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Abstract— The Content Delivery Networks (CDN) paradigm is based
on the idea to move third-party content closer to the users @nsparently.
More specifically, content is replicated on servers closermtthe users, and
users requests are redirected to the best replica in a trangpent way,
so that the user perceives better content access service. this paper
we address the problem ofdynamic replica placement and user requests
redirection jointly. Our approach accounts for users demar variability
and server constraints, and minimizes the costs paid by a CDIgrovider
without degrading the quality of the user perceived accessesvice. A non-
linear integer programming formulation is given for the replica placement
and user request redirection problems. The output of the modl is the
periodic determination of the new location of replicas basé on traffic
estimates and the current replica locations. The actual sation is obtained
by mapping the non-linear integer problem into a series of mked integer
linear problems obtained by linearizing the non-linear corstraints of the
original problem. Preliminary numerical results show that the proposed
solution is capable of effectively limiting the percentageof unsatisfied
requests without over-replicating the contents over the CIN servers.

|. INTRODUCTION

replica placement problem as a minimuf median problem, in

which K replicas have to be selected so that the sum of the distances

between the users and their best replica is minimized. A leimp
greedy heuristic is shown to have performance withd¥% of the
optimal strategy. An evaluation of such greedy scheme tesasthe
impact of K on the user satisfaction (closeness to the replica), for
different traffic patterns, is presented in [5]. Qui et alvénaalso
proposed “hot spot,” a solution for placing replicas on reodeat
along with their neighbors generate the greatest load f2[6] “hot
zone” is presented as an evolution of the “hot spot” algaritirhe
idea is to first identify network regions made of nodes whasericy
to each other is low. Regions are then ranked according todhtent
request load that they generate and replicas are placee iregfions
high in the ordering. In [3] and [4] Jamin et al. and Radoslavo
et al. propose fan-out based heuristics in which replicasptaced
at the nodes with the highest fan-out irrespective of theaatost
function. The rationale is that such nodes are likely to bstiategic

Content Delivery Networks (CDNs) are one of the answers f{glaces, closest (on average) to all other nodes, and tmerstitable

the challenges posed by the remarkable commercial sucédabe o
Internet in the very recent years. Replicating third-pamytent on

servers closer to the final users, and redirecting transpgréheir

requests to the “best replica” (e.g., the closest replicéeims of

distance, latency, etc.) CDN providers are able to offerrowed

content access service.

for replica location. In [4] a performance evaluation basedreal-
world router-level topologies shows that the fan-out balsedristic
has trends close to the greedy heuristic in terms of the geerbent
latency.

A major limit of all these solutions is that they neglect tomsiler
the natural dynamics in the user requests traffic. When shihgnge

Solutions for CDN require addressing a number of technicghat would make a different placement less costly or morsfyatg

problems, which include the selection of the kind of conttt
should be hosted (if any) at a given CDN server (replica pread),
what is the best replica for a given customer, and which n@shes
should be used to redirect the user to such replica.

This paper concerns the joint optimization of replica ptaeat

for the users, the only possible solution is to re-apply tlxEgment
algorithm from scratch. This approach has a couple of proble
First of all, it may react slowly to the system changes, sa tha
new placement of the replicas is not the best one for the uuger
request traffic. Moreover, the replica placement happepsyeime

and user request redirection. Our solution is dynamic irsérese that from scratch, i.e., without considering where replicas euerently
replicas are added and removed from CDN servers accorditiieto placed. This could possibly lead to non-negligible recantigjon

dynamically changing user request traffic. The redirecti@thanism
is also changed accordingly.

costs.
A few papers (e.g., [7] and [8]) have addressed the problem

Previous solutions have mostly addressed these problepss seof dynamic replica placement. However, the proposed schesne

rately. Of the solutions proposed for replica placementstngoncern
the static case. Basically, given the topology of the netwtire set
of CDN servers as well as the request traffic pattern, replama
placed so that some objective function is optimized whiletimg
constraints on the system resources (server storager sestainable
load, etc.). Typical problem formulations aim at either imnaxing

embedded in specific architectures for performing requeslisection
and computing the best replicas. No framework is provided fo
identifying the optimal strategy, and for quantifying thelwgions
performance with respect to the optimum. In RaDar [7] a tho&b
based heuristic is proposed to replicate, migrate and eleégdlicas
in response to system dynamics. The overall proposed spluti

the user perceived quality given an upper bound on the numbercombines dynamic replica allocation with servers loadrawadi-

replicas, or minimizing the cost of the CDN infrastructuréile

meeting constraints on the user perceived quality (e.tenty) [1].
For the static case, simple efficient greedy solutions haenb

proposed in [2], [3] and [4]. In [2] Qiu et al. formulate theast

rection to the best replica to achieve low average usersidgte
while empirically balancing the load among the CDN servéis.
limits on the servers storage and on the maximum users jatamc
explicitly enforced. In [8] two schemes designed for the &y



architecture [9] are presented. The idea is that upon a ebrequest

replicating the contents over the CDN servers, and hende hait

the neighborhood of the user access point in the overlay aritw cost for the CDN infrastructure. In the considered scesahie placed

is searched. If there is a server hosting a replica of theeastqd
content within a maximum distance from the user, and sucresés
not overloaded, the request will be redirected to this sgimeto the
closest server if multiple servers meet such constrai@f)erwise
a new replica is added to meet the user request. Two variaats
introduced depending on the neighborhood of the overlaywarit
which is searched for replicas, and on the scheme used tct $eée
best location for the new replica. Although the ideas prieskim the
paper appear promising they are tightly coupled with thee$ay
architecture, and the approach does not explicitly acctarmteither
the costs of reconfiguration nor for possible servers seotagits.
Finally, no information is provided in [8] on the rule to rews
replicas, making it hard to compare with our approach. Riyehe
authors have presented a framework for dynamic replicaepiaat

in [10]. By assuming the users requests dynamics to obey to a

Markovian model the problem of optimal dynamic replica plaent
has been described as a semi-Markov decision process dicgpu
for the traffic, the user level of satisfaction as well as thets paid
to add, maintain or remove a replica from CDN servers. Algiou
this model allows us to achieve optimality and providesghts to
the dynamic replica placement problem, it is not scalablerddver,
the paper concerns only replica placement, without adihgssser
request redirection.

In this paper we address the joint optimization of dynamica
placement and users requests redirection to the best aeplie

assume that users access the CDN networks through one amgon

|Va| access points, requesting access to on€' gossible contents.

Replicas of theC' contents can be stored in one or more among

number|Vg| > 0 of CDN servers. The user request satisfaction
modeled by &, 1 variable. A weight is associated to the routes fro
a user to a replica. The weight indicates the user perceiuatity of
accessing that replica. A user is said to be satisfied whemwénght
of the route to the best replica is below a given threshdid,..
The aim of our model is to limit the CDN infrastructure costilgh
guaranteeing that over a given percentdge e of the users (say,
99%) are satisfied.

Our scheme relies on the idea of periodically taking denision
which replicas to add/remove, and on the best replica tolwdigiven
user request should be redirected. The decision on how ttersy
should evolve is the outcome of a non-linear integer prognarg
formulation of the problem. The inputs are the CDN topolotipe
current replica allocation, the estimated users requesfgctover the
next period of time, the CDN servers resource constraintsiléble
storage and maximum loadj,,,, ande.

The actual solution is obtained by mapping the non-lineteger
problem into a series of mixed integer linear problems otat@iby
linearizing the non-linear constraints of the original ldeom. The
series of mixed integer linear problems is then solved nicakly
leading to a solution of the replica placement and user gguedi-
rection problem for the next time interval. Our solution isgctive in
the sense that it takes into account the user requests dymaxer the
upcoming new time interval (of length). This is obtained by using
RLS (Recursive Least Square prediction) to design an adgfilier.
This allows us to estimate, based on current and past trféduture
user requests traffic process. Despite the fact our RLSqtienl is
affected by the users traffic dynamics and by the length oirttezval

n

replica are used, on average, at aro@fth of their maximum load,
showing the scheme effectiveness in placing new replichswhen
needed.

The paper is organized as follows. In Section Il we introduce
mathematical preliminaries needed for describing our rmeheln
Section Il the dynamic replica placement and user requexis
rection problems are described: the system constraintsastd are
introduced and discussed here. Sections IV and V descriadh-
linear integer programming formulation as well as the |iesion
techniques used to obtain solutions on how the CDN systemlgho
evolve. Section VI describes the results of a preliminanjqgenance
evaluation which assesses the effectiveness of the prosmdation.
Finally conclusions end the paper in Section VII.

Il. MATHEMATICAL PRELIMINARIES

A. Autoregressive Process Prediction

An Autoregressive (AR) process of order m is a stationary
Gaussian process which takes the form

z(n) =6+ 6x(n—1)+...+0px(n—m)+a(n) (1)

whereé = (6o, 01,...,6x) is a set of weights and is a “white
noise” Gaussian process with zero mean and variajce
Prediction for AR processes is straightforward. The “bgstd-
1ors (in least mean square error sense) of the futureesalu

a:a(n+ 1),z(n+2),...,z(n+ L), given the pask(n),z(n—1),...

i%re obtained by setting to zero the future values of the winise

a. Thus, the best predictai(n + j) of z(n + j) can be recursively

nEomputed forj =1,..., L, as follows

Z(n+j) = Oo+61Z(n+j—1)+62Z(n+j—2)+. . . +0,Z(n+j—m)
@
where we sefi(k) = z(k) for k < n.

Denotee(l) = T(n+1) — z(n +1) thel-ahead forecast erras(l)
captures howe(n+1) deviates from the predicted val@én+1). e(l)
is normally distributed with zero mean, and its variancerjg) =
o2 (X, 1?(k)) < o2, whereq(.) is the impulse response of the
Infinite Impulse Response filter with paramefiér The error variance
increases with and converges to the variance of the proce$sas
1 grows to infinity.

It is important to observe that the equations above are mgthi
but determining the conditional distribution of the futwalues of
the processe given knowledge of the past values. Note that this
conditional distribution has meé&®(n + ), which in general differs
from E[z], and variancer,, < o;. This inequality implies that past
knowledge reduces our uncertainty on the future. Nevertiselad
increases, the variance converges-fowhile the mean converges to
E[z]. Intuitively, knowledge of the past becomes less and lesfulis
as we consider more distant future values.

In the following, to stress that the predicted val@8&t" and the
error varianceff(,) are the mean and the variance of the (Gaussian)
conditional distribution of the future values, we will deacthem
by u(l) and ¢*(1), respectively. We will also denote a&(l) ~
N(u(l),0%(1)) a Gaussian random variable with megil) and
variances*(1).

T (the shorterT is the more accurate is the estimate), preliminary

results show that the proposed solution is capable of éfedgtlimit
the percentage of unsatisfied requests. This is achievémutibver-

ln other words,(0),%(1),... can be computed via (1) using the
“impulse” input: a(0) = 1 anda(k) = 0,k > 0.



B. Recursive Least Square Process Prediction

The white circles represent the access nodes, the grayrsigsihe

In this paper we use Recursive Least Square (RLS) basedssrocites that can host replicas, and the small black circlessiauhly

prediction. The idea behind the RLS-based prediction artsotm

used for sake of routing. Thin and thick links reflect the lomhah

1) regard/model a process as a (time varying parameter) AR pPandwidth of the links.

cess; 2) use this model to predict future behavior, and 3ptado
recursive form for the estimation of the model parametereuce
computational complexity.

We assume that’ content providers exploit the hosting service of
the CDN. Customers entering the CDN through an access nddg in
can therefore issue requests for on€aets of contents, and replicas

To model the user request we need to: 1) choose the model or@kfome of theC’ contents can be placed in each sitd/ip. Requests

m; (2) estimate the unknown parameterand the variancer? of
the white noise. The RLS approach proceeds recursively lesvio
Hereafter, for simplicity, we will assume the model orders given.

Let x(n) = (z(n—1),...,z(n —m + 1)) be the most recenh
observed values of the process (excluding the current va(ug),
andfd(n) = (81(n),-..,0n(n)) the current estimate &f. The RLS
estimation off is then recursively expressed as

A"P(n — 1)x(n)

k(n) = 14+ A~ xTP(n — 1)x(n) )
f(n) = 6(n—1)+k(n)(z(n)—06(n—1)x(n)) 4
P A'P(n—1) = A 'k(n)x" (n)P(n—1) (5)

where is a forgetting factorP(n) denotes the inverse of the input

correlation matrix, and(n) is a gain vector.

entering the CDN are measured in units of aggregate requdets
more thanV™ units of aggregate requests can be generated by an
access node (to model the limited access link bandwidthjuBsts
for a given content are served by a suitable replica. To madet
satisfaction, we assume that user requests cannot be skyed
replica at a distance above a given threshélg,,. We will denote
by R(i) C Vg the set of sites within distancé,.., of an access
nodei € V4. Users requests from access nadare redirected to
one of the replicas inR(i). This can be accomplished by several
meansi.e., anycast. We assume that each replica can serve &p to
units of aggregate request for that content (replica sereapacity
limit). No more thanVi™ replicas can be hosted at a given site (site
resource limit).

We model the user requests at nade V4 for contentc € C as
a discrete time stochastic process.(n), n = 0,1,.... We do not

Given 6(n), the estimation of the future values of the proces@ake any particular assumption on these processes. Userstacare

z(n+1),z(n+ 2),..., is carried out as in (2) witld replaced by
0(n), i.e.,

2(n +7) fo(n) +61(n)2(n +j 1) + (6)

Oo(n)Zn+j—2)+ ...+ 0m(n)Z(n+j—m)

where we seft(k) = z(k) for k <n.
Forl =1,2,..., the estimate the varianéﬁ(,)(n) of the error is

Gey(n) =Y ¥*(ksn)Ga(n)

k=0
where)(-; n) is the impulse response of the filté¢n), and

@)

l

n

1 2.
o1 2 ¢ 0

j=m+1

Fa(n) =

is the current estimate of the white noise process variance.

As before, we observe that the predicted values and the aaror
ances characterize the conditional distribution of therivalues of
the process. We remark that these conditional distribatmomverge
to the actual conditional distribution only in the case ofuGsian
processes. In all other case these are conditional distibare only
approximations.

I1l. PROBLEM STATEMENT
We model the Internet network topology as a weighted untiicec

graphG = {V, E}. The vertex seV is the set of network nodes, ;y4ed whiled.
while each edge in the séf represents a physical network link and,¢an use the (/ariableg- _

is labeled with some kind of additive metric, e.g. the numtfenops
between the endpoints. We identify two subsEis and Vr of the

redirected to available replicas. We denote day,. the fraction of
requests for content, originating from node and redirected to node
j.- Clearly, 3= peiy ije = 1.

For a sitej € Vg, the aggregate demand of conteris z; .(n) =
Pies(j) Qidetic(n), whereS(j) = {i € Va|j € R(i)} is the set
of access nodes which can be served by replicas injsi@enote
by r;.(n) the number of content replicas at nodej at time n.
The requests can be fully served df .(n) < Krj.(n), ie., if
the aggregate demand does not exceed the replica capacityato
content; otherwise, users that were redirected to thatceegluffer
some level of service degradation.

We describe a given configuration of requests and replicas by
means of a state vecter = (z,7) with z = (Z;,c)icv,,cecc and
r = (Tj,c)jevg,cec in Which the variable; . represents the number
of requests for content € C originated at nodé € V4 , andr;,.
is the number of replicas of conteate C placed at sitgj € Vg.

We assume that replica placement and redirection decisioms
taken at regular intervals of tim&. At each interval, a decision is
made on which replicas to place (and where to place) and/a@hwh
replica to remove (and from where to remove it). We can desoth
a decision by a vectod = (dj,c+,d;j,c—)jevg,cec € D, Where

D {dldj,ca €N,z =+/—,djctdj,e— =0

djer —dje— +1jc 20,

0< Zdj,c+ —dje— +7jc VR, j EVr,c€C}

ceC

The variabled; .+ denotes how many replicas of contentare
— how many removed. For convenience, we will
dj,c+ —dj,.— which denote the relative
changes in the number of replicas. Replicas can be added sipeto
saturation or removed up to site depletion.

set of network noded . V4 is the set of CDN access nodes where At the same time also a decision is taken on how to redirect

the requests generated by the users enter the core CDN Refi#pr

is the set of nodes in the core network where one or more cONM@A 51, ¢ A wherea — (

replica servers can be placed (called sites in the folloyiRgyure 1

shows an example with 40 nodes hierarchical transit stub network , _

topology obtained by running thgt - i t mtopology generator [11].

requests in the next interval. We can denote such a decisioa b
Qij,e)ieVa . jeR(),cec and

{al >

JER(i),ceC

aije=1,1 € Va,aij. > 0,4 € Va,j € R(i),c € C}



Redirection is accomplished by splitting users’ requestgach
access node, for each content, according to the vectthat is, for
i € Va, j € Vrandc € C, of; is the fraction of requests from node
¢ for contentc that are redirected to node

We associate a cost to each state and decision. We assariat

each state a cost - paid per unit of time - which is the sum ofsa cd

derived from the users perceived quality (users to replistadce,
number of unsatisfied requests) and of the CDN infrastrectasts
for hosting and maintaining replicas.

We measure users perceived quality by the sum over Q

f'
users requests of the distance between the access node wh . > .
gPhase yields an estimate of the future requests dynamicsedeah

the request is originated and the replica serving it, i.ey,
EieVA,]‘EVR,cec aij,c%icdi; Where d;; is the distance between
node : and j. A replica maintenance cost is used to model th

costs of hosting replicas and keeping them up to date. We use

simple proportional cost mod€lysaint EjEVR,ceC rj,c+djc, Where
Chraint 1S @ Suitable constant.

Two other costsC* and C~ are paid by the CDN provider
when dynamically adjusting the number of replicated sexvand are
associated to the decision to add or remove a replica regplgct

The overall cost for each each state and decision is thus

>

1€VA,jEVR,cEC

g(;v,r, d7 a) = aij,cévi,cdij +

CMaint Z (rjc +dje) +
jEVR,ceEC
S (Ctdjer —Cdje-)  (8)
JEVR,cEC

The minimization of the long run average costs described/@bo

enables a decision making criterion that can be used to fateu
dynamic replica placement strategies. Given a state, afgostion
associated to it and the costs of replicating and deletimjcaes,
the goal is to identify a strategy which dynamically all@satand
deallocates replicas in response to users demand vagasiorthat
the overall cost is minimized while meeting the constraimsthe
replica service capacity and site resources.

IV. REPLICAPLACEMENT ALGORITHM

If we model the user requests to obey to a Markov process, W

can formulate the optimal strategy as Markov Decision Pssce
This approach, though, poses serious problems in practicee s
determining the optimal strategy is not feasible in practidere we
consider the simpler myopic strategy which consists in mining,
step by step, the current cost.

We formulate the replica placement algorithm as an optitiina
problem. At each decision interval, we take the actibne D
and adopt the redirection strategy which solves the following
optimization problem:

Minimize g(z,r,d, @)

subject to ©)
Pl < ¢ (10)
d € D
a € A

whereP{ is (an estimate) of the probability of not being able to

satisfy all requests in the future interval. Herés a small constant,
e.g., 0.01, which determines the desired level of statisjoarantee

to provide. We will derive an expression for the bound in tlextn
section.

A. User Request Prediction

Our optimization revolves around the constra®f < e. The
do | is to keep the probability of not satisfying requestfowea
iven threshold during the next interval. To this end, wedpte
the user content request dynamics. At each decision pfiit
j = 0,1,..., for each access node€ V4 and contentc € C,
the algorithm predicts the future requests dynamics basegast
tory ;. (jT), x4, (T —1), . ... Prediction is carried out by means
ge RLS-based algorithm presented in Section II-B. Thegljation

processz;., this amounts to a set of Gaussian random variables
gﬁi,c(l))lzl,...,Ty with i’i,c(l) ~ N(/Li,c(l),()'iz’c(l)), l= 1, e ,T.
eIlDenote by#;;..(l) the predictedi-step ahead user requests for
content ¢ originated at node; and redirected to nodg. Then,
Eij,e(l) ~ N(aijepie (), .03, (1))-
Finally, denote byZ;c(l) = > ;cs¢;) %isc(l), the aggregate
predicted I-step ahead demand for conteatat node j. Then,
Eje(l) ~ N(pje(1),07 (1), wherepe i (1) = 3;cv, ijepti,e(l)
and 0-]2,0([) = EiEVA a?j,co-?j,c(l)'
Requests can be fully served if and only if

ij,c(l) < K(’I”j,c +dj,c) ,JEVR,ceCil=1,...,T (11)

i.e., if in the following interval of lengthT, for all contents the
aggregate demands do not exceed the site replica capatigynise,
users requests suffer some level of service degradation.

Let A;.(I) be the event that that (11) holds. Then

T — [ Tie + i) K — pjc(l)
P[AJaC(l)] =" ( Uj,c(l) )

where ¥ (-) is the ccdf of the Normal standard distribution.

We can expres®; in terms of the probabilities above by using
the union bound

(12)

P[Ajc(D)]-

(13)
For sake of simplicity, in the following we will approximatée
gm above with its dominant term. In other words, we will use t
following approximation

Pl = PlUjevg,cec,i=1,... 7 Aj(1)] <

>

JjEVR,ceC,i=1,...,T

f< T ~ T
P JjE€VR cGC’lel T Pl jGVR’Creng’%(:I""’T PlAi(D)
(14)
We will thus replace (10)Pf < ¢, by
PA,.()]<e¢ jEVm ceCi=1,...,T. (15)

which, along with (12), becomes

Mj,c(l) +Z€0'j,c(l) < K(Tj,c-i-dj,c) jeVr, ke (C,1l=1,...,T
(16)

wherez. is the e-percentile of the standard normal distribution.

We can now express our replica placement optimization probl

REP for short, as:

PrROBLEM REP

Minimize 17
subject to

g(x7 r7 d7 a)



ze [ D a 02, () < K(rjetdje) — Y ijehie
i€s(j) i€Va
jEVR, ceC,l=1,...,T (18)
djc+1je > 0 jeEVR, cel
C
0< > djctrie < VEY jeVa
c=1
Z aije = 1 1€Vy
JjER(i),ceC
ajje > 0 i€Vy, jeVg, cel
dj,c_;,_,dj,c_ € N jeVg,cel

V. A MIP FORMULATION

The optimization problem (17) poses serious challengesusec
of the presence of integer variables and nonlinear consstaHere
we propose the following approach which consists in comsigea
(series of) mixed integer linear problem (MIP) obtained ibgarizing
the non-linear constraints (18) as follows.

First of all, we eliminate the square root—which is not dife-
tiable in zero—by taking the square of both sides of

(18). This yields

2
22 Y a0l () < | K(rjetdie) = Y aijenie(l) |(29)
i€S(j) i€V,
0 < K(rje+dje)— D ujepic(l) (20)

i€V,

forj € Vg, c€ C, 1l = 1,...,T, with the second inequality
expressing the non-negativity of the right hand side of .(189) is
a concave quadratic constraint which transforms the prolie a
quadratic constrained problem with concave constraintsvfach no
general algorithm is known.

We now linearize (19). For the RHS, 11 ..:((d, @)) = (K (rj,c+
djc) = 2ics) aijetie(1))?. The linear term of the Taylor expan-
sion of fj,,.(d, ) around a poin{d’',a’) € D x A is

Ljci((d,a); (d,0)) =

21
2'Yj,c,l (K(Tj,c + dj,c) - ZiES(j) aij,cﬂi,c(l) - '7]2,0,1) ( )
Where’Yj,CJ = (K(r]',c + d;',c) - Eies(j) Oéj,clh',c(l))-
For the LHS, we simply replacex?j,c by «ij., obtaining

22 ZieR(j) aij,co'z?,c(l)-

Given (d',a') € D x A, we call the Replica Placement Mixed

Integer Programming formulatiorREP — MIP((d’, o’)) for short)
the following optimization problem obtained frorREP by re-
placing the LHS and RHS of (19) b¥;..((d,a); (d',o')) and
Sies(j) Qiicoic(l), respectively:

PROBLEM REP — MIP((d',a’)
Minimize (22)
subject to

g(xi T? d7 a)

2ies() (27j,c,l#¢,c(l) + Z?J?,c(l)) Qij,c = 275, Kdjc

< 29,eKTie — Ve
jE€EVRr, celCl=1,...,C
djc+rje > 0, jEVR, c€C
C
0< Y djetrje < VI jeVg
c=1
Z Qij.c = 1 1€Vy
JER(3),ceC
ajje > 0 1€Va,jeVg,cel
dj,c+vdj,cf € N jeVg,ceC

It is easy to realize thaREP — MIP(d’, ') has been obtained
by upper bounding and lower bounding by means of suitabkalin
functions the left and right hand side of (19), respectivdljus ,
REP — MIP(d’,a’) has a smaller feasible region th&EP; hence,
if REP — MIP(d’, &) is feasible its optimal solution is also a solution
- not necessarily an optimal one - fREP.

We formalize this in the following lemma which ensures that
the optimal solution ofREP — MIP(d’, a’) is also a solution - not
necessarily the optimal one - &EP.

Lenma 1: Let (d,a) be a feasible solution of
REP — MIP((d',a')). Then,(d, o) is also a solution oREP.
Proof: We have only to show that (19), i.e,

zfzies(j)a?j’cof,c(l) < fiei(d,a), holds for (d,a). To

this end, observe that: 1) < ai. < 1 implies that
262 EieVA a?j,caic(l) < Zez EieVA aij,co-z?,c(l) ; 2) fj,c,l(da a)
is a convex function of(d,«) (it is a composition of a convex
increasing function - the square - with a linear (affine) tiorw).
Convexity implies thatf;.:((d,a)) > Ljc.((d,a); (d,a")),
(d',a’') € D x A. Thus,

z? Z a?j,co'?,c(l) < 252 Z aij,co'z?,c(l) (24)
i€S(5) i€S(j)

S LJ',CJ((d7 a) ) (dla al)) (25)

< fieald, @) (26)

|

A question that arises is how close to optimal the qualityhaf t
solution of REP — MIP is. It is easy to realize that it is the choice
of the linearization point(d’, o’) which mostly affects the quality
of the bounds and hence of the solution. Intuitively, thesefothe
optimizer (d, ) of REP — MIP(d’,a’) (d', o) the better, because
Lj..((d,a); (d,a")) gets close tof; ;:(d.a) in the neighbor of
(d', o). Hence, better results are expected when the linearization
point (d’',a') is close to the optimizer itself. This suggests the
following iterative approach to solve for the replica plamnt,
whereby we consider a sequenceREP — MIP where the optimizer
of the current problem is used as the linearization pointhefnext.

1) Initialization: Choose an initial value fofd, a), (d©, a(?).

2) REP—MIP solution. Given (d“~ Y, a¢~1), solve the problem
REP — MIP(d“~Va*~1). Denote by(d'¥), a?) the optimal
solution.

3) lteration: Iterate step 2 until
lg(a,r,d,a) — g(z,r,d“"D,a""D)| < §

whered is a small constant.



Fig. 1. NETWORKTOPOLOGY USED IN THEEXAMPLE.

The following result ensures that each new iteration yieldetter
solution and that the iterations terminate.

Theorem 1: Consider a paitd‘®?, a?) € D x .4 and assume that
REP — MIP(d®, a(®) has a feasible solution. The following holds:

(i) the problemsREP — MIP(d¥ a®), ¢ = 1,2,..., where
(d©, o) is the maximizer oBREP—MIP(d“~Y o*=1) have
a feasible solution;

(i) The sequencg(z,r,d,a'?) is nonincreasing and converges

to a valueg™;

Proof:
(d®,a®) satisfies the constraints ®REP — MIP(d“), a(®). It
suffices to show that (24) holds, i.e., tI“thieVA a%,)ca?,c(l) <
Ljc1((d®,a9); (d®,a®)). Since(d?,a?) is a feasible solu-
tion of REP — MIP(d“~Y, a*=Y) and f; .; is convex we have

223 aki 0l () < Ljea((d®,a®)s (@b, ol ))(27)
1€V,
< fea(d®,a®) (28)
= Lj,c,l((d([),a(l));(d(l),a(l_l))). (29)

Hence (24) holds. (ii) We have just shown tifdt”, a*) is a so-
lution - not necessarily the optimal one - REP — MIP(d®), o(9).
The optimizer(d#+V, a*+1) of REP — MIP(d®¥), a(9) then sat-

TABLE |
SIMULATIONS RESULTS.

T % of time with % not served| av. utilization
not served request$
20 3.64 +3.27 0.55 +£1.15 0.89
50 49+4.7 1.124+1.84 0.88
100 7.81+6.27 1.76 £ 2.81 0.88

and removing replicas). The value of paramefewas varied in the
different set of experiments. Finally, for the RLS prediatiwe use
m = 3 and a forgetting factoA = 0.99.

We summarize the results, in table |, where we report: (1) the
fraction of time when there were unsatisfied requests; @)rdrction
of requests that could not be served, i.e.,

fz:l EjeVR,cec(xj,C(n) - rj,c(n))+

217;1 EjeVR,CGC zj.c(n)

where(z)™ = max{z, 0}; and (3), the average utilization, computed

Ei:l EjGVR,CEC min{xj,c(n), T]',C(n))

Y Y ievneco (Tie(n) ;

The proofs are by induction. (i) We show thatsimulation results include 99% confidence interval comgputeer

100 independent simulations. Each simulation was 10000 time
unit long (after having removed the initial transient pdjio

Not surprisingly, the algorithms perform better for smadecision
intervals. The causes of the degradation for the largemiate
are twofold. First of all, the performance of the RLS estionat
degrades as the intervals length grows. Second and most o$alof
the approximatiorP} ~ max;cvy cec,i=1,....7 P[A;,(I)] becomes
more and more inaccurate &s grows. As a consequence we do
observe that the fraction of time in which requests are ntsfeed
exceedse, especially forT = 100. We note that, nonetheless, the
fraction of requests that cannot be served, which well captthe
user perceived quality of service, attains very small \&luell below
the 5% value set fore for all values ofT. At the same time, the
resource utilization is quite high and close%% for all values of

isfies g(z, 7, d(“l),a““)) < g(d(‘),a(‘)). Hence, the sequence?- In this example, the algorithm achieves good quality ofiser
g(z,7,dP a®), £ =1,2,... is non-increasing. Convergence to avhile attaining at the same time very high utilization, shayvits
valueg* is then ensured by the fact tHREP—MIP has no unbounded capability of satisfying the users requests while limitthg number
solution. m of replicas, thus the infrastructure costs.

We observe that the above results, while providing an algorito To illustrate the dynamic behavior of the replica placenstritegy
improve the solution, do not say anything on how close thiistem is  for one simulation andl’ = 20 we plot in Figure 2, separately
to the optimizer oREP. Our numerical results, nevertheless, sugge#er each of the two contents, the number of requests reeuetd
that our solution might be close to the actual optimizer irstramses, (dotted line) and the number of requests that can be servedl e

yet we not have a proof for that. This will be subject of furthehosted replicas (continuous line) at each of the sevenaitésnction
research. of time (z-axis). The allocation behavior is easily understood by

observing that in order to maximize statistical multiphexigain, the
VI. NUMERICAL RESULTS best strategy lies in aggregating as much requests as fgodsilthis
In this section, we provide numerical examples to illugtrttie scenario, where each replica can serve all nodes, the thigokieeps,
dynamic replica placement algorithm behavior. Due to tineitéd for each content, two sites filled with replicas of that contghe first
space here we concentrate on the simple topology in Figuré&hl wand the third sites with content 1 replicas, the second aaddtirth
24 access nodes and 7 service nodes (sites). The thin limegede with content 2 replicas); additional replicas are allodatdere space
slower links (with a weight of 2), the thick ones faster linfith is available in the remaining sites. We observe that regllaaement
a weight of 1). We assume users issue requests for two typeschifsely tracks user requests dynamics. This has been eosanall
content. The aggregate requests at site V4 for contentc are simulations and accounts for the high level of utilizatidrserved.
modeled as independent Markovian birth-death processhiitfnand
death rate equal to 0.005. We g&t= 1, V™ = 10, VI = 30,
dmax = oc. For the replica placement, we get 0.05, Crnqaint = 10, In this paper we have tackled with the problem of jointly ap#-
C*T = C~ =0 (thus in this example we ignore the cost of addingng the problems of dynamic replica placement and usersesigu

VIlI. CONCLUSIONS
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Fig. 2.  SMULATION : CONTENT1 (LEFT PLOTS) AND CONTENT2 (RIGHT PLOTS). NUMBER OF REQUESTSREDIRECTED TO(DOTTED LINE) AND NUMBER
OF REQUESTS SERVED BY THE HOSTEIREPLICAS (CONTINUOUS LINE) AT EACH OF THE SEVENCDN SITES AS FUNCTION OF TIME

redirection to the best replica. Differently from previoasproaches,
our solution does not rely on specific architectures and wauso
for all the major relevant constraints of the problem. Aim afr
formulation is to limit the CDN infrastructure costs (e.the number
of replicas, the cost for their installation, maintenanoe eemoval)
while guaranteeing that the percentage of users requesth wio

not

receive a satisfactory access service is bounded by # s

value. Multiple contents and realistic constraints on tiENGservers
resources (storage and maximum load) are also accounte@dor

results are twofold. First, we have modeled the problem by- no[11]

linear integer programming, and then solved it by a seriesizéd
integer linear programming problems obtained by lineagzhe non-
linear constraints of the original problem. Secondly, lssare shown
which assess the effectiveness of the proposed solutioimitinig
the percentage of unsatisfied users requests while avoidioger-
replicate contents in the CDN networks. Such results shaw ah
the replica hosted by CDN servers are highly utilized (onrage

at around90% of their maximum load), thus confirming the scheme

capability of introducing new replicas only when needed.
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