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Progressive Damage Assessment and Network

Recovery after Massive Failures
S. Ciavarella, N. Bartolini, H. Khamfroush, and T. La Porta,

Abstract—After a massive scale failure, the assessment of dam-
ages to communication networks requires local interventions and
remote monitoring. While previous works on network recovery
require complete knowledge of damage extent, we address the
problem of damage assessment and critical service restoration
in a joint manner. We propose a polynomial algorithm called
Centrality based Damage Assessment and Recovery (CeDAR)
which performs a joint activity of failure monitoring and
restoration of network components. CeDAR works under limited
availability of recovery resources and optimizes service recovery
over time. We modified two existing approaches to the problem of
network recovery to make them also able to exploit incremental
knowledge of the failure extent. Through simulations we show
that CeDAR outperforms the previous approaches in terms of
recovery resource utilization and accumulative flow over time of
the critical services.

I. INTRODUCTION

Major disruptions resulting from natural disasters such

as hurricanes, floodings, earthquakes or designed malicious

attacks can compromise critical infrastructures and hamper

services critical for safety. In 2011, the “great east Japan

earthquake” and subsequent tsunami hit the north-east of

Japan causing enormous loss of life and an overall damage

estimated around 309 billions of US dollars [1]. Almost

all wired communication networks and emergency municipal

radio communication systems were destroyed [2]. Recovery of

the network infrastructure required months, during which there

was no sufficient support to the most critical services, not to

mention normal communications in the devastated areas.

Disaster management requires the restoration of at least the

minimum necessary infrastructure to perform safety critical

services, with the utmost urgency. These recovery efforts are

constrained by the limited availability of human personnel and

limited information available during the emergency outbreak.

In this paper we focus on the communication infrastructure,

and more specifically, on the operative phases of damage

assessment and network recovery. In this context, a complete

and detailed damage assessment requires time for extensive

monitoring and local inspections. It is therefore fundamental

that recovery interventions start as soon as possible even if

knowledge of the damage extension is incomplete. Network

recovery should follow a progressive process of monitor

placement, network probing and repair interventions, which
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is also necessary for coping with unpredicted variability and

surges of the demand [3].

While previous work [4], [5] assumes perfect knowledge

of the network status, we consider the more realistic problem

of network recovery under incomplete damage information,

where damage assessment and critical service restoration are

performed in a joint manner. For the first time in the literature

we formulate the problem of Progressive Damage Assessment

and network Recovery (PDAR) which aims at progressively

restoring critical services in the shortest possible time, under

constraints on the availability of recovery resources. We show

that the PDAR problem is NP-hard and may require an

unsustainable computation time for large networks.

We propose a polynomial time algorithm called Centrality

based Damage Assessment and Restoration (CeDAR) which

dynamically schedules repair interventions, local inspections

and remote probing of network components, with the objective

to restore critical services in the shortest possible time with

efficient use of recovery resources. CeDAR restores critical de-

mand flows iteratively by planning repair schedules which are

based on the current global view of the network. It schedules

the repair of components that can be utilized immediately and

with the highest advantage for the largest number of critical

services first, maximizing the accumulative service flow during

the recovery process.

Since none of the previous approaches is directly applicable

to our problem setting, we modified two existing algorithms,

originally designed to work under complete knowledge of the

failure. In particular we modified the approach proposed by

Wang et al. [4] which aims at optimizing the accumulative

flow over time under recovery resource constraints. We also

modified the approach of Bartolini et al. [5] which instead

aims at minimizing restoration costs under quality of service

constraints. The modified variants of these approaches work

under incomplete and progressively available information so

that their actions can be dynamically adjusted depending on

the current view of the network status.

Through extensive simulations, we show that CeDAR re-

covers the network with minimum cost, minimum number of

local inspections and highest flow over time, compared to the

other approaches in all the experimental scenarios.

We summarize our contributions as follows:

• We model, for the first time, the progressive recovery

problem under incomplete knowledge of the disruption

and show its NP-hardness.

• We propose a polynomial time heuristic called Centrality

based Damage Assessment and Recovery (CeDAR), that

solves the problem of progressive network recovery under

incomplete knowledge of the network disruption.
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• We analyze the properties of CeDAR and prove its cor-

rectness, termination, and polynomial time complexity.

• We modified two previous approaches by Wang et al.

[4] and Bartolini et al. [5], to make them work under

incomplete knowledge of the disruption.

• We evaluate the algorithms under various load settings

and disruption scenarios, showing that CeDAR outper-

forms the other approaches in all the performance metrics.

II. RELATED WORK

The growing dependence of our society on communication

networks motivates the increasing interest in the problem of

network recovery after failures.

Numerous works address the case of sparse failures through

the provision of alternative paths, provided either proactively,

as in the work of Todimala et. al [6], or reactively, as in

the work of Zheng et al. [7], whereas Suchara et. al [8]

jointly adress recovery and traffic engineering, to minimize

congestion after a failure.

A different line of research considers massive failures,

for which no existing alternative path can provide sufficient

quality of service. The restoration of communication services,

under complete knowledge of the failure extent is addressed

by the two works of Wang et al. [4] and Bartolini et al. [5]

that are described in Sections VII-A and VII-B, respectively,

and considered as baselines for comparisons with our proposal.

Ferdousi et al. [9] tackle the problem of progressive datacenter

recovery after a large-scale failure.

The problem of network recovery is also studied in the case

of interdependent networks, as in the work of Lee et al. in

[10]. Finally, other works from Arab et al. [11] and Ho et

al. [12] address the problem of recovery in the case of non-

communication networks, with specific solutions that are not

applicable to our problem setting.

All the mentioned works assume perfect knowledge of the

status (working or damaged) of network elements. By contrast,

in this paper we consider the more realistic case of incomplete

knowledge of the network status.

III. NOMENCLATURE AND NOTATION

We model the network as an undirected supply graph

G = (V,E), where V and E represent nodes and links of

the network, respectively. Each link (i, j) ∈ E has capacity

cij . We also consider a demand graph H = (VH, EH), where

VH ⊆ V , and EH ⊆ VH × VH. EH is the set of demand pairs.

Each pair (sh, th) has a corresponding demand flow dh. We

consider partial knowledge of the network failures. Therefore

the set V is partitioned into the three sets VW, VB, and Vu

of working, broken and unknown-status nodes, respectively.

The set E is likewise partitioned into the sets EW, EB, and

Eu. We define the working graph GW = (VW, E
′
W), where

E′
W = EW \ {(i, j) ∈ EW|{i, j} ∩ (VB ∪ Vu) 6= ∅}. Namely

the working graph is formed by the working nodes of the

supply graph, and by the working edges that are not incident

to broken nodes or nodes with unknown status. We denote

with kvi the cost of a repair intervention on node i ∈ VB ∪Vu.

Similarly, we denote with keij the cost of intervention on a

link (i, j) ∈ EB ∪ Eu. We consider a time based budget of

Fig. 1. Stages of PDAR

repair resources, denoted with Brepairs, for instance human

personnel or vehicles, which determines the amount of repair

interventions that can be performed in a same time period.

IV. PROBLEM DEFINITION

The problem of progressive damage assessment and net-

work recovery (PDAR) aims at finding a schedule of repair

interventions to restore a set of critical demand flows as fast

as possible, under constrained recovery resources.

PDAR works with partial and progressively available knowl-

edge of the status of the network which is the result of network

probing. As long as the repair interventions provided by PDAR

are executed, monitoring probes can find new working paths

to explore new areas of the network. Moreover, new working

nodes can be used as monitors.

We consider subsequent stages of execution as illustrated in

Figure 1. Whenever new information is available, the current

stage ends and a new stage begins with the information update

action. The new information is then used to determine a

decision on the next schedule of repairs. A recovery phase

follows, with repair interventions and monitor placement, until

the next information update becomes available. Notice that, as

the information available to PDAR is only partial, a repair

intervention may be scheduled also on network elements with

unknown status. At a local inspection, such elements may

result to be properly working.

A. Assumptions on information update

In order to keep the problem formulation simple, we do not

incorporate monitor placement actions in the decision problem,

but we assume the following: 1) Software monitors are placed

on all the nodes that are selected for a repair intervention

(both in the case of broken nodes that have been repaired

and in the case of nodes with unknown status that had been

scheduled for repair but were found working after a local

inspection); 2) Each new monitor node probes the surrounding

network until it is able to determine its connected working

component. In addition to probing, cable diagnostic devices,

such as reflectometers, are used, when available, to determine

the status of the adjacent lines of a monitor, if the next hop

neighbors are unreachable; 3) The demand endpoints are the

first nodes to be repaired, and to host network monitors.

Although for practical purposes it is often desirable to limit

the monitoring activity to a given number of hops from the

monitor nodes, we assume that a monitor obtains knowledge

of its entire connected component in the working graph GW.

Notice that the monitoring activity and the consequent

information update trigger the transition to a new stage of

PDAR, because it may find a more efficient repair schedule.

Nevertheless, if the monitoring activity does not provide any

update, or the only unknown elements that are discovered are

actually broken or are isolated elements, the current schedule

is kept unchanged as PDAR would provide the same solution.
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B. The PDAR optimization problem

Due to the constrained repair resource budget, only a limited

set of repairs can be executed in parallel. For this reason,

PDAR schedules repairs according to the time availability

of repair resources. It considers the stage as a sequence of

successive steps in which the maximum number of parallel

repairs is bounded due to the budget constraint Brepair.

Therefore, the PDAR optimization problem works in a

sequence of at most N repair steps to be performed at each

stage, where N is the maximum number of steps that are

necessary to repair all the broken elements. Nevertheless, the

sequence of repairs, which will be executed in the recovery

phase of the stage, will be terminated if a useful information

update is determined. In such a case PDAR will move to the

next stage, before reaching the N -th step.

At each step n, there is an update of the composition of the

sets of working, broken and unknown network elements. We

will add the argument (n) to the notation of these sets when

we want to refer to the specific composition they have at stage

n. Each stage s starts with n = 0, with input consisting of the

supply graph G, the demand graph H , and the current stage

estimate of the damages, represented by the sets of certainly

broken elements V s
B (0) and Es

B(0) and by the sets V s
u (0) and

Es
u(0) of elements whose state is unknown.

The purpose of PDAR is to find a step-based schedule of

repairs, which determines the sequence of repair interventions

within V ∗ = V s
B (0) ∪ V s

u (0) and E∗ = Es
B(0) ∪ Es

u(0) that

optimizes the accumulative demand flow over N steps F ∗(N).
This value is defined as follows: F ∗(N) =

∑N

n=1 f(n), where

f(n) =
∑

h∈EH
dh · αh(n), and αh(n) ∈ [0, 1] is a variable

representing the percentage of the demand flow dh that is

routed at the n-th step.

Let the variables fh
ij(n) ∈ R, with fh

ij(n) ≥ 0, represent the

fraction of the demand flow h that is routed through the link

(i, j) ∈ E, going from vertex i to vertex j, at the completion

of the n-th step. Notice that other flows may traverse the same

edge in the opposite direction.

Also consider the binary variables xij(n) and yi(n). The

variable xij(n) = 1 if there is a recovery intervention on edge

(i, j) ∈ E exactly at step n, while xij(n) = 0 otherwise.

The variable yi(n) = 1 if node i is repaired at step n, and

yi(n) = 0 otherwise. For an edge that has been repaired at

the k-th step, it is xij(k) = 1, and xij(l) = 0 for l 6= k. We

consider working elements as repaired at the 0-th step. For

instance, if the node i ∈ VW it is yi(0) = 1 and yi(n) = 0 for

any other step n 6= 0.

The capacity constraint of the problem is expressed by

Equation 1(a). If a link (i, j) is still broken at step n, its

flow is null, otherwise the flow is bounded by cij . Notice

that if an edge (i, j) is repaired, the corresponding nodes i

and j must also be repaired if broken, which implies that
∑n

k=0 yi(k) ≥ xij(n), ∀i, j ∈ V, ∀n as in Equation 1(b).

The flow balance constraint is expressed by Equation 1(c).

In this equation bhi = dh if i is the source of the demand flow

h, bhi = −dh if i is the destination, and bhi = 0 otherwise to

balance incoming and outgoing flow.

Finally, Equation 1(d) constrains the cost of repairs for each

of the N stages, to be limited to the per step budget Brepair
1.

Equations 1(e-g) denote the domain of the variables of the

problem, while Equations 1(h-i) initialize the values of the

decision variables for the first stage.

We consider the optimization of the accumulative flow over

a horizon of N stages. The PDAR optimization problem is

therefore formulated in the variables xij(n), yi(n), αh(n)
and fh

ij(n) as follows (we omit the statement ∀n in all the

constraints for clarity):

Max
∑N

n=1

∑
h∈EH

dh · αh(n)
subject to, for all n = 1, . . . , N :

cij ·
∑n

k=0 xij(k) ≥
∑|EH|

h=1(f
h
ij(n) + fh

ji(n)), ∀(i, j) (a)
∑n

k=0 yi(k) ≥ xij(n), ∀(i, j) (b)∑
j∈V fh

ij(n) =
∑

k∈V fh
ki
(n) + bhi · αh(n), ∀(i, h) (c)

∑
(i,j)∈E∗ xij(n) · keij +

∑
i∈V ∗ yi(n) · kvi <= Brepair (d)

fh
ij(n) ≥ 0, h ∈ EH (e)

yi(n), xij(n) ∈ {0, 1}, ∀i ∈ V, (i, j) ∈ E (f)
αh(n) ∈ [0, 1], h ∈ EH (g)
yi(0) = 0, if i ∈ V ∗; yi(0) = 1, if i ∈ VW (h)
xij(0) = 0, if (i, j) ∈ E∗; xij(0) = 1, if (i, j) ∈ EW (i)

(1)

As a simpler instance of the problem PDAR has been proven

to be NP-hard in [4], the PDAR problem is also NP-hard.

V. THE ALGORITHM CEDAR

In this section, we propose a polynomial algorithm, called

Centrality based Damage Assessment and Recovery (CeDAR),

to solve the PDAR problem introduced in Section IV. We

consider a progressive monitoring and network recovery in

multiple stages, as in Figure 1. CeDAR aims at maximizing

the accumulative flow over time, as follows: (1) prioritizing the

repair of network components that can accommodate higher

flow, by using a dynamic ranking of broken and unknown

elements, based on their centrality with respect to the demand;

(2) scheduling the repairs of the same-path elements all at

once (or in an interrupted sequence, if not allowed by the

time based constraint on repair resources) in order to make the

repaired components immediately available for flow routing.

For these reasons, CeDAR obtains a high accumulative flow

throughout the entire execution period, even when the recovery

and monitoring activities are still in progress.

A. Definitions and notation

Each iteration of CeDAR potentially provides an update

of the current view of the status of the network. Hence,

subsequent iterations correspond to different stages of the

PDAR problem, according to the nomenclature introduced in

section IV. Notice that some iterations provide long sequences

of repair interventions, which may require several steps, within

the time constraint on the available repair resources.

At each stage CeDAR performs new repairs and simplifies

the problem instance by reducing demand and link capacities

according to an operation called demand pruning, formalized

in Definition V.1. With GW(n) we denote the composition of

the working graph, and with dh(n), for (sh, th) ∈ EH(n) and

1This formulation does not consider budget rollover from one repair step
to the next in the case of partially depleted budget. This is because we want
to use this model to represent limited repair resources, such as vehicles or
human personnel.
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ckl(n), for (k, l) ∈ E, we denote the demand and capacities

updated at the n-th stage. With dh(0) and ckl(0) we denote the

initial values of demand and capacity (before the disruption).

Depending on the needs of the discussion, the same path

is equivalently described as an ordered list of links p, or as a

subset of nodes and links, and denoted with p̂.

Definition V.1 (Pruning of a demand). Let us consider a

demand of x ≤ dh(n) units of flow between the endpoints sh
and th, with (sh, th) ∈ EH(n), at the current stage n. Let p be

a path between sh and th in GW(n), that is p̂ ⊂ VW(n)∪EW(n),
for which x ≤ min(i,j)∈p̂cij(n), for all (i, j) ∈ p̂. Pruning x

units of demand dh(n) on path p consists in the decrease

of demand dh(n), so that dh(n + 1) = dh(n) − x, and

in the corresponding update of the link capacities of p:

cij(n+ 1) = cij(n)− x, for all (i, j) ∈ p̂.

The following notion of routable instance, constitutes the

core of the termination condition of the CeDAR. When the

current demand is routable on the current working graph,

without the need of additional repairs, the algorithm CeDAR

terminates.

Definition V.2 (Routable demand). Given a demand graph

H(n) at stage n, and the currently working graph GW(n), with

currently updated capacities cij(n), for any (i, j) ∈ EW(n), we

say that H(n) is routable on GW(n) if the capacity constraints

and flow balance equations of the related flow routing problem

are satisfied, that is:






∑

h∈EH(n)
(fh

ij(n) + fh
ji(n)) ≤ cij(n)

∑

j∈VW(n)
fh
ij(n) =

∑

k∈VW(n)
fh
ki(n) + bhi (n)

fh
ij(n) ≥ 0, ∀i ∈ VW(n), (i, j) ∈ EW(n), h ∈ EH(n)

(2)

Definition V.3 (Residual capacity graph). We denote with

GTOT(n) the supply graph ( i.e. containing all broken, working

and unknown components), with residual capacities, consider-

ing all the pruning actions performed until stage n− 1. Such

a graph is shortly called the residual capacity graph. Notice

that GTOT(n) can be obtained from GW(n) repairing all broken

nodes and links.

The following notion of feasible pruning establishes the

necessary conditions for the feasibility of a pruning action.

Informally, if a pruning action reduces the capacity of the

current graph to the point that the current demand is no longer

routable, even with complete repairs, then it would determine

a non-feasible instance of the problem and therefore should

be prohibited.

Definition V.4 (Feasible pruning). Given a demand graph

H(n) at stage n, and the currently working graph GW(n) with

updated capacities cij(n), for (i, j) ∈ EW(n), we say that the

pruning of x units of demand dh(n) on path p is feasible,

if after the pruning of x on p, H(n + 1) is routable on the

residual capacity graph GTOT(n+ 1).

Definition V.5 (Infeasible set). Let P be a set of paths in the

residual capacity graph GTOT(n). P is an infeasible set for

H(n) if for all paths p ∈ P , and for all the demands dh(n)
in H(n), there is no positive value ǫ > 0 such that pruning

of ǫ units of dh(n) is feasible in p.

An example of infeasible set is shown in Figure 2. In

this example, there are two pairs of demand dxy = {x, y}

0.5

0.5

1

1

1

0.5

0.5

1
1

x y

s t

a

b

Fig. 2. Infeasible set of paths for demand flows

and dst = {s, t} with a demand of 1 and 0.5 unit of flow

respectively, represented with green lines. The black and solid

lines represent the working links and the red and dashed lines

represents the broken links. The labels on each edge in the

graph represent the residual capacity.

The entire demand is routable on GTOT(n), i.e., on the graph

of Figure 2, after the repair of the links (s, a) and (b, t).
However, as both the deman pairs have a working path, it

may seem intuitive to use it for at least one of them. Never-

theless the current working paths pwxy =< x, s, b, a, t, y > and

pwst =< s, b, a, t > form an infeasible set. In fact, the pruning

of a quantity ǫ > 0 of any of the two demands on its related

path, precludes the routability of the remaining demand on

GTOT(n+ 1), compromising the solution of the problem.

The following definition generalizes a notion of dynamic

path length introduced in [5].

Definition V.6 (Cost based path length). Let p be a path in

G, that is p̂ ⊂ V ∪ E. Let V
p

B|u(n) and E
p

B|u(n) be the sets

of nodes and links traversed by p which at the n-th stage are

still broken or unknown. We define the cost based path length

of p, at the current stage n as follows:

l(n)(p) ,
∑

(i,j)∈p̂\Ep

B|u
(n)

a

cij(n)
+

∑

(i,j)∈E
p

B|u
(n)

b ·
keij

cij(n)
+

∑

i∈V
p

B|u
(n)

c · kvi .

For simplicity we consider unitary values of the constants

a, b and c, and uniform costs of repair for broken elements

keij = ke, and kvi = kv for (i, j) ∈ E
p

B|u(n) and i ∈ V
p

B|u(n),

respectively, with ke, kv ≫ 1, for all (i, j) ∈ E and i ∈ V .

With Definition V.6, the length of a path depends on the

number of broken elements, hence varies from stage to stage.

Thanks to this dynamic notion of path length, a shortest path

selection tends to prioritize paths with fewer broken elements,

and links with higher capacities.

We now recall the notion of demand based centrality,

previously introduced in [5]. This notion is an extension of

the classic definition of betweenness centrality to consider the

problem of flow routing.

Definition V.7 (Demand based centrality [5]). The demand

based centrality cd(v) of a node v ∈ V is defined as:

cd(v) ,
∑

(ij)∈EH







∑

p∈P∗
ij
|v

c(p)

∑

p∈P∗
ij

c(p)
· dij






(3)

where P∗(i, j) is the set of the first shortest paths necessary

to route the demand (i, j) when considered independently of

the other demands, P∗
ij |v is the set of the paths in P∗(i, j)

traversing v, c(p) is the capacity of path p ∈ P∗(i, j), and

dij is the demand flow of the pair (i, j) ∈ EH.

Notice that, when used by CeDAR the centrality of a node is

calculated at each stage to determine how likely the routing of
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the demand would benefit from the repair of the node. Hence

we calculate the value of cd(v) by considering the instance

of the problem at the current stage n. To this purpose, we

consider the current demand graph H(n), while the set of paths

P∗(i, j) is calculated in GTOT(n), and the length of the paths

takes account of the current composition of the sets of broken,

unknown, and working elements VB(n), EB(n), Vu(n), Eu(n)
and VW(n) and EW(n).

B. CeDAR in details

In Algorithm 1 we show the details of CeDAR.

We assume that the algorithm has no initial knowledge of

the disruption and accumulates information iteratively, through

network monitoring.

Initially, in lines 4-6, CeDAR repairs the demand endpoints

if necessary, and places a software monitor in all of them, to

determine their connected working component. CeDAR builds

its current view of the working graph GW(0) with all the

nodes and links that were found to be working, and with

link capacities as in the original supply graph (before the

disruption). If GW(0) is not sufficient to route all the existing

demand flows, CeDAR proceeds with a progressive repair and

monitoring of the network, as described in lines 7-23.

At stage n of this progressive recovery, in line 8, CeDAR

computes the set P that contains, for each demand di ∈ H(n)
the corresponding shortest path pi on GTOT(n), according to

the distance metric given in Definition V.6. Nevertheless P
may constitute an infeasible set for the current demand H(n),
according to Definition V.5, tested in line 9. In such a case,

none of the paths in P can be used for routing and CeDAR,

in line 10, resorts to the Equations (2) calculated in GTOT(n),
to determine a set of feasible paths Pf .

As Pf may contain more than one path for each demand

pair, in line 11, CeDAR builds the new set P by choosing,

for each demand di, the shortest path in Pf .

CeDAR only schedules path repairs when the status of all

the elements of the path is known. This is meant to keep

unnecessary local interventions at a minimum. Therefore, in

line 12, CeDAR looks for the paths pi ∈ P , such that

p̂i ∩ (Vu ∪Eu) = ∅ and, with these, it builds the set of paths

with known status Pk.

If there is more than one path in Pk (line 13), then

in line 14 CeDAR chooses the path pi such that pi =
argmaxpi∈P min(k,l)∈pi

ckl, namely, the path of maximum

capacity, where the capacity of a path is defined as the capacity

of the link with minimum capacity. Further ties are addressed

by choosing the path of shortest length (not detailed in the

pseudocode). CeDAR then schedules the repair of the entire

set of broken elements in pi, which is p̂i ∩ (VB(n) ∪ EB(n))
in line 15, and then the pruning, in line 16, of the maximum

feasible quantity x of di(n), on pi. In line 17 CeDAR updates

the graphs GW(n+1), GTOT(n+1) and H(n+1), to keep track

of the scheduled repairs and of the updates in the demands and

capacities due to the occurred pruning actions.

If all the selected paths of P contain at least an unknown

element (line 13), which implies that Pk = ∅, in line 18

CeDAR selects a new node vBC in which to place a new

monitor. To optimize the chance to obtain new information

on the area of the network that is of interest for routing

the demand flows, CeDAR selects the node vBC in the set

Vm(n) , {v ∈ V |v ∈ Vu(n) ∨ ∃w ∈ V , s.t. (v, w) ∈ Eu(n)}
of nodes that are either unknown or have an incident unknown

link. Among the nodes of Vm(n), it selects the one with

highest demand based centrality: vBC = argmaxv∈Vm(n) c(v),
according to Definition V.7.

If at the time of the local intervention, the node vBC is

discovered to be broken, it is scheduled for repair in line 20,

then CeDAR places a monitor in vBC, in line 21.

The new repairs and the monitor activity from vBC require

an update of the graphs GW(n+ 1) and GTOT(n+ 1) and the

transition to a new stage.

The algorithm terminates with line 7 as soon as CeDAR

determines that the current demand H(n) is routable over the

known working graph GW(n).

Algorithm 1: CeDAR

Input: Supply graph G, demand graph H , broken sets VB, EB,
unknown sets Vu, Eu

Output: Schedule of repairs R
1 Initialize VB(0), EB(0), Vu(0), Eu(0), H(0), R(0)
2 Build current graphs GW(0) and GTOT(0)
3 n← 0
4 for x ∈ VH do
5 If x if broken, append x to R(n) and repair it
6 Monitor from x

7 while H(n) is not routable on GW(n) do

8 Build the set P of shortest paths pi in GTOT(n), ∀di(n) > 0
9 if P is an infeasible set for H(n) then

10 Solve Equations (2) in GTOT(n) to obtain feasible paths Pf

11 Build P with the shortest path pi ∈ Pf , ∀di ∈ H(n)

12 Pk = {pi|pi ∈ P and p̂i ∩ (Vu ∪ Eu) = ∅}
13 if Pk 6= ∅ then
14 Choose pi = argmaxpi∈Pk min(k,l)∈pi

ckl(n)

15 Append elements of p̂i to R(n) and repair them
16 Prune the max feasible x of di(n) over pi in G(n)
17 Build the new sets GW(n+ 1), GTOT(n+ 1) and H(n+ 1)

18 else
19 Choose vBC = argmaxv∈Vm(n) c(v)
20 If vBC is found broken, append vBC to R(n) and repair it
21 Deploy a monitor in vBC
22 Build the new graphs GW(n+ 1) and GTOT(n+ 1)

23 n← n+ 1

VI. PROPERTIES OF CEDAR

In this section we show the properties of the algorithm. In

particular, we focus on the termination, correctness and time

complexity of CeDAR.

Theorem VI.1 (Termination and correctness of CeDAR). Let

us consider a demand graph H = (VH, EH) and a supply graph

G = (V,E), which is partially disrupted, such that VB, EB are

the sets of broken nodes and links, and Vu, Eu are nodes and

links of unknown status, and VW, EW are the working elements.

In a finite number of stages NCeDAR, CeDAR produces a repair

schedule R such that the demand H is routable on the repaired

graph GR = (V R, ER), where V R = VW ∪ (R ∩ V ) and

ER = EW ∪ (R ∩ E).

Proof. We first prove that CeDAR terminates in a finite

number of stages (termination), then we prove that the demand

is routable on the repaired graph (correctness).
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Termination. At each stage n, CeDAR selects a set of paths

P . If there is at least a path p ∈ P such that the status of

all the elements of p̂ is known, the algorithm enters lines

14-17. In this case CeDAR prunes the maximum portion x

of a demand di on the path pi, preserving the feasibility of

the instance. This requires the solution of an optimization

problem with a new variable x. The set of constraints will

be the same as in Equations 2, on the graph GTOT(n), with

the additional equality constraints requiring that the demand di
be routed for a quantity equal to x on the edges of p̂ and for

the remaining quantity di − x in any other edges, possibly

including those of p̂. Notice that since the only inequality

constraints of this optimization problem are those related to

link capacities, every time such optimization is executed, there

is a capacity constraint which acts as a binding constraint

[13]. Given a demand, new pruning decisions will create new

binding constraints while previous binding constraints will

remain binding. As the number of capacity constraints is equal

to the number of links in GTOT(n) it follows that the number of

pruning operations for each demand is bounded by |ETOT(n)|.

Let us consider instead the case in which none of the paths

in P is completely known, and for each path p ∈ P there is at

least one unknown status element, so ∀p ∈ P , p̂∩(Vu∪Eu) 6=
∅. In such a case, the algorithm actions are provided by lines

18-22. Every time this happens a new node vBC is selected

from Vm(n) which is the set of nodes that are either unknown

or have adjacent unknown links. By placing a monitor in vBC,

according to the assumptions detailed in Section IV-A, we

assess the status of (at least) vBC and of all its adjacent links, so

the number of elements of Vm(n) gradually decreases at each

stage. Since this number is lower bounded by 0, the number

of monitoring actions is limited by the initial size of Vm.

Correctness. At each stage, CeDAR may either prune a

demand, or it may place a monitor and explore its connected

component. The first case (lines 14-17) CeDAR gradually

reduces the total demand preserving the feasibility of the

instance, by means of repair and pruning actions, but it

requires knowledge of the status of entire paths. In the second

case (lines 18-22) CeDAR gradually decreases the size of the

unknown sets Vu(n) and Eu(n), so it progressively enables

more actions of the first kind. Therefore, at each stage new

portions of the network are discovered, or a non-infinitesimal

demand portion is pruned preserving the feasibility of the

problem. As the instance of the problem is feasible by assump-

tion, CeDAR will eventually prune enough demands and repair

enough network elements to meet the routability of the demand

on the currently repaired graph GR = (V R, ER), where

V R = VW(n)∪(R(n)∩V ) and ER = EW(n)∪(R(n)∩E).

Theorem VI.2 (Time Complexity of CeDAR). CeDAR has

polynomial time complexity.

Sketch of the proof. As we discussed in the proof of Theorem

VI.1, the number of stages is finite and polynomial, in partic-

ular O(|EH| × |E|). The proof follows from the observation

that the individual activities performed at each stage also have

polynomial complexity.

VII. COMPARISONS WITH OTHER APPROACHES

To the best of our knowledge there is no previous work in

the literature that addresses the problem of recovery in the

case of incomplete knowledge of the failure extent. In this

section we introduce two previous approaches. As both of

them assume perfect knowledge it would be unfair to compare

them to CeDAR in a setting with incomplete information, for

which CeDAR is specifically designed. For this reason, we

modify these approaches to make them able to determine a

progressive recovery schedule, where network monitoring is

performed in parallel to repairs, and the recovery plan can be

progressively adjusted.

A. Shadow Price Progressive Recovery (ShP)

The work of Wang et al. [4] introduces a progressive recov-

ery approach, which we hereby call the Shadow Price (ShP)

approach. ShP assumes complete knowledge of the failure

which can only affect links and not nodes, and considers

limited resource availability to perform simultaneous repairs

in a massively disrupted network. The purpose of ShP is to

schedule the repairs of the broken network components so as

to optimize the weighted sum over time of the flow of every

demand pairs. The ShP approach considers the progressive

recovery problem as an MILP problem. By recognizing the

NP-hardness of the approach, the authors suggest to use an

LP relaxation of the problem and suggest to schedule link

repairs according to a decreasing order of the shadow prices

of the link capacity constraints.

To make the comparison with CeDAR more fair, we mod-

ified ShP as follows. First, as ShP cannot work with broken

nodes, we let it assume that all nodes are working, and

whenever it selects an edge for repair, its endpoint nodes are

also repaired if broken, and a monitor is placed on one of

them. Second, we consider a progressive execution of ShP, in

which ShP is executed iteratively as a single stage process of

repair, and a monitoring activity is performed from the newly

repaired nodes at each iteration. Finally, we observe that since

ShP aims at maximizing flow, and not at meeting specific flow

requirements, it may find solutions in which a large flow of

one demand compensates for an insufficient flow of another.

We modified the LP problem used by ShP, to include an upper

bound on each demand flow equal to its requirement, and stop

the algorithm execution as soon as all demand requirements

are satisfied.

With these three modifications we allow ShP to work also

under incomplete knowledge of the failed area and make

it more appropriate to meet specific demand requirements.

Notice that ShP requires that broken edges have a small

residual capacity, to avoid scenarios where all shadow prices

are null. This is not realistic, as broken links have null capacity,

but is a requirement for the algorithm to work. The values

of these residual capacities influence the schedule of repairs.

As a consequence ShP does not perform the repair of the

components of a same path in an interrupted sequence, which

is critical to have high accumulative flow. In the experiments

of Section VIII we set the residual capacities of broken links

to random values as suggested by the authors [4].
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B. Progressive ISP (P-ISP)

Bartolini et al. [5], propose a polynomial heuristic called

Iterative Split and Prune (ISP), to solve the problem of

minimizing the cost of repair, while restoring critical demand

flows. ISP works only with perfect knowledge of the status of

nodes and links.

The original version of ISP works by iteratively selecting

the next node to repair, called best candidate, according to a

centrality ranking on the basis of the notion of centrality given

in Definition V.7. After the repair of this node, ISP selects a

demand to split, thus creating two smaller demands with the

best candidate as a new end-point for both. The algorithm

also provides a pruning operation, which is similar to the

one performed by CeDAR, but works under different enabling

conditions based on structural properties of the demand and

supply graph.

To make ISP able to work in the case of partial knowledge

of the disruption, we designed a progressive variant, hereby

called Progressive ISP (P-ISP) as follows. First, we assume

that network elements of unknown status are broken, and let

P-ISP consider them as high cost repair elements. Second,

we consider a progressive execution in stages, where at

every stage P-ISP executes both repair interventions, monitor

deployment, and network probing, according to a stage model

similar to the one of Figure 1.

Despite the modifications, P-ISP could still make wrong de-

cisions due to the assumption that components with unknown

status are broken. This may cause P-ISP to split a demand on

a best candidate node which may result an inefficient choice

when more knowledge becomes available. Moreover, the split

action determines an irreversible routing decision that may

compromise the entire solution of the problem. In addition to

this, IPS performs repairs one at a time, potentially scheduling

successive repairs in distant and unrelated portions of the

network, resulting in a low accumulative flow over time.

VIII. EXPERIMENTS

In this section we study the behavior of the discussed

approaches by means of simulations. We consider a real

network topology, taken from the CAIDA (Center for Ap-

plied Internet Data Analysis) dataset [14]. This dataset in-

cludes real topologies describing the connections between

backbone/gateway routers of several autonomous sytems. We

used the topology AS28717, of which we extracted the giant

connected component with 825 nodes and 1018 edges, where

we set the edge capacities randomly in a range between 20

and 50 units.

In the following experiments we considered three different

scenarios in which we varied the number of demands, the

amount of flow for each demand, and the extent of the

disruption, randomizing the results for a minimum of 20 runs

for each experiment.

In all the experiments, with the only exception being the

optimal (OPT) solution, we assume that the initial knowl-

edge of the network state is only partial, and determined by

monitoring the network from the demand endpoints. The OPT

solution instead is obtained by using complete knowledge of

the disruption and solving the NP-hard optimization problem

PDAR of Section IV-B. Therefore, we underline that OPT

is an ideal solution and is considered only as a baseline for

comparisons, to evidence the margin of improvement that any

algorithm can provide with respect to existing solutions. For

this reason we show the comparisons with OPT only in the

first scenario.

A. Scenario A: Varying demand intensity

In this scenario we increase the load on the network by

varying the amount of flow of 5 uniform demand pairs,

with randomly selected endpoints. We generate the network

disruption so as to form multiple disconnected portions. To

this purpose we generate a geographic distribution of the

probability of failure, in the form of a composition of two

bi-variate Gaussian distributions, representing two epicenters

of maximum disruption probability. The disruption probability

gradually decreases with the distance from the epicenters.

The extent of the disruption is such that 60% of the network

components are broken.

In Figure 3 we show the effects of the progressive recovery

actions of the three algorithms CeDAR, P-ISP and ShP and of

the optimal solution OPT. The figure shows the trend with

time of the maximum amount of critical flow that can be

routed on the currently repaired supply network. In the figure,

the number of repairs grows in proportion with time as we

consider that all the algorithms repair one network element at

each time step, to mimic a scenario with limited resources.

We consider two different load settings: a case with mod-

erate flow in Figure 3(a) corresponding to 12 flow units for

each of the 5 demand pairs, and a case with high flow in

Figure 3(b), corresponding to 5 demand pairs of 20 flow

units each. The figure shows that CeDAR outperforms P-ISP

and ShP by routing more flow at each time step, with peaks

of about 18 flow units of difference, corresponding to the

30% of the total demand in the case of moderate flow, and

to the 18% in the case of high flow. Compared with OPT,

CeDAR shows a good approximation in the initial phase, with

a difference between the two within the 15% of the total

demand, that gradually becomes even lower, until the recovery

process is halfway, when the difference between CeDAR and

OPT becomes negligible.

Figures 3(c) and 3(d) emphasize the difference between

CeDAR and the other two algorithms by showing how much

more flow CeDAR routes in both the considered load settings.

For instance, in the case of high load, corresponding to the

dashed lines of Figures 3(c) and 3(d), after about 20 rounds

of repairs CeDAR routes an amount of flow that is 20 units

higher than P-ISP (see Figure 3(c)), and 15 units higher than

ShP (see Figure 3(d)). In the entire execution period, CeDAR

routes more flow than ShP, despite the fact that ShP targets

cumulative flow as main objective function.

Figure 4 considers an experiment where we increased the

amount of flow of each of the 5 demand pairs from 4 to 24

flow units. Figure 4(a) shows the number of repairs needed to

route the entire flow demands. With respect to the number of

repairs, CeDAR outperforms ShP and performs the same as

P-ISP which instead is specifically meant to optimize repair

cost. Notice that the number of repairs performed by CeDAR
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Fig. 4. Scenario A. 5 demand pairs, with varying demand intensity: total
repairs (a), monitors (b)

and P-ISP is close to the optimal OPT, which assumes full

knowledge of the status of the network nodes and links. By

contrast, ShP needs to repair more network elements than the

other algorithms to route the same amount of flow. This is due

to the fact that ShP aims at optimizing cumulative flow at each

iteration, so it may decide to sacrifice cost, by repairing more

elements than strictly necessary for the purpose of satisfying

the demand requirements.

Figure 4(b) shows that CeDAR deploys a lower number

of monitors than ShP and P-ISP. This means that CeDAR

is able to perform the necessary monitoring activity with a

lower number of monitors, thanks to more focused monitor

deployment decisions that aim at obtaining information on

portions of the network that are more relevant to the demand

requirements.

B. Scenario B: Varying number of demand pairs

In this set of experiments we considered the effect of the

demand load by varying the number of critical demand flows

in the range from 1 to 6. We consider critical demands of 22

flow units. Also in this scenario, the disruption is generated

according to the composition of two bi-variate Gaussian dis-

tributions so that 40% of the network components are broken.

For space limitations we no longer show the trend of the

flow routed with time. Figure 5 shows instead the difference

between the flow routed by CeDAR with respect to P-ISP

(Figure 5(a)) and ShP (Figure 5(b)). For instance, with 5 pairs

of demand, after about 18 rounds of repairs, CeDAR routes

about 25 more units of flow than P-ISP, corresponding to the

23% of the total demand, and about 11 more units than ShP,

which is the 10% of the total demand.

With the last two figures, by varying the number of demand

pairs from 1 to 6, we show that CeDAR routes the entire

demand with a similar number of repairs as P-ISP, lower than

ShP, as shown in Figure 6(a) and with a lower number of

monitors, as shown in Figure 6(b). We conclude that in this

scenario, with a number of repairs close to those of P-ISP and

lower than ShP, CeDAR achieves a higher cumulative flow

than both the other algorithms.
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Fig. 5. Scen. B. Flow difference: CeDAR vs. P-ISP (a), CeDAR vs. ShP (b)

 0

 5

 10

 15

 20

 25

 30

 35

 0  1  2  3  4  5  6  7

N
u
m

b
e
r 

o
f 
to

ta
l 
re

p
a
ir
s

Number of demand pairs

CeDAR
P-ISP

ShP

(a)

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5  6  7

N
u
m

b
e
r 

o
f 
m

o
n
it
o
rs

Number of demand pairs

ShP
CeDAR

P-ISP

(b)

Fig. 6. Scenario B. Varying demand pairs: repairs (a), monitors (b)

C. Scenario C: Varying disruption extent

In this last scenario, we investigate the behavior of the three

algorithms by varying the extent of the disruption. Similar

to the previous experiments we consider two epicenters of

bi-variate Gaussian failure distribution. It must be noted that

when the network disruption is sparse, the monitoring activity

is particularly beneficial. Indeed by placing monitors on nodes

of the unknown area of the network, it is likely that these can

discover large connected working components of the network,

and increase the speed of the recovery process. By contrast,

if the extent of the disruption is very large, the monitoring

activity is less effective as it is more likely that nodes in

the unknown area have broken adjacent links and therefore

cannot send monitoring probes to perform the exploration of

the surrounding network.

We first consider two different settings, with moderate and

complete disruption. The extent is such that 60% of the

network elements are broken in the first case, and 100% in

the second. We consider 5 demand pairs with a demand of

22 flow units each. The difference between the amount of

flow routed by CeDAR and the other algorithms is particularly

remarkable in both the considered scenarios. Figure 7(a) shows

the difference between the total flow routed by CeDAR and P-

ISP. In the case of complete disruption (dashed line), after 28

time units, the flow routed by CeDAR is 30 units higher than
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Fig. 8. Scen. C. Varying disruption: repairs (a), monitors (b)

with P-ISP, corresponding to about 27% of the total demand.

Similar to these results, Figure 7(b) shows that in the case of

complete disruption, after about 20 time units, CeDAR routes

23 more units of flow than P-ISP, corresponding to about the

21% of the total demand.

The figure shows analogous results for the case of moderate

disruption (solid line), where the accumulative flow of CeDAR

is even higher as it allows to route flow sooner, i.e., after about

7 time units, compared to the case of complete disruption

(dashed line), in which it requires 18 time units before we

start seeing a positive flow routed. It is evident that in the case

of moderate disruption there is more room for prioritizing the

repair of the network elements that can ensure a higher value

of the cumulative flow over time, while in the case of large

disruption it is more likely that the first recovery interventions

will not be sufficient to accommodate any demand flow nor

to create enough working paths for monitoring.

The study of this scenario confirms the results discussed

for Scenario A and B. The higher cumulative flow routed by

CeDAR is obtained through a better scheduling of repairs and

monitor placement.

A more detailed study, conducted by varying the disruption

from 40% to 100% evidences that CeDAR performs a number

of repairs close to P-ISP and lower than ShP, as shown in

Figure 8(a) while Figure 8(b) shows that CeDAR also requires

a lower number of monitors. Notice that in the case of large

disruption the number of monitors coincides with the number

of repaired nodes as most of the nodes selected to host

monitors in the unknown area, are found to be broken.

D. Discussion on execution time
Due to space limitation we do not include graphs of the

comparisons among the three approaches in terms of execution

time. We performed experiments in which we varied the

problem size, both in terms of number of demands and amount

of flow for each demand, and the disruption extent. We also

tested the three algorithms on different topologies. We noticed

that average node degree affects the computation time of

the algorithms more than other aspects. For example, on a

relatively small artificial network with 100 nodes, average

node degree of about 30, low demands and large capacities

(only connectivity requirements), and complete knowledge, the

optimal solution of the PDAR problem requires more than 5

hours of execution time, while ShP takes about 30 minutes,

ISP 15 minutes and CeDAR less than 5 minutes. For a degree

of 10, the computation time drops significantly to about one

hour for the optimal, and to order of seconds for the heuristics.

The difference between the optimal and the heuristics becomes

much more evident when the algorithms need to be executed

several times, for multiple stages, to determine adjustments of

the solution in the case of partial knowledge, with monitoring,

and for larger networks.

IX. CONCLUSIONS

In this work we studied for the first time, the problem

of progressive recovery of a communication network after

large scale failure under incomplete knowledge of the damage

extent. We model the problem of Progressive Damage Assess-

ment and network Recovery (PDAR), which is shown to be

NP-Hard. We propose CeDAR, an efficient heuristic to solve

PDAR, that performs joint repair and monitor interventions, to

progressively restore critical services. We compared CeDAR

with previous approaches modified to deal with incomplete

knowledge. Experimental results on real topologies show that

CeDAR outperforms the previous approaches with a signif-

icantly higher accumulative flow over time and comparable

repair cost.
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