
ON OPTIMIZING SERVICE AVAILABILITY OF AN
INTERNET BASED ARCHITECTURE FOR

INFRASTRUCTURE PROTECTION

Novella Bartolini and Enrico Tronci

University of Rome “La Sapienza”1

Abstract

Modern Infrastructure Protection Systems (IPSs) tend to be geographically distributed as well as
Internet based. Geographic distribution has the goal of increasing fault tolerance as well
survivability (e.g. against attacks of various kinds). Usage of a public communication
infrastructure like Internet has the goal of decreasing costs as well as easying system deployment.

During an emergency, computational as well as communication resources tend to be scarce. When
there are no resources available a request is not admitted into the systems. As a result emergency
requests may get blocked. More specifically, two service classes must be served, a low priority
class for maintenance and monitoring and a high priority class for emergency related
interventions. A suitable service policy is necessary to guarantee system responsiveness when
emergency events occur while keeping the Quality of Service (QoS) of low priority requests at an
acceptable level. Unfortunately the above are conflicting requirements since to guarantee system
responsiveness upon an emergency (high priority) event we should always have free resources to
use in such a situation.

In this paper we show how the above admission control policy problem can be modeled as a Semi
Markov Decision Process (SMDP). By solving such SMDP we compute a policy that finds a
tradeoff solution between minimizing the probability that a critical service request is blocked due
to resource unavailability and reserving too much resources to critical events resulting in
unacceptable performance of low priority requests. For computational and robustness reasons we
also propose some heuristics. Finally, we compare the performance of the computed optimal
policy and heuristics by means of simulation and probabilistic model checking.

Keywords: Critical Infrastructure, Internet, QoS, Access Policy, Markov Decision
Process

1. System architecture

The reference scenario of our work is one with distributed and replicated servers.
A discussion on the possible architectural choices to perform server selection and request
redirection is out of the scope of this paper. We refer to [2] for a short survey on this
topic. As for Infrastructure Protection Systems (IPSs), we consider an anycast based
Content Delivery Network (CDN) architecture [2] in which admission control operations
are performed by access routers (see Figure 1) or by application level dispatchers.

1 Computer Science Department, Via Salaria 113, 00198 Roma, Italy. Email:
{novella,tronci}@di.uniroma1.it. Corresponding Author: Enrico Tronci. Tel:
+39 06 4991 8361 Fax: +39 06 8541 842

Figure 1. An Internet based architecture for infrastructure protection.

This CDN architecture was inspired by [1] and similar schemes are discussed in [4, 6, 9],
just to give some examples. The access points (routers or dispatchers) may collect
statistics about replica servers by means of active and passive measurements, or receive
status update messages from the available servers, create user and session profiles,
perform replica server selection mechanisms and access control to guarantee the required
performance to all types of services, with prioritization of sessions and of requests
belonging to critical session phases. Through their measurement activity the access points
become dynamically aware of the resource availability and traffic behaviour. In this
paper we focus on the access control capabilities of these systems.

2. Analytical model

In [5, 12] it is suggested that Markov Modulated Poisson Processes (MMPPs) can be
used to approximate or predict the burstiness of the input of an Internet based service.
Following [3] we assume exponential arrivals of service requests, while the session
duration is modelled by means of an alternation of idle and active phases, following a
Markov modulated process of the lifetime of a service session such as in Fig. 2.

A: active B: idle
λA

i

µA
i⋅πAB

i

µB
i⋅πBA

iµA
i⋅(1-πAB

i) µB
i⋅(1-πBA

i)

Figure 2. Service session model.

We differentiate between two classes of clients: high priority (e.g. emergency) and low
priority (e.g. monitoring), such that the high priority clients, representing critical requests,
receive a better service than basic clients in case of overload, (the index i in Figure 2 is
introduced to differentiate these two classes).

ISP 1

Client

Client

Client

Client

Client

Client

ISP 2

ISP 3

Replica

Replica Replica

Replica

Replica

RS

RS RS

RS

RS

Access Router

Access Router

Access Router

External traffic on the non-dedicated links between access routers and replica servers has
an impact on the server availability. This is modelled by means of the random variable
xcong, (0 <= xcong <= C) that follows a Markov modulated vacation (or ON/OFF) process.

The controlled dynamic of the described system constitutes a Semi Markov Decision
Process (SMDP). We model the state of the process by using a random variable for each
phase of each type of service, plus another random variable xcong to represent the
congestion level. The state space of the process is

() ,0;;;:,,,,
4

1

4

1
432

 ≥≤≤≤==Λ ∑∑

==
icong

ID

i
i

i
iicong1 xCxCxCxbxxxxxx

(1)

where bi is the resource consumption of phase i, and there is a limit CID on the number of
sessions that can be tracked at the same time, while the number of available servers is
limited to C. The decision space is Ax = {a : ai = 0 if x + ei ∉ Λ, i = 1, … 4}, where ei is
an identity vector, that is a vector of zeroes, except for a one in the i-th position. The
indicators ai denote the admission, with value 1, or the denial of service, with value 0, of
class-i new session requests.

Let pa

xy denote the uniformized transition probability from state x to state y if the decision
a is taken and (x, a) ∈ S where S is the set of all feasible pairs of vectors (state, decision).

To complete the description of the decision process and to be capable of formulating an
objective function, we introduce a cost and a profit function: ()as,costr and ()as,profitr for

each pair (x, a) ∈ S.

If a new session request is rejected, a rejection penalty will be paid, PL for low priority
requests, and PH> PL, for high priority requests. Phase transitions are not subject to the
admission control, and all subsequent phases of an admitted session are also admitted
provided that enough non-congested servers are available. If there are no available
servers to complete a session the system will incur a disruption penalty DH, in case of
high priority session disruption, and DL<DH , in case of low priority session disruption.
Disruption penalties are usually higher than rejection penalties.
Profits for successful service completion are also introduced and denoted by VL and VH
for low and high priority requests respectively.

The objective function we formulated is the average expected reward per unit of time

[()() ()] saas, as,as, xrr costS profit ⋅−∑ ∈ , where xsa is the probability for the system to be in

state s and at the same time to take decision a

The Linear Programming (LP) formulation associated with our decision process for the
maximization of the average reward is:

[()() ()]
()

()

() Λ∈∑ ∑=
∑ =

∈≥
⋅−∑

∈ ∈

∈

∈

j

as,

as,as,

j
a as, sa

a
sjja

as, sa

sa

saas,

A S

S

costS profit

xpx

x

Sx

xrr

~
1

0

max

.

(2)

3. Comparisons among the optimal admission policy and heuristics

The purpose of this optimization analysis is to obtain clues for the formulation of possible
heuristics to be adopted in realistic scenarios where the analytic methodology cannot
scale. By iteratively solving problem (2) we saw that in the most typical cases the optimal
policy shows a double threshold behavior when deciding which request to accept: a first
threshold is in terms of available servers, and the second one is in terms of process
identifiers available at the dispatcher level.
For this reason we consider the following heuristic (HEU) that mimics the behaviour of
the optimal policy (OPT). The HEU policy reserves Kreserved_servers units of server capacity
and Kreserved_ID session identifiers to the high priority stream of requests.
We refer to xthink as to the number of ongoing session in the idle phase, therefore

31 xxxthink += , and to xbusy as to the number of ongoing session in the active phase, that

is 42 xxxbusy += .

We define the following threshold values: serversreserved
servers KCT _−= and

IDreserved
ID KCT _−= .

The HEU policy can be formulated as follows:

• If xbusy<min{ IDT - xthink ;
serversT - xcong } take decision (a1,a3)=(1,1), i.e. give

service to both streams of requests.

• If min{ IDT - xthink ;
serversT - xcong }≤ xbusy<min{ IDC - xthink ; C - xcong } take

decision (a1,a3)=(0,1), i.e. give service only to high priority requests.

• If xbusy≥min{ IDC - xthink ; C - xcong } take decision (a1,a3)=(0,0), i.e. no new
session can be admitted, neither from the low priority, nor from the high priority
stream, due to lack of resources.

The implementation of such a regular policy (HEU) is inexpensive and can be easily
implemented on access controllers.

By means of simulations we analyzed the effects of the optimal policy and of our
heuristics with different choices of the threshold parameters, showing that a simple and
regular policy such as HEU can have a performance close to the optimal in most
scenarios.

4. Model checking

By using uniformization techniques and by resorting to discrete time we can study the
SMDP process described in Section 2 through its embedded Markov Chain (MC). In
particular it is possible to use a simulator to estimate the probability of reaching an
undesired state. In the following discussion sbad denotes an undesired state. For example
the one in which an emergency request has been blocked.

Unfortunately, the smaller the probability of reaching a given undesired state s, the less
reliable is the estimate obtained by simulations, since there will be very few computation
traces leading to s. This makes life quite hard for a simulator. Such low probability
computation traces can be analyzed with a probabilistic model checker e.g. as PRISM [7,
8] or FHP-Murphi [10, 11] In our case we use FHP-Murphi, a probabilistic model
checker that can handle real numbers.

We proceed as follows. First of all we choose a sampling time T. From this and the
SMDP parameters in Section 3, we can compute the transition probability for the MC in
Figure 3. Running FHP-Murphi on the MC of Figure 3 confirms the effectiveness of the
heuristic devised in Section 3 for the admission control policy.

Figure 3. Discrete Time Markov Chain for the SMDP in Section 2

Note that, since FHP-Murphi works with closed systems, in Figure 3 we have added a
Sink with respect to the model in Figure 2. Such sink state models users leaving the
system (i.e. releasing system resources).

5. Experimental Results

In this section we show the experimental results we obtained by using the simulator and
the model checker. Our idea is to exploit the simulator efficiency in order to estimate
typical system behaviour on fairly long time horizons (Section 5.1). This would not be
possible with a probabilistic model checker because of state explosion. On the other hand
a simulator cannot give us much information about (undesired) rare events, namely
dropping of a high probability request. On a short time horizon we compute such
probabilities by using a probabilistic model checker (Section 5.2).

5.1. Simulation results

In this section we describe the experimental results obtained by means of a simulator
based on OPNET [13] using synthetic traffic generators that follow the session model
introduced in section 2, with arrival rates of different orders of magnitude to keep into
account the rarity of emergency requests.
By means of simulations we analyze the effects of the heuristic (HEU) introduced in the
previous section 3. We provide performance comparisons among the optimal policy
(OPT) and the heuristic with different choices of the threshold parameters.
Experimentations showed that the best threshold choice depends on many factors, among
which the most important are costs and rewards, session arrival rates and average lifetime
of successfully completed sessions.
A trivial policy, consisting in doing nothing to improve performance, will be named
noAC and will be used with OPT as a benchmark for comparisons. With the noAC
policy both streams of session activation requests are treated alike and no discrimination
is done between service classes.

We consider a scenario with C=8 servers, CID=10 available identifiers, and where the
traffic parameters are: low priority arrival rate λL=2 sec-1, high priority arrival rate
λH=0.0001 sec-1, active phase rate for both high priority and low priority µL

A=µH
A =10

sec-1, idle phase rate for both high priority and low priority µL
B=µ H

B =0.05 sec-1, phase
transition probabilities πL

AB= πH
AB =0.9, πL

BA= πH
BA =0.4. In the considered scenario, the

congestion arrival rate per single server is µAP=0.001 sec-1 and congestion departure rate
λAP=0.01 sec-1

.

The cost setting is: dwell cost in a busy and congested state PBC=100 sec-1, low priority
service denial PL=10, low priority service disruption DL=30, high priority service denial
PH=2×105, high priority service disruption DH=2.1×105, while rewards are VL=30,
VH=105.

Figure 4 shows how in the described scenario, the introduction of an admission control
policy brings an improvement in terms of average reward. The heuristic threshold setting
that better approximates the optimal policy is to reserve TID=9 identifiers and Tservers=6
units of server capacity.

-5000

-4000

-3000

-2000

-1000

 0

 1000

 2000

 0 500000 1e+006 1.5e+006 2e+006

Av
er

ag
e

re
w

ar
d

pe
r t

im
e

un
it

time (sec)

OPT
HEU Tid=9 Tserver=6
HEU Tid=8 Tserver=7
HEU Tid=8 Tserver=6

noAC

Figure 4 – Average Reward Function

The improvement in terms of rewards comes from a lower blocking probability of high
priority requests, as can be seen in Fig. 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+006 1.5e+006 2e+006

H
ig

h
pr

io
rit

y
bl

oc
ki

ng
 p

ro
ba

bi
lit

y

time (sec)

OPT, HEU with Tid<=9

HEU Tid=9 Tserver=7, noAC
OPT

HEU Tid=10 Tserver=5
HEU Tid=10 Tserver=6
HEU Tid=10 Tserver=7

HEU Tid=8 Tserver=7
HEU Tid=8 Tserver=6
HEU Tid=9 Tserver=6

noAC

Figure 5 – Critical event (high priority) blocking probability

This improvement comes at the expense of an increase in the blocking probability of low
priority requests as can be seen in figure 6. This figure shows that the OPT policy has the
worst performance in terms of blocking probability of low priority requests. The
smoothness of the graph of figure 6 is due to the more stable and frequent arrival process
of low priority requests.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+006 1.5e+006 2e+006

Lo
w

 p
rio

rit
y

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

time (sec)

noAC, HEU Tid=10, Tserver=7

OPT, HEU Tid=8 Tserver=6, HEU Tid=8 Tserver=7

OPT
HEU Tid=8, Tserver=6
HEU Tid=8, Tserver=7
HEU Tid=9, Tserver=8

HEU Tid=10, Tserver=7
noAC

Figure 6 – Low priority blocking probability

bbb

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+006 1.5e+006 2e+006

H
ig

h
pr

io
rit

y
su

cc
es

sf
ul

 c
om

pl
et

io
n

pr
ob

ab
ili

ty

time (sec)

noAC, HEU Tid=10, Tserver=7

OPT, HEU Tid=8 Tserver=6, HEU Tid=8 Tserver=7

OPT
HEU Tid=8, Tserver=6
HEU Tid=8, Tserver=7

HEU Tid=10, Tserver=5
HEU Tid=10, Tserver=6
HEU Tid=10, Tserver=7

noAC

Figura 7 - Critical requests successful completion probability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500000 1e+006 1.5e+006 2e+006

Lo
w

 p
rio

rit
y

su
cc

es
sf

ul
 c

om
pl

et
io

n
pr

ob
ab

ili
ty

time (sec)

noAC, HEU Tid=10, Tserver=5

OPT, HEU Tid=9 Tserver=8

OPT
HEU Tid=9, Tserver=8
HEU Tid=8, Tserver=6

HEU Tid=10, Tserver=5
noAC

Figure 8 – Low priority successful completion probability

5.2. Model checking results

Given a Markov chain, a probabilistic model checker can compute in an exact way the
probability of reaching an undesired state. In the following our undesired state is the one
in which a high priority request is dropped (Section 5.1). Of course we would like the
probability of reaching such a state (i.e. of dropping a high priority request) to be low.
This is exactly what we are going to compute with the probabilistic model checker FHP-
Murphi.

More specifically we compute the probability that in at most 25 events at least a high
request is dropped. An event for us is any system transition that changes the state of the
systems, thuis a nop is not an event.

Our system parameters are, of course, exactly the same one used by the simulator and the
model checker system model (a Markov chain) has been obtained from the simulator
model as described in Section 4. As an admission policy we use the heuristics HEU
described in Section 3. Let
• AL be the number of low priority processes in the active state;
• AH be the number of high low priority processes in the active state
• IL be the number of low priority processes in the idle state;
• IH be the number of high priority processes in the idle state;
• X_cong be the number of congested servers.

Table 1. Experiments run on a Linux PC with a 3GHZ Pentium 4 with 512MB RAM.

Table 1 shows the results we obtained using FHP-Murphi to compute the dropping
probabilities for the most frequent system states, i.e. the states the occur more often in a
long enough time window. Column “Drop Prob” gives the dropping probability for the
system states defined in columns AL, AH, IL, IH, X_cong. Column “CPU Time” gives
the model checke computation time in seconds.

Note that such probabilities are so small that it is not possible to estimate them by using a
simulator. On the other hand the curves obtained in Section 5.1 by using the simulator
cannot be obtained by using a probabilistic model checker because of state explosion.

AL AH IL IH X_cong Drop Prob CPU Time (s)

0 0 1 0 0 0 18.29
0 0 6 4 6 5.442186651e-07 7543.78
0 0 8 0 1 3.782883752e-09 1448.2
0 0 8 0 2 3.782883752e-09 1941.54
0 1 0 0 0 1.027936619e-10 143.09
1 0 6 0 1 3.885609142e-10 1464.49
1 0 7 0 1 3.545190093e-09 1765.86
1 0 7 0 2 3.545190094e-09 2176.02
2 0 6 0 1 3.431086205e-09 1969.58
2 0 6 0 2 3.431086444e-09 2498.04

5. Conclusions

During an emergency a suitable service policy is necessary to guarantee system
responsiveness when emergency events occur while keeping the Quality of Service (QoS)
of low priority requests at an acceptable level. Unfortunately the above are conflicting
requirements since to guarantee system responsiveness upon an emergency (high priority)
event we should always have free resources to use in such a situation.

In this paper we have shown how the above admission control policy problem can be
modeled as a Semi Markov Decision Process (SMDP). Solving such SMDP we can
compute a policy that minimizes the probability that a service request is blocked due to
resource unavailability. Moreover for computational and robustness reasons we have
also proposed some heuristics (Section 3).

We have compared the performance of the computed optimal policy and heuristics by
means of simulation and probabilistic model checking. This twofold approach has
allowed us exploit simulation computational efficiency to study typical system behaviour
on long time horizons (Section 5.1) as well as the model checking accuracy to compute
probabilities for rare undesired events, namely dropping of a high probability request
(Section 5.2).

References

1. G. Agarwal, R. Shah, and J. Walrand. Content distribution architecture using network

layer anycast. Proc. of IEEE Workshop on Internet Applications, 2001.
2. N. Bartolini, E. Casalicchio. A walk through content delivery networks. Lecture Notes

on Computer Science, 2965, 2004.
3. N. Bartolini, E. Casalicchio, and I. Chlamtac. Session based access control in
content delivery networks in presence of congestion. Proc. of IEEE QShine 2004, Dallas,

TX, 2004.
4. M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scalable application-level

anycast for highly dynamic groups. Networked Group Communications, 2003.
5. A. Iyengar, M. Squillante, and L. Zhang. Analysis and characterization of largescale

web server access patterns and performance. Proceedings of World Wide Web, 1999.
6. D. Katabi and J. Wroclawski. A framework for scalable global ip-anycast (gia). In

Proceedings of SigCom, 2000.
7. M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model

checker. In Proc. TOOLS 2002, volume 2324. LNCS, Springer Verlag, April 2002.
8. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking

with prism: A hybrid approach. In Proc. TACAS'02, volume 2280. LNCS, Springer
Verlag, April 2002.

9. C. Partridge, T. Mendez, and W. Milliken. Host anycasting service.
http://rfc.sunsite.dk/rfc/rfc1546.html.

10. G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V. Zilli. Finite horizon
analysis of markov chains with the murphi verifier. In IFIP WG 10.5 Advanced
Research Working Conference on: Correct Hardware Design and Verification
Methods (CHARME), L'Aquila, Italy, Oct 2003. LNCS, Springer.

11. G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli. Bounded probabilistic
model checking with the mur' verifier. In Proc. of 5th International Conference on:

Formal Methods in Computer Aided Veri_cation" (FMCAD), Nov. 2004, LNCS,
Springer

12. T. Yoshihara, S. Kasahara, and Y. Takahashi. Practical time-scale fitting of
selfsimilar traffic with markov-modulated poisson process. Proc. of the 6th Int. Conf.
on Telecomm. Systems, 2001.

Author Biographies

Novella Bartolini graduated with honors in 1997 and received her PhD in computer
engineering in 2001 from the University of Rome "Tor Vergata". She currently is
assistant professor at the Computer Science department of the University of Rome "La
Sapienza". In 1999-2000 she has been visiting scientist at the Erik Johnsson School of
Telecommunications at the University of Texas at Dallas. In 1997 she has been a
researcher of the Fondazione Ugo Bordoni. She has been a Program Committee and
Organizing committee member and Program Chair of several international conferences.
She is member of the editorial board of the international journal Elsevier Computer
Networks. Her current research interests include Content Delivery Networks, Web
Performance and Wireless Networks.

Enrico Tronci received his Master degree in 1987 in Electrical Engineering from the
University of Rome "La Sapienza". In 1991 Enrico Tronci received his Ph.D degree from
Carnegie Mellon University, Pittsburgh, USA. From 1992 to 1993 he has been a Post-
Doct at LIP (Laboratoire pour l'Informatique du Parallelisme) at the ENS (Ecole Normal
Superior) of Lyon (France). Presently he is associate professor at the Computer Science
department of the University of Rome "La Sapienza".
His research interests comprise: Formal Methods, Automatic Verification Algorithms,
Model Checking, Hybrid Systems. Tronci authored many scientific papers both on
international journals and on international conferences. He has been Conference Chair for
the CHARME (Correct Hardware Design and Verication methods) conference in 2003
and in the program committee of the conferences: FMCAD (Formal Methods in
Computer Aided Design) 2004, CHARME 2005. Enrico Tronci participated to many
research projects sponsored from the European Community, CNR, ENEA and MURST.

