of any communication overhead for the exchange of information
on energy reminders.

In our experiments we assumed that nodes do not fail, although
our protocol works in case of failures, too. We stress that pre-
processingmay be restarted if needed, but it is crucial in this phase
to protect the network with all the necessary security measures
against external attacks in order to avoid the corruption of energy-
related data.

7. Experimental results

The simulator. In this section we show the results obtained by
the simulation of our local load balancing procedure by means
of a high level simulator implemented in C++. We do not model
communication interferences, but we do look at packet losses. The
reason behind this choice is due to our interest in analyzing the
algorithm behavior in order to confirm our intuition over a high
bond between nodal load and the notion of angle of competence.

We model our network as a sensor network with limited
capacity, in terms of battery supply, using data given in [22]:
324000 mJ of total available node battery, 15.104 mJ for packet
transmission and 7.168mJ to receive a packet. Nodes are deployed
on a unit square network with opposite sides glued together.
Obviously no real network is deployed on such a surface, but
this expedient allows us to analyze network congestion spots due
exclusively to local topological features, thus ignoring hot spots
caused by the well known and studied phenomenon of central
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congestion in convex plane surfaces forwhichmany solutions have
been already proposed.

Nodes are located uniformly at random over the network
surface and they all have the same radial communication range,
that is a radius of 0.1. We consider networks with 1000 and
2000 of nodes, hence nodes have on average approximatively 30
neighbors for experiments with 1000 nodes and approximatively
60 neighbors for experimentswith 2000 nodes. In all analyzed data
there is a steady improvement from the case of 1000nodes and that
of 2000 nodes and it is reasonable to expect improvements along
with the increase of nodal density.

The communication system used for simulation changes
according to the data information we are mining. We use either
an all pairs communication system (Section 7.1), were each node
sends a message/packet to every other node in the network, or
a uniform communication system (Sections 7.2 and 7.3), were the
source–destination couples are chosen uniformly at random. Note
that the former merely represents the ideal convergence point of a
uniform communication routine.

By our pre-processing procedure each node u defines the
portion of communication range served by its neighbors. If the
line connecting u to the destination passes through a certain arc,
the node serving this arc will be chosen as relay. We then inject
traffic into the network and follow the defined schedule for packet
shipping.
Cost of routing. As a result of pre-processing, each node stores a
small table containing only two numeric values for each of its
neighbors. The two values identify the beginning and the end of
the angle of competence of a neighbor. Nodes are already aware
of their neighbors and their relative position, so that we are only
storing a small additional information for each (active) neighbor.
Moreover, the size of the additional information required from
our protocol is comparable to the size of additional information
required by reactive protocols, where instead it is the level of
residual energy to be associated to each neighbor. On the contrary,
after pre-processing the neighbor to be chosen for each direction
is already known and never changes, while it should be decided
from time to time when a reactive protocol is adopted. The small
amount of data stored during pre-processing and the absence of
routing decision as the networks begins to be operationalmake our
protocol well suited for a context of resource scarcity.
Cost of pre-processing. More precise experiments have shown that
the number of u-active neighbors for a node u ismuch smaller than
the total number of neighbors of u. In a network with 2000 nodes,
each node has on average 62.59 neighbors with 7.06 of standard
deviation. The average size of the initial u-active neighborhood is
23.14,while at the end of the pre-processing phase the average size
of the u-active neighborhood drops down to 12.03 with a standard
deviation from the expected value of 4.81.

Pre-processing consists in the insertion and removal of
appropriate nodes in the active set. The total number of insertion
and removal operations is on average 14.7 per-node with a
standard deviation from the expected value of 5.99. Each insertion
or removal operation involves the selection of the node to insert or
remove (O(d), where d is the degree of the node), the computation
of the new variance value (constant time), and the communication
of the change in competence assignment to the node that has been
possibly removed or inserted in the active set. This means that, in
general, the total number of operations carried out by a node to
make competences final is below the size of the initial u-active set
N0

A .
Terms of comparison. In all our experiments we compare the
response of the pre-processed network with the case of a non-
pre-processed identical network that undergoes the same traffic
pattern. The scheduling of relays follows in this case the compass
Fig. 8. Achievement obtainable by the competence balancing procedure. Nodes are
plotted on the xy plane while the z axis carries the information over nodal load. The
graphic is pictured facing the yz plane in order to show how the cloud of points
obtained without pre-processing (top) gets compressed by competence balancing
(bottom).

routing strategy. We chose this technique because it makes use
of angles to determine the next hop to destination, as well as our
balancing procedure does. Note that, as well as geographic routing,
compass routing is a shortest path protocol as it greedily attempts
to approximate the straight line connecting the two ends of a
communication. We have also produced statistics with the use of
geographic routing, but we omit them, as the differencewith those
obtained via compass routing is negligible. This is also confirmed
in [21], where simulation results reveal that nodes select in the two
schemes the same forwarding neighbor in over 99% of cases.

The other key comparison is made with an ideal configuration
in terms of nodal load distribution: we take a regular grid network,
whose nodes adopt a greedy strategy to forward packets, and inject
traffic into it. When the all pairs communication system is adopted
each node handles exactly the same number of packets, while with
the uniformcommunication systemwehavenear enough the same
number of packets going through each node. Results over a regular
grid serve as ideal bounds for the maximum increment achievable
in load balancing. In the following we name the above described
simulation scenarios as

CR —for the simple shortest path strategy;
BCR —for competence balancing pre-processing;
Grid —for the ideal grid configuration.

The reported results refer to randomnetworkswith 2000 nodes
and grids made up of 44 nodes on each row and column.

7.1. Statistics over punctual nodal load

The load of a node is the number of times that a node receives,
receives and retransmits or simply transmits a packet. Even by
eliminating the crowded center effect of shortest path routing
typical of convex surfaces, the pure greedy routing strategy causes
some nodes to be considerably more loaded than others. This is
shown clearly in Fig. 8 – top – where isolated nodes are traversed
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(a) Average load. (b) Load variance. (c) STD load. (d) Minimum load. (e) Maximum load.

Fig. 9. Punctual load statistics.
by a number of packets near to zerowhile other nodes nearly reach
the level of 30000 of handled packets. In the bottom figure, BCR
shows instead a tighter concentration of points around the average
load level.

This is even clearer in Fig. 9. At the price of a minimum
increment of the average load (5%), we achieve a substantial 80% of
variance decrement. Fig. 9(d) and (e) show how the nodes that in
CR are barely used, see their exploitation increase in BCR; similarly,
nodes overloaded by a pure greedy protocol are instead relieved in
BCR.

Nodal load statistics also give an idea of the average and
maximum stretch of a path. One can easily calculate that on
average BCR routing increases the path length by less than 6%. It is
extremely important to keep this percentage small as on realistic
convex networks our competence balancing technique should be
associated to a coarse-grained balancing procedure – to attack
unbalance also at the macroscopic level – that alone brings with
it a non-negligible path stretch.

7.2. Network lifetime

The small increment in average nodal load translates into
a small increment in overall energy consumption, as shown
in Fig. 10. Nevertheless, by evenly spreading workload among
sensors, the networkmanages to live longer. Wemeasure network
lifetime using four different metrics broadly present in literature.
We count the number of messages that are sent between random
source–destination pairs until an undesired event occurs: the
death of the first node, the arise of unsensed areas (i.e., an
area outside the transmission/sensing range of any node in
the network), the disconnection of the network and finally the
reaching of a fixed percentage of undelivered messages. Results
shown in Fig. 11 are dramatic: when the first node dies wemanage
to send over 98% more messages than those sent by carrying out a
simple compass routing procedure, almost halving the way to the
result achievable with the ideal topology of a grid. Similarly, BCR
halves theway to the grid case for the other threemetrics (delivery
rates are depicted in Fig. 10(d)).

We also report that at the time of the first death of a node no
message was lost, while at network disconnection and at the first
occurrence of a coverage hole only less than 1% of the total sent
messages did not reach the destination.
7.3. When squares are squares. . .

So far we have tested our competence balancing procedure
over a torus surface, in order to exclusively address unbalance
springing at the microscopic level and we saw that nodes die out
at a much slower rate, almost doubling network longevity. We
now show how BCR behaves when it is applied to a simple square
network—opposite sides of the square are not glued together to
construct a torus. The best way to use BCR, however, is to couple it
with a load balancing procedure acting at the macroscopic level.
BCR works in fact on smoothing energy use among neighboring
nodes, prolonging their concomitant use as long as possible. This
is achieved by virtually re-creating local topological regularity.
If a balancing procedure for the macroscopic level is adopted,
BCR is able to further prolong its action, as major disconnection
and coverage loss due to the global geometry of the network is
thus postponed. For time being, we test BCR alone on a square
network and leave for future work the coupling with coarse-
grained procedures.

The result of our simulation is depicted in Fig. 12. All
parameters have been set as earlier described, at the beginning of
Section 7. Experiments in [16], establishes that – with geographic
routing – network disconnection and coverage loss appear after
approximatively 3 million messages have been send. At this time
the network can be considered exhausted, as performance starts
to become very poor and the decay process rapidly evolves. By
running BCR over the same network, we observe that node’s death
can be slowed down, before 3 million packets are sent (Fig. 12(b)).
This confirms the above stated intuitions—if a macroscopic
balancing procedure is also adopted, major disconnection can be
postponed, while BCR maintains the network in a healthier state
up to that moment.

The most remarkable result comes when considering delivery
ratio as an efficiency estimator (Fig. 12(c)). Although unbalance
due to global geometry parameters remains, the pre-processed
network manages to reduce, by more than half, the number of
messages not reaching the destination. By assuring fair work-load
distribution among neighboring nodes, we believe that the BCR
procedure prevents the formation of dead ends, where paths are
interrupted before reaching the destination. In Fig. 12(a), we also
show that the observed achievements are obtained at a low energy
cost increment.

7.4. Security related data results

As discussed earlier in this paper, our pro-active routing
protocol protects the network against the sinkhole attack.
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(a) Percentage of used energy. (b) STD of used energy.

(c) Number of exhausted nodes. (d) Number of undelivered messages.

Fig. 10. Monitoring of network behavior. We sent 7 million packets and observed the response of the network. Our balanced routing procedure requires a negligible amount
of extra energy respect to the greedy routing approach (a) and the use of energy is far more efficient as it is better spread among nodes (b). In fact, nodes die off at much
smaller rate (c) and the number of undelivered messages with BCR stays always below the corresponding value for CR.
Fig. 11. Network lifetime. Number of messages sent at the death of the first node.

However, homogeneous distribution of work load also makes it
harder for an adversary to perform attacks with the goal of taking
control over the largest possible number of messages. In fact, an
attacker interested in controlling as many messages as possible
would certainly start with compromising the most loaded nodes,
as those are the ones that witness the major volume of traffic.
We assume that a strong adversary is capable of identifying these
nodes and tamperwith them. Tomeasure the additional protection
against this attack obtainable with our protocol we made the
following experiment. We considered the set P of packages that
traverse the network. We then select the node u that handles the
maximum number of packets and consider the set P ′ obtained
fromP by deleting packets going through u. At the second step we
select a second node u′, distinguished from u, choosing the node
that handles the maximum number of packages contained in P ′

and consider the setP ′′ obtained fromP ′ bydeleting packets going
through the last selected node. We follow this procedure until the
number of packets taken out from P is the 25% or 50% of the total
number of packets traversing the network. It thus results that using
our protocol, an attacker should take control of approximatively
20% nodes more than the number of nodes that the same attacker
should capture if the sole greedy protocol is to be adopted.

8. Conclusion

In this paper we have introduced the first pro-active routing
mechanism to balance the relay traffic in multi-hop wireless
networks at a local level of sight. Our experiments show
improvements on network lifetime up to 98%. As a positive feature
of our pro-active strategy, we also deliver a network that is more
robust against the presence of nodes that try to divert routing in
such a way to attract a large part of the traffic in the network.
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(a) Network energy use. (b) Exhausted nodes.

(c) Undelivered messages.

Fig. 12. Performance on a square network. We have sent 7million packets over a network deployed on a square surface and have compared the performance of our balancing
procedure (BCR) with the greedy-compass protocol (CR). (a) shows that the amount of additional energy required by BCR is almost negligible. (b) depicts the distribution of
the number of exhausted nodes. We observe that, up to 3 million of sent packets, BCR outperforms CR; afterwards the tendency is inverted. The highlighted turning point
corresponds to the approximate time of first appearance of a disconnection and loss of coverage in the network. A network is generally considered inefficient at this point.
In (c) network efficiency is measured with the percentage of undelivered messages out of the total number of sent messages. The percentage of undelivered messages with
BCR is always well below the corresponding value for CR.
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