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Summary

This paper introduces a general decision model, in
the shape of a Markov Decision Process, as an
instrument to analytically compare the behavior of
call admission control policies. This approach
allows the study of a wide class of policies,
including well-known pure stationary as well as
randomized policies, in a way that explicitly
incorporates the dependency between the hand-off
rate and the system state, assuming that the hand-off
rate arriving to a cell is proportional to the
occupancy level of the adjacent cells. In particular,
some well-known non-preemptive prioritization
schemes are analyzed, including the Cutoff Priority
Policy (CPP), which consists of reserving a number
of channels for the high priority requests stream.
Using our analytical approach, we prove the
optimality of CPP within the analyzed class.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. Introduction

The current trend in cellular networks is exhib-
ited in a reduced cell size to accommodate more
mobile users in a given geographical area. The reduc-
tion leads to increased spectrum-utilization efficiency,
but also results in more frequent hand-offs and
makes guaranteed connection level QoS more difficult
to achieve. Since it is impractical to completely

eliminate hand-off drops, the next best alternative is
a probabilistic guarantee on quality.

The rate of hand-off calls in a given cell depends
on the number of calls in progress in the adjacent
cells. Assuming that the subscriber mobility remains
unchanged, an increase in the number of calls in the
adjacent cells is naturally likely to increase the rate at
which calls are handed off to the given cell, or in other
words the hand-off rate is a function of the system
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state. On the other hand, the outgoing hand-off rate
from a cell varies as a linear function of the number
of calls in progress in the cell.

Several call admission policies have already been
proposed and analytical formulas for the most impor-
tant QoS parameters have been given. A comparison
between the behavior of a few different schemes has
occasionally been introduced by means of simulative
results [1, 2], while analytical comparisons are made
only in very few works [3] and with a very narrow
class of call admission schemes.

In this paper we want to introduce a general deci-
sion model as an instrument to analytically compare
the behavior of such schemes.

One of the novelties of this model is that it explic-
itly incorporates the dependency between the hand-off
rate and the system state (in terms of number of calls
in progress), and therefore can be expected to be more
accurate than models based on average behavior.

Further, this model allows the analysis of call
admission policies that enable queueing of hand-off
requests when there is no available channel.

By means of this decision model, we search for an
access control policy that gives high priority service
to the hand-off requests without running the risk of
compromising the whole traffic because of an insuffi-
cient consideration of initial attempts of connections.

Most of the recently proposed call admission con-
trol schemes can be studied through the decision
model introduced in this paper.

An optimization analysis, using an objective func-
tion in the form of a linear combination of the loss
probabilities of the two streams of arriving requests,
is carried out.

The main contribution of this paper is the analy-
tical proof of the optimality of a cutoff priority pol-
icy (CPP) [1, 3—7] when the objective function gives
higher priority to the hand-off stream when queueing
of requests is not allowed.

Under CPP, priority to hand-off calls is ensured by
reserving a certain number of channels, also known as
guard channels. According to CPP, an initial attempt
request is accepted only if the total number of calls
in progress, regardless of their type, is below a cutoff
value and a free channel is available.

This result has an immediate practical application
because the optimal cutoff value can be easily com-
puted once known few statistic parameters defining
the traffic of requests. These parameters are used to
formulate the analytical models that can be solved by
means of very commonly used methods of operations
research. The originality of the results comes from
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the observation that in literature, other comparisons
between access policies are either based on simula-
tions [1, 2] or, when analytical, they are limited to
few policies [3].

The paper is organized as follows. In Section 2 the
continuous-time Markov decision model is described.
The main procedure for its uniformization and dis-
cretization is introduced and the optimality of CPP is
proved when queueing of requests is not allowed. In
Section 3 the formulas of the most important qual-
ity of service parameters are illustrated and some
numerical results that confirm the analytical results
that were achieved in the previous sections are intro-
duced. Section 4 concludes the paper with some final
remarks.

2. Analytical Model

Since, in the most common admission policies con-
sidered in literature works, the decision of whether to
accept or refuse a certain call is based on the number
of ongoing calls in the given cell, it seems natural
that the state of our model represents this measure
of the occupancy level. Our traffic model consists of
a Markov decision process in which a single cell is
modeled as a service center with C servers corre-
sponding to the available frequency channels. Arriv-
ing users, representing requests of connection to the
base station, belong to two priority classes: high pri-
ority for hand-off calls and low priority for initial
access requests.

Knowing the number of calls in the neighbor cells
gives us some idea of how many calls we can expect
will be handed off in the next unit of time. On
the other hand, keeping track of this information
can significantly increase the size of the state space.
If we assume some uniformity in the system, for
what mainly concerns the geographic environment
of the cells and the mobility of the subscribers,
then the number of calls in the current cell gives a
good indication of the number of calls in neighbor
cells.

As often happens in literature works, arrivals are
assumed to be generated according to Poisson pro-
cesses.

The arrival rate of new requests of connection, that
will be served with low priority, will be A; while we
can assume a hand-off rate proportional to the number
i of busy channels, i.e., iAy that will be treated with
high priority, where Ay is a measure proportional to
the hand-off rate per ongoing call from an adjacent
cell to the considered cell.

Wirel. Commun. Mob. Comput. 2001; 1:257-268
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Blocked initial requests are lost, while a blocked
hand-off call can wait in the hand-off queue for
a channel of the new cell by continuing to use a
channel of the previous one. The queueing scheme is
briefly described as follows. No initial access request
is granted a channel before the hand-off requests
in the queue are served. When an MS reaches the
overlapping region between two adjacent cells, also
called hand-off region (HR), and no free channels
are available in the destination cell, the call remains
queued until either an available channel in the new
cell is found, or the MS abandons the HR before
a channel becomes available, thus causing the forced
termination of the hand-off call and its departure from
the queue. In the case of high demand for hand-
off, hand-off calls will be denied queueing due to
the limited size of the hand-off queue. The queueing
device has a finite number of places M y.

In this model a call may exit from the control of
the base station in different ways:

1. The conversation is completed (it may happen

even with a queued hand-off request, which thus

abandons the queue).

The MS goes out of cell.

3. A waiting hand-off call is terminated because it is
not served before passing the HR, thus it abandons
the queue.

BS: Initial Access DENIED

MS: CALL RELEASE

New BS: Handoff REFUSED

MS: CALL RELEASE

Call Initiated

Handoff Initiated

259

The distribution of these events is supposed to be
exponential with parameters @, n, and 3 respec-
tively. Figure 1 shows our model configuration.

The switches represent the two actions (accept or
refuse) that can be chosen by the access control policy
when a call arrives. A refused call is definitively lost,
regardless of its priority class.

The evolution of a call as a consequence of the
control policy and possible movements of the MS is
represented by the state model of Figure 2.

The double rounded states are the decision steps
during the lifetime of a call.

A call generated within a cell can be accepted or
not, according to a certain control policy. If accepted,
it can be completed before the MS goes out of the

ACCEPT
handoff requests

T

AL A

ACCEPT initial REFUSE
access requests handoff requests
M3
AN
\"/ }MH waiting places
REFUSE initial

access requests |

}Service center( C servers)

Fig. 1. System configuration.

MS: CALL SETUP

BS: Initial Access ACCEPTED

MS enters the HR with a new cell

New BS: Handoff ACCEPTED
& busy servers < C

New BS: Handoff ACCEPTED
' & busy servers < C

Call Queued

Channel assigned by the new BS

MS exits from the HR (channel not
assigned by the new BS)

Fig. 2. Call state model.
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cell, otherwise the hand-off procedure is initiated.
The base station of the destination cell may decide
to refuse the hand-off request, to provide it with a
new channel, if available, or to put it into the hand-
off queue while waiting for a new available channel.
While in the hand-off queue, the call continues to
use a channel of the old cell. During the time the call
spends in the queue, the user may exit from the HR
before obtaining a new channel, terminating the hand-
off procedure unsuccessfully, or may also decide to
conclude the call.

2.1. A General Decision Model

The memoryless property of all probability distribu-
tions in a Markov process makes it impossible to rep-
resent policies for which the behavior of the system
strictly depends on its past history, unless we use sev-
eral different states to represent the same occupancy
level. Each state s, belonging to the finite state space
E of the Markov decision process, can be defined
through a couple of indexes (i, ), where i represents
the number of busy servers, while ¢ is a state tag,
with ¢t € {1,2, ..., n} introduced to allow different
decisions in correspondence with the same occupancy
level i. Let us consider the following set of possible
actions that can be undertaken at each state of the
process:

a: accept requests belonging to both streams.
a: deny access to initial attempts.

as: deny access to hand-off calls.

ay: deny access to both streams of requests.

We define the function n(s) as follows. Given
s e E, n(s) is the occupancy level characterizing
the state s. Thus n(s) is the sum of the number
of busy channels and the number of busy places
in the queueing device. If s = (i, 7), then n(s) = 1.
If C <n(s) <C+ My, the set of feasible actions
reduces to a,, a4 because we have no queueing device
for initial access requests and if n(s) = C + My the
only feasible action is ay.

Consider now a partition of the set E into classes
E; with the following properties: E = U[C=0E i» Where
{E;=se€E, n(s)=1i}.

From any state s € E;, a new request acceptance
leads the system to any state q of the class E;;q,
denoted by Succ(s). The choice of the next state
among the members of this class follows a certain
probability distribution 7}, where q € Succ(s), with

sq’
> ar =1
qeSucc(s) *“sq .

Copyright © 2001 John Wiley & Sons, Ltd.

The transition rate from s to any state q of the class

Succ(s) is A(s, a)n;;, where

nS)iy + i1, ifa=a

_ ) n(s)iy ifa=a
Ms, a) = AL if a = a3 Sy
0 ifa=as

On the other hand, from any state s € E;, the
termination of a service, either due to call completion
or to the MS movements outside the cell, brings the
system to any state k of the class E;_;, denoted
by Prec(s) with rate n(s)(1 + p2)my, if n(s) < C
and {n(s)u1 + Cuz + [n(s) — Cluslmy if n(s) > C,
with ZkePrec(s) ﬂ;k =1

The transition diagram of the process is represented
in Figure 3 which illustrates all the possible outgoing
transitions from one state.

The transition probabilities matrix is decision de-
pendent. It can be written as follows:

. A(s, a)m
Pk = 5 )+ n ()G + )
if k € Succ(s) and 0 < n(s) < C
. A(s, )l
Pk = 535, @)+ n(s)p1 + Cpaa + [n(s) — Clita
if k € Succ(s) and n(s) > C
s = n(s)(U1 + o)y
KT A(s, @) + n(s)(r + p2)
if k € Prec(s) and 0 < n(s) < C
= n(S)uy + Cus + [n(s) — Cluzmy,
T A(s. @) + n(s)ur + Cpa + [n(s) — Clus
if K € Prec(s) and n(s) > C
Pa =0 otherwise

2)
The parameters rr;'l, Tq and the stationary state-
decision associations can be adequately set to turn
our general decision model into the models of CPP

and of most of the well-known policies.

O
O

Fig. 3. Possible transitions from state (i, K).
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CPP can be obtained by selecting 71;; and g,
with s = (i, js) and k = (iy, jr), in the following
way: l = mg = Lif js = ji = fixed tag, for any
fixed_tag else JT;Z = 7, = 0, and taking the decision
a; for all the state s with i; lower than the cutoff value
T, the decision a, if T < i; < C and the decision a4
if iy, = C.

The related model is shown in Figure 4. Access
control policies of a randomized kind can also be
obtained by allowing a non-deterministic decision in
one or more states. In Reference [7] we show how
common policies proposed by other authors [1-3, 8]
can be viewed as particular instances of the general

decision model we are analyzing.

2.2. Optimization within the General Class

The optimization procedure can be summed up as
follows.

e The continuous-time process introduced in the pre-
vious section is uniformized and discretized in
order to apply discrete-time optimization methods.
The objective function is introduced with direct
application to this discrete-time model.

Then the analysis of the discretized model follows.

e We analytically prove that there exists an optimal
deterministic stationary policy, i.e. not randomized,
for which the decision chosen in correspondence to
each state is always the same, independently of the
particular instant of time.

e Moreover, we prove the existence of an optimal
policy for which the optimal decision does not
depend on the state tag, but on its occupancy level
only.

e The optimality of CPP is proved through the anal-
ysis of the structural properties of the optimal cost
function.

From now on, we will refer to X,, as to the state of
the process at the moment of the nth transition, and
with u, (X,) to the particular decision chosen in the
set {ai, az, az, as}.

The Markov chain {X(#)} related to the process
described above is continuous-time. The dwell time of
the process in each state is exponentially distributed
with density ¢(s, a)e~?®¥" The parameter ¢(s, a) is
the total outgoing rate from a state in which the deci-
sion a has been chosen, and depends both on the
decision a and on the state s. The set of rates that
characterizes the process is bounded by the maxi-
mum outgoing rate which is less than C(u; + u;) +

Copyright © 2001 John Wiley & Sons, Ltd.

My (1 + u3) + Chy + An. Hence, we can conclude
that the process is uniformizable.

Adding dummy transitions from states to them-
selves, a uniform Poisson process can be constructed
which governs the epochs at which transitions take
place. The uniformization technique transforms the
original continuous-time Markov chain with not iden-
tical transition times into an equivalent continuous-
time Markov process in which the transition epochs
are generated by a Poisson process at uniform rate.
The transitions from state to state are described by
a (discrete time) Markov chain that allows for ficti-
tious transitions from a state to itself. The uniformized
Markov process {)A( (1)} is probabilistically identical to
the not uniform {X(#)} [9-11].

The theory of discrete Markov processes can be
used to analyze the discrete-time embedded Markov
chain of the uniformized model. Let us assume uni-
form rate A = C(u1 + p2) + My (1 + p3) + Chy
+ An.

The transition probabilities of the uniformized pro-
cess are:

Pk =
A(s, @)
A
if kK € Succ(s)
n(s)(p1 + m2)mry
A
if k € Prec(s) and 0 < n(s) < C
{n(®)p1 + Cuaz + [n(s) — Clustmry,
A
if K € Prec(s) and n(s) > C
{A — [n(s)(u1 + p2) + A(s, @)}
A
if k=n(s) and n(s) < C
{A —[n)ur + Cuz + (n(s) — C)us + A(s, a)l}
A
if k=n(s) and n(s) > C

0 if otherwise 3)
In order to give higher priority to the hand-off stream,
rather than to the initial access stream, we introduce a
cost function which assigns different penalties to the
loss of the two kinds of requests. The system is forced
to pay a high penalty H if a hand-off call is refused
or if it is firstly queued but no channel is assigned
before the MS exits from the HR. If service is denied
to an initial attempt of access, the system pays a lower

Wirel. Commun. Mob. Comput. 2001; 1:257-268
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AL +Ay

A
M+l (T+1)(Wy+p)

T, Chyg Chyg

Cy )+ HUL3)

Fig. 4. State diagram of CPP.

penalty L < H. The penalty is not paid all the times
the system enters a state in which the chosen decision
is to refuse a request. In the uniformized process, all
the penalties must be weighted with the probabilities
that the event which causes a penalty actually occurs.
We can define the cost function in the following way:

H max{0, [n(s) — Clus}

r 9 = P b 4
(s, a) " +7(s,a) @)
0 ifa=a
L
L ifa=a
A
7'(s,a) = { Hxy min{n(s), C} ,
if a =aj
A
LAp + H)g min{n(s), C} .
ifa=ay
A
(5)

where the decisions a; and as; are not feasible if
n(s) > C.

The objective is to determine an optimal policy for
admitting customers so as to minimize the expected
long run average cost. Using the previous notation
and denoting with N(T') the number of transitions
being completed at time 7', the long-run average cost
function can be written as

N(T)
E {Z r[Xn, un (X)X = i]}

. =0
lim n
T—o00 T

(6)

We refer to Reference [12] for the proof that the
optimization procedures can be applied directly to
the discrete-time Markov process described by the
embedded Markov chain of the uniformized one.
The optimal policy is the same for the initial, the
uniformized and the discretized process, while the
optimal values of the objective functions only differ
in a constant factor.

The most important results of the theory of dis-
crete-time Markov decision processes can be applied
to the discretized model. In particular, observing
the shape of the transition diagram of Figure 3, it
can be affirmed, without loss of generality, that the

Copyright © 2001 John Wiley & Sons, Ltd.

decision model can be restricted to include the only
processes with no transient states and with only one
communicating class, that is to the only unichain
processes. Refer to S as to the finite set of all feasible
couples of the kind (state, decision). The unichain
assumption, together with the finiteness of § implies
the existence of a unique stationary state probability
distribution which is independent of the initial state
of the process. The existence of a stationary optimal
policy allows us to conclude that an optimal solution
can be expressed through a vector D* whose generic
component Dj, represents the stationary probability
that, in correspondence to the state s, the system takes
the decision a. We can write

Dg, > 0 and

ZDsazl, Sse€E

a€Ay

where Ag is the set of all actions that can be taken in
state s. The expected value of the cost function can
now be expressed in the form

2= Y Dsapsi(s, a) (7

(s,a)eS

where pg denotes the stationary probability that the
system is in the state s, and the product Dy, pg
represents the joined probability for the system to
be in state s and contemporaneously to take the
decision a. Substituting the expression of 7 (s, a)
given by Equation (4) into Equation (7) the follow-
ing expression for the objective function can be
obtained.

A
z=HXH Z

(s,a)eS
A(a=az|a=aq)

p(s, a) min{n (s, C)}

AL
+ LK E p(S, (1)
s,a)€S
N(a=a;|a=aq)
3
H — Cl—p(s, 8
+ E [n(s) ]Ap(s a) ®)
s,a)eS
A(n(s)>C)
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Analyzing the topology of our transition diagram,
we can notice the total absence of transient states
that, together with the unichain assumption, gives a
particular shape to the set of constraints of the linear
programming problem related to our optimization
procedure.

Denoting xg, 2 Dq, ps, (s, a) € S, and recalling that

Xsa Xsa
Dy = — =
. Ps Zj eA, Xja
ming problem becomes:

, a € A, the linear program-

Maximize
E (S, a)Xsy
(s,a)eS

constrained to

Xsa >0 (s,a)e S
E
(s,a)eS
Y Xa= Y Pixa JEE ©)
acA; (s,a)eS

Proposition 1. The linear programming problem
[Equation (9)] has an optimal deterministic solution.

Proof. Thanks to the absence of transient states we
conclude that the optimal solution x° has the follow-
ing property: Y., X3 >0, Vs € E. Thence x° has
at least |E| strictly positive variables. Summing up
all their related equations deriving from the set of
positiveness constraints, we again find the normaliza-
tion equation. We conclude the redundancy of one
among the |E| + 1 remaining constraints. The opera-
tion research applied to linear programming problems
proves the existence of an optimal base solution con-
taining a number of positive variables at most equal
to the number of non-redundant constraints. Without
loss of generality we can suppose that x” has this
property. So we conclude that x° contains at most
|E| positive variables. Having already stated that the
number of positive variables is at least |E| and at
most |E|, and that ZaGAS xga >0, Vs € E, we con-
clude that for all s € E there will be exactly a decision
a for which x2, > 0. This leads to conclude a very
important result which is the existence of a pure,
not randomized, stationary optimal policy. This result
gives us the possibility to further restrict our consid-
eration to policies for which Dy, € {0, 1}.

The proof that CPP is optimal among all the poli-
cies described by the general model, when queueing

Copyright © 2001 John Wiley & Sons, Ltd.

of requests is not allowed, can be summed up as
follows:

e The existence of an optimal policy for which the
optimal decision does not depend on the state tag,
but on its occupancy level only, is proved by means
of the dynamic programming equation.

e The optimality of CPP is proved through the anal-
ysis of structural properties of the optimal cost
function.

A first step towards the optimization of the average
cost for the infinite horizon problem is the evaluation
of the N-step optimal total discounted cost V4§ (s).
The discrete-time discount factor o < 1, which cor-
responds to the continuous-time discount coefficient
n > 0, related to the not uniformized process, is
A (10)
o= —-
n+ A
The optimal discounted cost function can be cal-
culated with the following dynamic programming
equation [13, 14]

Vi(s) = min {?(s, a)+ Y apf, %_1(1)} (11)

zeE

%(s) is the minimum expected discounted cost that
can be paid in K periods if the system starts with
n(s) customers, and a discount factor of @. Naming
the arguments of the min function of Equation (11)
with Ay, Ay, A3 and A4 when in correspondence of
decisions aj, a;, a3 and a4 respectively and sub-
stituting the known expression of the cost function
[Equation (4)], of the discount factor [Equation (10)]
and of the transition probabilities [Equation (3)],
the following equation is obtained for the total
discounted cost. No queueing of request is now
considered.

If n(s) < C,

1 .
V() = mmm{Al,Az,As,Azx} 12)

where A;, Ay, A5 and A4 can be defined as follows

A= > )+ p)rg Vi ()

lePrec(s)
+ ) Ot nG)TEVE ()
jeSucc(s)
+(C —n(s)) (1 + p2 + Au)Vg_(s)
(13)

Wirel. Commun. Mob. Comput. 2001; 1:257-268
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Ay = AL+ Z nSaTEVe_i ()

jeSucc(s)
+ Y n® G+ g Vi, ()
1€Prec(s)
+{[C — n($)l(w1 + w2+ Ag) + AL}VE_((s)
(14)
As=n©raH + Y mhVi ()
jeSucc(s)
+ Z n(s)(pi + pa)mwg Vg (D
lePrec(s)
+{[C = n(®)l (w1 + p2) + Cru}Vi_(s)
(15)
Ay =n(S)AyH + M L
+ Z n(s)(pi + pa)mwg Vg (D
lePrec(s)
+{[C = n(®)I (w1 + p2) + Chy + AL}VE_((5)
(16)

Proposition 2. Vs and z, such that n(s) =n(z),
VE(s) =VEQR), VK € N.

Proof. By induction on the number of steps K (see
Reference [7] for details).

Proposition 2 proves that each time the system
has to choose one among the feasible decisions, the
choice does not depend on the particular state in
which the system is, but on its occupancy level only.

For this reason it can be defined the function W (-, -)
on the domain {0,1,...,C+ My} x N, with the
following property: W% (n(s), K) = V& (s) = V&(z).
Using the now stated property, the expression of
We(i, K) can be written as follows:

Ifi <C,
Wi, K)

= At [(C— i)t + p2 + AW, K — 1)
+i(pr + u)WeGi —1,K — 1)

+ (AL +irg )W(Q, K — 1)

+ A, min{L, Wi+ 1,K — 1) — W*(@i, K — 1)}

+ ity min{H, Wi+ 1,K — 1) — WG, K — 1)}]

a7
Equation (17) shows that the choice of whether to
accept or not a given request depends on the value of

Copyright © 2001 John Wiley & Sons, Ltd.

the increment of the cost function:
AW =W*G+1,K) — W*(i, K) (18)

Proposition 3. W(i, K) is not decreasing in i thus
0 < AWE@).

Proof. By induction on the number of steps K (see
Reference [7] for details).

Proposition 4. I[f My =0, W(i, K) is also concave
in the number of busy servers i.

Proof. By induction on the number of steps K (see
Reference [7] for details).

Since H and L are positive and W%, K) is
bounded above the geometric series

1 <&
= > o/ max{H, L} (19)
j=0

the sequence {W®(i, K)}¥_, increases monotonically
to a finite limiting value for each i and «. Hence,
the limit limg_, o, W(i, K) exists. We let W*(i) =
limg_, oo W¥(i, K). From Reference [12], it can be
verified that W%(i) is the minimum infinite horizon
discounted cost.

The structural properties of monotony and concav-
ity of W*(i, K) are inherited by W* (i) and imply the
following proposition.

Proposition 5. CPP is optimal under the total dis-
counted cost criterion, for the infinite horizon prob-
lem, when My = 0.

Proof. The optimal policy chooses the best action to
take in each state with the following rule:

e High priority customers are accepted only if
AW (@) =We(i+1)—W*i) < H.

e Low priority customers are accepted only if
AWe(@) = Wi+ 1) — W) < L.

Since W*(i) is monotone and concave, the term
AW*(i) is not decreasing, thence we can find integer
values i; and iy such that

ip = arg min{AW*(i) > L}
ig = arg min{AW*(i) > H}
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Therefore, the optimal policy regarding the deci-
sion to accept or refuse to serve requests of the initial
access stream is

e Initial access admitted for i < i,
e Initial access denied for i > i;, (that is the already
described CPP),

while since iy > iy the decision of refusing the high
priority calls is obviously discarded.

Theorems of equivalence [12] between a conti-
nuous-time Markov decision process and its dis-
cretization allows us to conclude that CPP based
on the parameter i; is optimal also for the initial
continuous-time problem with discount factor 7.

The result for the average cost criterion is obtained
by referring to the following Derman’s theorem [15].

THEOREM Derman If a policy P* is optimal among
the class of policies Tl for all discounted problems
with discount factor o close to 1, then P* is also
optimal among all policies in the class T1 under the
average reward criterion.

Thus, the following proposition can be formulated:

Proposition 6. CPP is optimal under the average
cost criterion, for the infinite horizon problem, when
M H — 0

The proof that, if My = 0, the optimal policy is
CPP, dramatically decreases the feasible region of the
optimization problem which is reduced to the only
search for the optimal cutoff value 7. This allows a
relevant reduction of the number of iterations for the
solution with the most common algorithms like the
simplex or the policy improvement.

3. QoS Parameters and Numerical Results

From the customer point of view, it may be inter-
esting to calculate some QoS parameters such as the
probability that a new call attempt is blocked or the
probability that a call, once accepted, is terminated
before completion. We evaluate these probabilities
and other QoS parameters for an arbitrary call in the
network, on the basis of the traffic model described in
Section 2, under the application of CPP. If v denotes
the average speed of a mobile, and D is the diame-
ter of the cell, the mean time that the mobile spends
in the cell is 1/(uy) = D/v, while if L denotes the

Copyright © 2001 John Wiley & Sons, Ltd.

diameter of the HR, the mean residence time is given
by 1/(u3) = L/v.

The steady state probability P(k) of the Markov
process under CPP with cutoff value 7, can be
derived by the solution of the linear programming
problem formulated through Equation (9), or may
be simply calculated through the following balance
equations.

k(uy + p2)P (k) = [Ar + (k — DAg]P(k — 1)

ifl1l<k<T
k(py + p2)Pk) = Ag(k — 1)P(k — 1)
ifT <k<C
[C(1 + ) + (k = C)(py + w3)1P (k)
=CiyPk — 1)
ifC<k<C+My
C+My
Z Pk =1
k=0
(20)
The solution is
o ifl <k<T
O + idg)
P(k) = —=2"2 " 22 p(0)
(n1 + p2)kk!
o if T<k<C
AT oy +in
Py = 21 Mo Ge + i)

k(T — DNy + o)
o if C<k=<C+My

CHC- T O + i)

(U1 + )¢
MEZCIC (1 + 12)j (1 + pa))(T = 1)

P(k) =

where P(0) is determined from the normalization
condition > p(k) = 1.

Once the steady state probabilities have been cal-
culated, the most important QoS parameters can be
computed. For example, the probability B, that an
initial access is blocked is

C+Mpy

B.= Y PG @

i=T

while the probability By that a hand-off call is
blocked is equal to the probability that no place
is available in the queueing device, that is, By =
P(C + Mpy).

The mean queue length is

C+Mpy

Ly = Y (i—C)PG) (22)

i=C+1
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We next find the conditioned probability By 5; that
a queued hand-off call escapes from the queue before
being served. It is given by the fraction of the hand-
off calls that cannot get channels while waiting in the
hand-off area:

Ly

By —=puy3—m——— 23
H out H’3(1 —BH)C)\,H ( )

while the term Ey = p3Ly is the unconditioned prob-
ability to see a hand-off call escaping from the system
before obtaining a channel.

CPP represents a trade-off solution between the
optimization of the loss probabilities of the two
streams of arriving requests. Another policy may have
a better behavior towards the single class of cus-
tomers, but at the expense of the quality of service
of the requests of the other class. Numerical results
confirm the optimality of CPP even when hand-off
queueing is allowed.

The behavior of CPP with variable cutoff value T
is now compared with that of the hysteresis policy

0.12

H'andoff' Loss ('HysP)' J——
Handoff Loss (CPP) _—

Handoff loss probability

0 1 2 3 4 5 6 7 8 9

Number of reserved channels

Fig. 5. Hand-off loss probability.

Nf':W Cali Loss EHysP)' C
0.8 f New Call Loss (CPP) —

New call loss probability

0 1 2 3 4 5 6 7 8 9
Number of reserved channels

Fig. 6. Initial access loss probability.

Copyright © 2001 John Wiley & Sons, Ltd.

(HysP) [2, 8]. Under the hysteresis policy (HysP), a
hand-off call is accepted as a channel is free, but the
decision to accept or not an initial access request is
taken on the basis of the number of free channels
following a cycle of hysteresis with thresholds M
and M, where M < M'. HysP can be studied as a
particular instance of the general model we proposed,
and the numerical results confirm the best behavior of
CPP. In Figures 5 and 6, we set M = T, and M =cC,
for a system with C = 10 available channels, A, =
10, Cag =10, u1 =1, up =2, u3 =10, My =5,
L =5 and H = 1500.

The trend of the loss probability with the number
of guard channels (C — T') is shown.

For the above described system, the average cost
function is optimal under the application of CPP
with cutoff value T =8, that is with two guard
channels. The graphs show that increasing the number
of guard channels, the advantage of a lower loss
probability of the high priority stream corresponds
to the disadvantage of a greater loss probability for
the low priority stream. If the cutoff value is 7' = 8§, a
tradeoff solution is achieved, and the loss of new calls
is compensated by the gain in terms of successful high
priority hand-offs.

Figure 7 shows how the optimal number of guard
channels increases with the average rate of high pri-
ority requests Ay for a system with C = 10 avail-
able channels, u; =1, up, =2, uz3 =10, My =5
and where the penalties are L = 5 and H = 150. This
shows how the system becomes more selective in
accepting potentially unprofitable customers, if the
arrival rate of requests grows. In Figure 8 we can
see that the more unprofitable the new call stream
is considered (i.e. the higher priority is given to the
hand-off stream), the higher the number of guard
channels there will be.

Reserved channels

8 10 12 14 16 18 20 22
Handoff rate

0o 2 4 6
Fig. 7. Guard channel trend with hand-off rate.

Wirel. Commun. Mob. Comput. 2001; 1:257-268



IMPROVING CALL ADMISSION CONTROL PROCEDURES 267

Reserved channel

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Penalty H

Fig. 8. Guard channel trend with penalty H.

4. Conclusions

This paper proposes an optimization method of call
admission control which takes into account the depen-
dency of the hand-off rates on the average occupancy
level of the cells. The model is based on a cost func-
tion which gives higher priority to hand-off requests
than to originating calls.

This cost function has been studied and optimized
through a Markov decision model characterized by
a great generality. The proposed model is shown
to be able to represent both not stationary policies
and randomized fractional policies. Moreover, owing
to the particular shape of its transition diagram, it
becomes possible to study key policies such as the
threshold policy and algorithms with one or more
cycles of hysteresis. It is analytically proven that
if the objective function is the total discounted cost
function, or the average cost function applied to the
infinite horizon problem, the policy CPP is optimal,
when no queueing of requests is allowed. Numerical
results confirm the optimality of CPP even when
hand-off queueing is allowed.
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