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Abstract 

 
Modern Infrastructure Protection Systems (IPSs) tend to be geographically distributed as well as 
Internet based. Geographic distribution has the goal of increasing fault tolerance as well 
survivability (e.g. against attacks of various kinds). Usage of a public communication 
infrastructure like Internet has the goal of decreasing costs as well as easying system deployment. 
 
During an emergency, computational as well as communication resources tend to be scarce. When 
there are no resources available a request is not admitted into the systems. As a result emergency 
requests may get blocked. More specifically, two service classes must be served, a low priority 
class for maintenance and monitoring and a high priority class for emergency related 
interventions. A suitable service policy is necessary to guarantee system responsiveness when 
emergency events occur while keeping the Quality of Service (QoS) of low priority requests at an 
acceptable level. Unfortunately the above are conflicting requirements since to guarantee system 
responsiveness upon an emergency (high priority) event we should always have free resources to 
use in such a situation.  
 
In this paper we show how the above admission control policy problem can be modeled as a Semi 
Markov Decision Process (SMDP). By solving such SMDP we compute a policy that finds a 
tradeoff solution between minimizing the probability that a critical service request is blocked due 
to resource unavailability and reserving too much resources to critical events resulting in 
unacceptable performance of low priority requests. For computational and robustness reasons we 
also propose some heuristics. Finally, we compare the performance of the computed optimal 
policy and heuristics by means of simulation and probabilistic model checking. 
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1. System architecture 
 
The reference scenario of our work is one with distributed and replicated servers. 
A discussion on the possible architectural choices to perform server selection and request 
redirection is out of the scope of this paper. We refer to [2] for a short survey on this 
topic. As for Infrastructure Protection Systems (IPSs), we consider an anycast based 
Content Delivery Network (CDN) architecture [2] in which admission control operations 
are performed by access routers (see Figure 1) or by application level dispatchers. 
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Figure 1. An Internet based architecture for infrastructure protection. 

 
 
This CDN architecture was inspired by [1] and similar schemes are discussed in [4, 6, 9], 
just to give some examples. The access points (routers or dispatchers) may collect 
statistics about replica servers by means of active and passive measurements, or receive 
status update messages from the available servers, create user and session profiles, 
perform replica server selection mechanisms and access control to guarantee the required 
performance to all types of services, with prioritization of sessions and of requests 
belonging to critical session phases. Through their measurement activity the access points 
become dynamically aware of the resource availability and traffic behaviour. In this 
paper we focus on the access control capabilities of these systems. 
 
 
2. Analytical model 
 
In [5, 12] it is suggested that Markov Modulated Poisson Processes (MMPPs) can be 
used to approximate or predict the burstiness of the input of an Internet based service. 
Following [3] we assume exponential arrivals of service requests, while the session 
duration is modelled by means of an alternation of idle and active phases, following a 
Markov modulated process of the lifetime of a service session such as in Fig. 2. 
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Figure 2.  Service session model. 

 
 
We differentiate between two classes of clients: high priority (e.g. emergency) and low 
priority (e.g. monitoring), such that the high priority clients, representing critical requests, 
receive a better service than basic clients in case of overload, (the index i in Figure 2 is 
introduced to differentiate these two classes).  
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External traffic on the non-dedicated links between access routers and replica servers has 
an impact on the server availability. This is modelled by means of the random variable 
xcong, (0 <= xcong <= C) that follows a Markov modulated vacation (or ON/OFF) process. 
 
The controlled dynamic of the described system constitutes a Semi Markov Decision 
Process (SMDP). We model the state of the process by using a random variable for each 
phase of each type of service, plus another random variable xcong to represent the 
congestion level. The state space of the process is 
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where bi is the resource consumption of phase i, and there is a limit CID on the number of 
sessions that can be tracked at the same time, while the number of available servers is 
limited to C. The decision space is Ax = {a : ai = 0 if x + ei ∉ Λ, i = 1, … 4}, where ei is 
an identity vector, that is a vector of zeroes, except for a one in the i-th position. The 
indicators ai denote the admission, with value 1, or the denial of service, with value 0, of 
class-i new session requests. 
 
Let pa

xy denote the uniformized transition probability from state x to state y if the decision 
a is taken and (x, a) ∈ S where S is the set of all feasible pairs of vectors (state, decision).  
 
To complete the description of the decision process and to be capable of formulating an 
objective function, we introduce a cost and a profit function: ( )as,costr  and ( )as,profitr  for 

each pair (x, a) ∈ S. 
 
If a new session request is rejected, a rejection penalty will be paid, PL for low priority 
requests, and PH> PL, for high priority requests. Phase transitions are not subject to the 
admission control, and all subsequent phases of an admitted session are also admitted 
provided that enough non-congested servers are available. If there are no available 
servers to complete a session the system will incur a disruption penalty DH, in case of 
high priority session disruption, and DL<DH , in case of low priority session disruption.  
Disruption penalties are usually higher than rejection penalties.  
Profits for successful service completion are also introduced and denoted by VL and VH 
for low and high priority requests respectively. 
 
The objective function we formulated is the average expected reward per unit of time 

[ ( )( ) ( ) ] saas, as,as, xrr costS profit ⋅−∑ ∈ , where xsa is the probability for the system to be in 

state s and at the same time to take decision a 
 
The Linear Programming (LP) formulation associated with our decision process for the 
maximization of the average reward is: 
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3. Comparisons among the optimal admission policy and heuristics 
 
The purpose of this optimization analysis is to obtain clues for the formulation of possible 
heuristics to be adopted in realistic scenarios where the analytic methodology cannot 
scale. By iteratively solving problem (2) we saw that in the most typical cases the optimal 
policy shows a double threshold behavior when deciding which request to accept: a first 
threshold is in terms of available servers, and the second one is in terms of process 
identifiers available at the dispatcher level.  
For this reason we consider the following heuristic (HEU) that mimics the behaviour of 
the optimal policy (OPT). The HEU policy reserves Kreserved_servers units of server capacity 
and Kreserved_ID session identifiers to the high priority stream of requests. 
We refer to xthink as to the number of ongoing session in the idle phase, therefore 

31 xxxthink += , and to xbusy as to the number of ongoing session in the active phase, that 

is 42 xxxbusy += . 

We define the following threshold values: serversreserved
servers KCT _−=  and 

IDreserved
ID KCT _−= . 

The HEU policy can be formulated as follows: 

• If xbusy<min{ IDT  - xthink ; 
serversT  - xcong } take decision (a1,a3)=(1,1), i.e. give 

service to both streams of requests. 

• If min{ IDT  - xthink ; 
serversT  - xcong }≤  xbusy<min{ IDC  - xthink ; C  - xcong }  take 

decision (a1,a3)=(0,1), i.e. give service only to high priority requests. 

• If xbusy≥min{ IDC  - xthink ; C  - xcong }  take decision (a1,a3)=(0,0), i.e. no new 
session can be admitted, neither from the low priority, nor from the high priority 
stream, due to lack of resources. 

 
The implementation of such a regular policy (HEU) is inexpensive and can be easily 
implemented on access controllers.  
 
By means of simulations we analyzed the effects of the optimal policy and of our 
heuristics with different choices of the threshold parameters, showing that a simple and 
regular policy such as HEU can have a performance close to the optimal in most 
scenarios. 
 
 
 



 
4. Model checking 
 
By using uniformization techniques and by resorting to discrete time we can study the 
SMDP process described in Section 2 through its embedded Markov Chain (MC). In 
particular it is possible to use a simulator to estimate the probability of reaching an 
undesired state. In the following discussion sbad denotes an undesired state. For example 
the one in which an emergency request has been blocked.  
 
Unfortunately, the smaller the probability of reaching a given undesired state s, the less 
reliable is the estimate obtained by simulations, since there will be very few computation 
traces leading to s. This makes life quite hard for a simulator. Such low probability 
computation traces can be analyzed with a probabilistic model checker e.g. as PRISM [7, 
8] or FHP-Murphi [10, 11] In our case we use FHP-Murphi, a probabilistic model 
checker that can handle real numbers. 
 
We proceed as follows. First of all we choose a sampling time T. From this and the 
SMDP parameters in Section 3, we can compute the transition probability for the MC in 
Figure 3. Running FHP-Murphi on the MC of Figure 3 confirms the effectiveness of the 
heuristic devised in Section 3 for the admission control policy. 
 

 
 

Figure 3. Discrete Time Markov Chain for the SMDP in Section 2 
 
 
Note that, since FHP-Murphi works with closed systems, in Figure 3 we have added a 
Sink with respect to the model in Figure 2. Such sink state models users leaving the 
system (i.e. releasing system resources). 
 
 
5. Experimental Results 
 
In this section we show the experimental results we obtained by using the  simulator and 
the model checker. Our idea is to exploit the simulator efficiency in order to estimate 
typical system behaviour on fairly long time horizons (Section 5.1). This would not be 
possible with a probabilistic model checker because of state explosion. On the other hand 
a simulator cannot give us much information about (undesired) rare events, namely 
dropping  of a high probability request. On a short time horizon we compute such 
probabilities by using a probabilistic model checker (Section 5.2). 
 
 
 



5.1.  Simulation results 
 
In this section we describe the experimental results obtained by means of a simulator 
based on OPNET [13] using synthetic traffic generators that follow the session model 
introduced in section 2, with arrival rates of different orders of magnitude to keep into 
account the rarity of emergency requests. 
By means of simulations we analyze the effects of the heuristic (HEU) introduced in the 
previous section 3. We provide performance comparisons among the optimal policy 
(OPT) and the heuristic with different choices of the threshold parameters. 
Experimentations showed that the best threshold choice depends on many factors, among 
which the most important are costs and rewards, session arrival rates and average lifetime 
of successfully completed sessions. 
A trivial policy, consisting in doing nothing to improve performance, will be named 
noAC  and will be used with OPT as a benchmark for comparisons. With the noAC  
policy both streams of session activation requests are treated alike and no discrimination 
is done between service classes. 
 
We consider a scenario with C=8 servers, CID=10 available identifiers, and where the 
traffic parameters are: low priority arrival rate λL=2 sec-1, high priority arrival rate 
λH=0.0001 sec-1, active phase rate for both high priority and low priority µL

A=µH
A =10 

sec-1, idle phase rate for both high priority and low priority µL
B=µ H

B =0.05 sec-1, phase 
transition probabilities πL

AB= πH
AB =0.9, πL

BA= πH
BA =0.4. In the considered scenario, the 

congestion arrival rate per single server is µAP=0.001 sec-1 and congestion departure rate 
λAP=0.01 sec-1

. 

The cost setting is: dwell cost in a busy and congested state PBC=100 sec-1, low priority 
service denial PL=10, low priority service disruption DL=30, high priority service denial 
PH=2×105, high priority service disruption DH=2.1×105, while rewards are VL=30, 
VH=105. 
 
Figure 4 shows how in the described scenario, the introduction of an admission control 
policy brings an improvement in terms of average reward. The heuristic threshold setting 
that better approximates the optimal policy is to reserve TID=9 identifiers and Tservers=6 
units of server capacity. 
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Figure 4 – Average Reward Function 



The improvement in terms of rewards comes from a lower blocking probability of high 
priority requests, as can be seen in Fig. 5. 
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Figure 5 – Critical event (high priority) blocking probability 

This improvement comes at the expense of an increase in the blocking probability of low 
priority requests as can be seen in figure 6. This figure shows that the OPT policy has the 
worst performance in terms of blocking probability of low priority requests. The 
smoothness of the graph of figure 6 is due to the more stable and frequent arrival process 
of low priority requests. 
 

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500000  1e+006  1.5e+006  2e+006

Lo
w

 p
rio

rit
y 

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

time (sec)

noAC, HEU Tid=10, Tserver=7

OPT, HEU Tid=8 Tserver=6, HEU Tid=8 Tserver=7

OPT
HEU Tid=8, Tserver=6
HEU Tid=8, Tserver=7
HEU Tid=9, Tserver=8

HEU Tid=10, Tserver=7
noAC

 
Figure 6 – Low priority blocking probability 
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Figura 7 - Critical requests successful completion probability 
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Figure 8 – Low priority successful completion probability 

 
 
 
 



5.2. Model checking results 
 
Given a Markov chain, a probabilistic model checker can compute in an exact way the 
probability of reaching an undesired state. In the following our undesired state is the one 
in which a high priority request is dropped (Section 5.1). Of course we would like the 
probability of reaching such a state (i.e. of dropping a high priority request) to be low. 
This is exactly what we are going to compute with the probabilistic model checker FHP-
Murphi. 
 
More specifically we compute the probability that in at most 25 events at least a high 
request is dropped. An event for us is any system transition that changes the state of the 
systems, thuis a nop is not an event.   
 
Our system parameters are, of course, exactly the same one used by the simulator and the 
model checker system model (a Markov chain)  has been obtained from the simulator 
model as described in Section 4. As an admission policy we use the heuristics HEU 
described in Section 3. Let 
• AL be the number of low priority processes in the active state; 
• AH be the number of high low priority processes in the active state 
• IL be the number of low priority processes in the idle state; 
• IH be the number of high priority processes in the idle state; 
•  X_cong be the number of congested servers. 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Table 1. Experiments run on a Linux PC with a 3GHZ Pentium 4 with 512MB RAM. 

 
 
Table 1 shows the results we obtained using FHP-Murphi to compute the dropping 
probabilities for the most frequent system states, i.e. the states the occur more often in a 
long enough time window.  Column “Drop Prob” gives the dropping probability for the 
system states defined in columns AL, AH, IL, IH, X_cong. Column “CPU Time” gives 
the model checke computation time in seconds. 
 
Note that such probabilities are so small that it is not possible to estimate them by using a 
simulator. On the other hand the curves obtained in Section 5.1 by using the simulator 
cannot be obtained by using a probabilistic model checker because of state explosion. 

AL AH IL IH X_cong Drop Prob CPU Time (s) 

0 0 1 0 0 0 18.29 
0 0 6 4 6 5.442186651e-07 7543.78 
0 0 8 0 1 3.782883752e-09 1448.2 
0 0 8 0 2 3.782883752e-09 1941.54 
0 1 0 0 0 1.027936619e-10 143.09 
1 0 6 0 1 3.885609142e-10 1464.49 
1 0 7 0 1 3.545190093e-09 1765.86 
1 0 7 0 2 3.545190094e-09 2176.02 
2 0 6 0 1 3.431086205e-09 1969.58 
2 0 6 0 2 3.431086444e-09 2498.04 



 
5. Conclusions 
 
During an emergency a suitable service policy is necessary to guarantee system 
responsiveness when emergency events occur while keeping the Quality of Service (QoS) 
of low priority requests at an acceptable level. Unfortunately the above are conflicting 
requirements since to guarantee system responsiveness upon an emergency (high priority) 
event we should always have free resources to use in such a situation.  
 
In this paper we have shown how the above admission control policy problem can be 
modeled as a Semi Markov Decision Process (SMDP). Solving such SMDP we can 
compute a policy that minimizes the probability that a service request is blocked due to 
resource unavailability. Moreover for  computational and robustness reasons we have 
also proposed some heuristics (Section 3). 
 
We have compared the performance of the computed optimal policy and heuristics by 
means of simulation and probabilistic model checking. This twofold approach has 
allowed us exploit simulation computational efficiency to study typical system behaviour 
on long time horizons (Section 5.1) as well as the model checking accuracy to compute 
probabilities for rare undesired events, namely dropping  of a high probability request 
(Section 5.2). 
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