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Abstract— Content Delivery Networks (CDN) design entails the place-
ment of server replicas to bring the content close to the users, together with
an efficient and content aware request routing. In this paper we address the
problem of dynamicreplica placement to account for users demand vari-
ability while optimizing the costs paid by a CDN provider and the overall
performance of the distributed replica servers architecture. We formulate
the dynamic replica placement problem as a Semi Markov Decision Pro-
cess accounting for the traffic conditions, the users level of satisfaction, as
well as the costs paid to install, maintain or remove a replica from a site.
The proposed model applies to general network topologies and considers
realistic constraints on network and servers capacity. The optimal strategy
derived by means of the decision model provides the ground for designing
a centralized heuristic and is used as a benchmark for the heuristic evalu-
ation. Simulation results show that the proposed heuristic has a behavior
close to that of the optimal strategy and achieves very good performance in
terms of low average distance from a user to the serving replica, low aver-
age number of replicas and high probability of being able to serve a request.

Keywords— Dynamic Replica Placement, Content Delivery Networks,
Semi Markov Decision Processes

I. I NTRODUCTION

The commercial success of the Internet has paved the way for
the birth of Content Delivery Networks (CDN) providers. CDN
providers are companies devoted to hosting in their servers the
content of third-party content providers, to mirroring or replicat-
ing such contents on several servers spread over the world, and
to transparently redirecting the customers requests to the ‘best
replica’ (e.g. the closest replica, or the one from which the cus-
tomer would access content at the lowest latency). Designing a
complete solution for CDN therefore requires addressing a num-
ber of technical issues: which kind of content should be hosted
(if any) at a given CDN server (replica placement), which is the
‘best replica’ for a given customer, which mechanisms are used
to transparently redirect the user to such replica. In this paper
we focus on the first problem: replica placement.

The majority of the schemes presented in the literature tackle
the problem of static replica placement that can be formulated
as follows. Given a network topology, a set of CDN servers
and a given request traffic pattern, decide where content has to
be replicated so that some objective function is optimized while
meeting constraints on the system resources. The solutions so
far proposed typically try to either maximize the user perceived
quality given an existing infrastructure, or to minimize the CDN
infrastructure cost while meeting a specified user perceived per-
formance. Examples of constraints taken into account are limits
on the servers storage, on the servers sustainable load, on the
maximum delay tolerable by the users etc. A thorough survey
of the different objective functions and constraints considered in
the literature can be found in [6].
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For the static case, simple efficient greedy solutions have been
proposed in [8], [5] and [10]. In [8] Qiu et al. formulate the
static replica placement problem as a minimumK median prob-
lem, in whichK replicas have to be selected so that the sum of
the distances between the users and their ‘best replica’ is mini-
mized. A simple greedy heuristic is shown to have performance
within 50% of the optimal strategy. In [5] and [10] Jamin et al.
and Radoslavov et al. propose fan-out based heuristics in which
replicas are placed at the nodes with the highest fan-out irrespec-
tive of the actual cost function. The rationale is that such nodes
are likely to be in strategic places, closest (on average) to all
other nodes, and therefore suitable for replica location. In [10] a
performance evaluation based on real-world router-level topol-
ogy shows that the fan-out based heuristic has behavior close to
the greedy heuristic in terms of the average client latency.

All these solutions lack in considering the dynamics of the
system (e.g. changes in the requests traffic pattern, network
topology, replica sites). As a worst-case replica placement
would result extremely inefficient, this is indeed an important
practical issue that has to be tackled. A simple approach could
consist in periodically executing the static replica placement al-
gorithms to react to system dynamics. However this approach
has a twofold drawback: it may react slowly to the system dy-
namics (depending on the period between two different execu-
tions of the algorithm) and selects the ‘optimal’ replica place-
ment irrespective of the current configuration, possibly leading
to significant reconfiguration costs.

In this paper we propose a different (and more natural) ap-
proach. We introduce a dynamic allocation strategy which ex-
plicitly takes into account the system dynamics as well as the
costs of modifying the replica placement. The contributions
of the paper are twofold. By assuming the users requests dy-
namics to obey to a Markovian model we first formulate the
dynamic replica placement problem as a Markovian decision
process. Albeit this model may not accurately capture the user
dynamics and can be numerically solved only for limited sized
CDNs, it allows us to identify an optimal policy for dynamic
replica placement that can be used as a benchmark for heuristics
evaluation and provides insights on how allocation and deal-
location should be performed. Based on the findings obtained
through the analytical model we derive and evaluate a central-
ized heuristic which allocates and deallocates replicas to reflect
the requests traffic dynamics, the costs of adding, deleting and
maintaining replicas, the servers load and storage limits, and
the requirements on the maximum distance of the users from
the ‘best replica’. The heuristic performance evaluation shows
that its behavior is very close to that of the optimal placement
strategy, and that the heuristic achieves very good performance
in terms of the low average number of replicas, the low user-
replica average distance and the small number of requests that
cannot be served.



A few previous papers (e.g. [9] and [3]) have addressed the
problem of dynamic replica placement. However, the proposed
schemes are embedded in specific architectures for performing
requests redirection and computing the best replicas. No frame-
work is provided for identifying the optimal strategy, and to
quantify the solutions performance with respect to the optimum.
In RaDar [9] a threshold based heuristic is proposed to repli-
cate, migrate and delete replicas in response to system dynam-
ics. The overall proposed solution combines dynamic replica
allocation with servers load aware redirection to the best replica
to achieve low average users perceived latency while empiri-
cally balancing the load among the CDN servers. No limits on
the servers storage and on the maximum users perceived latency
are explicitly enforced. In [3] two schemes designed for the
Tapestry architecture are presented. The idea is that upon a re-
quest for content the access point neighborhood in the overlay
network is searched. If there is a server hosting a replica of the
requested content within a maximum distance from the user, and
such server is not overloaded, the request will be redirected to
this server (or to the closest server if multiple servers meet such
constraints). Otherwise a new replica is added to meet the user
request. Two variants are introduced depending on the neigh-
borhood of the overlay network which is searched for replicas,
and on the scheme used to select the best location for the new
replica. Though the ideas presented in the paper appear promis-
ing they are tightly coupled with the Tapestry architecture, and
the approach does not explicitly account for neither the costs of
reconfiguration nor for possible servers storage limits. Finally,
no information is provided in [3] on the rule to remove replicas,
making it hard to compare with this approach.

The paper is organized as follows. In sections II and III the
dynamic replica placement problem is formally formulated and
discussed, and the semi Markov decision model used to derive
the optimal strategy is described. In section IV a centralized
heuristic is presented, followed by its performance evaluation
(section V). A summary concludes the paper in section VI.

II. PROBLEM STATEMENT

We model the Internet network topology as a weighted undi-
rected graphG = {V, E}. The vertex setV is the set of network
nodes, while each edge in the setE represents a physical net-
work link and is labeled with some kind of distance metric, e.g.
the number of hops between the endpoints or a more complex
function that takes into account the available bandwidth, giving
lower cost to the backbone links than to the low speed access
links. We identify two subsetsVA andVR of the set of network
nodesV . VA is the set of CDN access nodes where the requests
generated by the users enter the core CDN network.VR is the set
of nodes in the core network where one or more content replica
servers can be placed (called sites in the following). Figure 5
(c) shows a possible40 nodes hierarchical transit stub network
topology obtained by running thegt-itm topology generator
[1]. The white circles represent the access nodes, the grey big
circles the sites that can host replicas, and the small black circles
nodes only used for sake of routing. Thin and thick links reflect
the low or high bandwidth of the links.

We assume thatC content providers exploit the hosting ser-
vice of the CDN. Customers entering the CDN through an ac-
cess node inVA can therefore issue requests for one ofC sets of
contents, and replicas of some of theC contents can be placed
in each site inVR. Requests entering the CDN are measured

in units of aggregate requests. No more thanV MAX
A units of ag-

gregate requests can be generated by an access node (to model
the limited access link bandwidth). Requests for a given con-
tent are served by a suitable replica. To model user satisfaction,
we assume that user requests cannot be served by a replica at a
distance above a given thresholddmax. Users requests are redi-
rected to the best available replica. This can be accomplished
by several means,i.e., anycast. We assume that each replica
can serve up toK unit of aggregate request for that content
(replica service capacity limit). No more thanV MAX

R replicas can
be hosted at a given site (site resource limit).

We describe a given configuration of requests and replicas by
means of a state vectorx of sizeC(|VA|+ |VR|):
x = (a, r) = (a1
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in which the variableac
i represents the number of request units

for a contentc ∈ {1, . . . , C} at nodei ∈ VA , andrc
j is the

number of replicas of contentc ∈ {1, . . . , C} placed at sitej ∈
VR.

We associate to each state a cost - paid per unit of time - which
is the sum of a cost derived from the users perceived quality
(users to replica distance, number of unsatisfied requests) and of
the CDN infrastructure costs for hosting and maintaining repli-
cas.

We measure users perceived quality by means of a function
A(x). This is given by the sum over all users requests of the
distance between the access node where the request is originated
and the replica serving it. Since requests are served by the best
available replica (i.e. the closest according to to links metric),
the redirection itself requires the solution of a minimum cost
matching problem between the users requests and the available
replicas, with the distance between access nodes and service site
as cost of the matching (assuming infinite cost whenever the dis-
tance exceeds the thresholddmax). The solution of this problem
yields the redirection scheme (which request is served by which
replica) and the associated distance (cost).

A replica maintenance costM(x) is used to model the costs
of hosting replicas and keeping them up to date. We use a simple
proportional cost modelM(x) = CMaint

∑
j∈VR,c=1,...,C rc

j ,
whereCMaint is a suitable constant.

Two other costsC+ andC− are paid by the CDN provider
when dynamically adjusting the number of replicated servers,
and are associated to the decision to add or remove a replica
respectively.

The minimization of the long run costs described above en-
ables a decision making criterion that can be used to formu-
late dynamic replica placement strategies. Given a state, a cost
function associated to it and the costs of replicating and delet-
ing replicas, identify a strategy which dynamically allocates and
deallocates replicas in response to users demand variations so
that the overall cost is minimized while meeting the constraints
on the replica service capacity and site resources. In the follow-
ing we introduce a Markov decision process to derive the op-
timal strategy for solving this problem as well as a centralized
scalable heuristic.

III. A M ARKOV DECISION PROCESS FOR DYNAMIC

REPLICA PLACEMENT

The state of the Semi Markov Decision Process (SMDP) is
formulated as in the previous section II by a vectorx of size



C(|VA|+ |VR|):
x = (a, r) = (a1
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The states spaceΛ is then defined as:

Λ ={x = (a, r) :
C∑

k=1

ak
i ≤ V MAX

A ;
C∑

k=1

rk
j ≤ V MAX

R ;

ak
i , rk

j ≥ 0, ∀i ∈ VA, j ∈ VR

}
.

Since the population of the described model is an aggregate fig-
ure of the requests traffic, the process dynamics is determined
by changes in the average units of requests at an access site for
a given content. We model the aggregate request at sitei ∈ VA

for a contentk as a birth death process with birth-rateλk
i and

death-rateµk
i , respectively.

When the system is in statex, a state dependent decision can
be made: a new replica of a given content can be placed at or
removed by a site or the system can be left as it is.

The action spaceD can be expressed by

D =
{

(d1+
1 , d1+

2 , . . . , d1+
|VR|, . . . , d

C+
1 , . . . , dC+

|VR|, d
1−
1 ,

d1−
2 , . . . , d1−

|VR|, . . . , d
C-
1 , . . . , dC-

|VR|), d
kx
i ∈ {0, 1},

∑

∀i,k,x

dkx
i ≤ 1; i = 1, . . . , |VR|;x = +/−}.

The indicatordk+
i = 1 represents the decision to add a replica

of contentk in site i ∈ VR, while dk−
i = 1 stands for the de-

cision to remove a replica of contentk from site i. If all the
indicators are null, the corresponding decision is to leave the
replica placement as it is. For simplicity only one replica can be
placed or removed at each decision time.
The action space is actually a state-dependent subset ofD where
a decision to add a replica is allowed only if the number of repli-
cas hosted at the site is less than the maximum number of repli-
casV MAX

R , and a decision to remove a replica can be made only
if at least one replica is actually hosted in the considered site.
If the system is in statex = (a, r) ∈ Λ and the actiond ∈ D is
chosen, then the dwell time of the statex is τ(x,d) where

τ(x,d) =



|VA|∑

i=1

C∑

k=1

(λk
i + ak

i · µk
i )



−1

. (1)

The transitions that may occur in this model from an initial
statex to a final statey can be due to an increasing aggregate
request, in the form of a birth, or to a decreasing request, in the
form of a death in the underlying multidimensional birth and
death process. The transition probabilitypd

xy from the statex =
(xA,xR) to any statey = (yA,yR) ∈ Λ under the decisiond,
takes one of the following expressions, whereec

i is an identity
vector with unary element in position(c · |VA|+ i).

Transitions due to an arrival of a unit of aggregate request for
contentc at sitei:
to state(yA,yR) = (xA + ec

i ,xR + ek
j )

with probability

pd
xy = λc

i · dk+
j τ(x,d); (2)

to state(yA,yR) = (xA + ec
i ,xR − ek

j )
with probability

pd
xy = λc

i · dk−
j τ(x,d); (3)

to state(yA,yR) = (xA + ec
i ,xR)

with probability

pd
xy = λc

i · τ(x,d) · [1−
|VR|∑

j=1

C∑

k=1

(dk+
j + dk−

j )]. (4)

Transition due to a departure of a unit of aggregate request for
contentc at sitei:
to state(yA,yR) = (xA − ec

i ,xR + ek
j ) with probability

pd
xy = (xA)c

i · µc
i · dk+

j · τ(x,d); (5)

to state(yA,yR) = (xA − ec
i ,xR − ek

j ) with probability

pd
xy = (xA)c

i · µc
i · dk−

j · τ(x,d); (6)

to state(yA,yR) = (xA − ec
i ,xR) with probability

pd
xy = (xA)c

i · µc
i · τ(x,d) · [1−

|VR|∑

j=1

C∑

k=1

(dk+
j + dk−

j )]. (7)

The transitions that are not considered in this list have proba-
bility 0.

In order to create a decision criterion for the described model,
an objective function is formulated. The state-related costsA(x)
and M(x) introduced in section II are paid per unit of time
as long as the system persists in the considered statex. The
costsC+ andC− are instead transition-related and are only paid
when a replica is actually added or removed, i.e. when the cor-
responding transition occurs.

Therefore a non-uniform cost function can be formulated as

r(x,d) =[A(x) + M(x)] · τ(x,d)+

+
|VR|∑

j=1

C∑

k=1

(dk+
j C+ + dk+

j C−)}.

The uniformization technique [2], [7], [11] transforms the
original SMDP with non identical transition times into an equiv-
alent continuous-time Markov process in which the transition
epochs are generated by a Poisson process at uniform rate. The
transitions from state to state are described by a (discrete time)
Markov chain that allows for fictitious transitions from a state
to itself. The uniformized Markov process is probabilistically
identical to the non uniform model. The theory of discrete
Markov processes can then be used to analyze the discrete-time
embedded Markov chain of the uniformized model.

A uniform rateΓ can be taken as an upper bound on the total
outgoing rate from each state thus obtaining a continuous time,
uniform process with rate1/Γ. The following definition ofΓ
fits our needs.

Γ =
|VA|∑

i=1

C∑

k=1

[λk
i + V MAX

A · µk
i ].



The transition probabilities of the uniformized process are
formulated as in equations (2 - 7), substituting the non uni-
form dwell timeτ(x,d) defined in equation (1) with the uni-
form dwell time1/Γ, and adding dummy transitions from each
state to itself:y = x

p̃d
xy =

1
Γ
· [Γ−

|VA|∑

i=1

C∑

k=1

(λk
i + µk

i · (xA)k
i )].

The cost function is uniformized as well, obtaining the fol-
lowing formulation ofr̃(x,d):

r̃(x,d) =
r(x,d)

τ(x,d) · Γ =
1
Γ
{[A(x) + M(x)]+

+
1

τ(x,d)
·
|VR|∑

j=1

C∑

k=1

(dk+
j C+ + dk+

j C−)}.

An optimal solution can be expressed through a decision vari-
ableπxd that represents the probability for the system to be in
statex and taking the decisiond.

The Linear Programming (LP) formulation associated with
our SMDP minimizing the cost paid in the long-run execution is
given by:

Minimize∑
(x,d)∈S r̃(x,d) · πx,d

constrained to
πxd ≥ 0 (x,d) ∈ S∑

(x,d)∈S πxd = 1∑
d∈B πjd =

∑
(x,d)∈S p̃d

xjπxd j ∈ Λ.

(8)

whereS is the finite set of all feasible couples of vectors of
the kind (state, decision).

The problem defined in (8) can be solved by means of com-
monly known methods of the operations research [4]. We used
the simplex method with sparse matrix support.

IV. H EURISTIC

The solution to the optimization problem (8) is too compu-
tationally intensive but in the simplest scenarios. Therefore, in
general, it is not feasible to compute the optimal policy. Here
we propose an heuristic to decide the actiond ∈ D to take
upon transitions on the request access vectora. The heuristic
has been derived by closely studying how the optimal policy be-
haved in our experiments. In particular, we considered the case
where the cost function imposes - in decreasing order - the fol-
lowing priorities to the resulting policy: (1) being able to serve
user requests; (2) minimizing the number of replicas; (3) min-
imizing the distance between users and replicas. This was ac-
complished by setting the cost function parameters as follows:
Cmaint >> maxe∈E `(e), with `(e) denoting the weight associ-
ated with link e,C+ = C− = 0. With this choice, we expected
the optimal policy to use the minimum number of replicas to
serve all existing requests leaving at the same time enough spare
capacity to accommodate for requests increases. In our exper-
iments, indeed, we observed that the optimal placement policy

1. d =do nothing;
2. while (TRUE) {
3. wait for a change ina; take actiond;
4. if ( enoughreplicaon increase( (a,r ) )
5. d=removereplica();
6. else
7. d=addreplica();
8. }

Fig. 1. REPLICA PLACEMENT ALGORITHM.

1. boolean enoughreplicaon increase( state (a,r ) ) {
2. for anyc = 1, . . . , C andi ∈ VA

3. if ( !enoughreplica( (a + ec
i , r) ) returnFALSE;

4. returnTRUE;
5. }

Fig. 2. ENOUGH REPLICA ON INCREASE().

proactively replicates content in order to guarantee its availabil-
ity in case of future requests increases. At the same time, to
minimize the number of replicas, it detects and removes repli-
cas which are not needed to serve either current requests or any
possible unitary increase of them.

The algorithm we propose, shown in Figure 1, mimics as
close as possible this behavior. At each step, the algorithm de-
termines first whether the current replica configurationr can ac-
commodate any possible increase in user requestsa. This is ac-
complished via the function enoughreplicaon increase() (see
Figure 2). In case that any possible increase in user requests can
be accommodated byr then the algorithm considers whether it
is possible to remove a replica (removereplica()); otherwise it
tries to find a site where to add a replica (addreplica()). (Ob-
serve that to mimic the behavior of the Markovian Decision Pro-
cess, actions are decided in a given state but only taken in corre-
spondence of the next transition.)

The function enoughreplicaon increase((a, r)) returns
TRUEif any possible increase ina can be served by the cur-
rent replica configurationr andFALSEotherwise. To this end,
it uses the function enoughreplica((a, r)) which determines
whether a given users access requestsa can be served by the
set of replicasr. (The function enoughreplica() itself is com-
puted by solving a minimum matching problem between users
requests and the available replicas from the solution of which
we can determine whether all request ina can be served byr.)

add replica() is called to determine content and location for a

1. action addreplica ( ){
2. findI = {(i, c) i ∈ VA, c = 1, . . . , C | !enoughreplica((a + ec

i , r))}
3. for anyj ∈ VR, c = 1, . . . , C
4. findJ(j, c) = {(i, c) ∈ I | enoughreplica(a + ec

i , r + ec
j),

(a + ec
i , r + ec

j) ∈ Λ}
5. if (max(j,c) |J(j, c)| > 0)
6. (j∗, c∗) = argmax|J(j, c)|;
7. d=place replica contentc∗ in sitej∗;
8. else
9. d=do nothing;
10. returnd;
11.}

Fig. 3. ALGORITHM FOR DECIDING WHERE TOPLACE A NEW REPLICA.



1. action removereplica ( ){
2. findU = {(j, c) j ∈ VR, c = 1, . . . , C | ∃i ∈ VA enoughreplica((a + ec

i , r)) AND !enoughreplica((a + ec
i , r− ec

j)), (a + ec
i , r− ec

j) ∈ Λ};
3. findJ = {(j, c) j ∈ VR, c = 1, . . . , C (j, c) 6∈ U | enoughreplica((a, r− ec

j)), (a, r− ec
j) ∈ Λ};

4. if ( |J | > 0 )
5. (j∗, c∗) = argmin(j,c)∈J |Sj∗ |, Sj = {i, i ∈ VA | distance(i, j) ≤ dMax};
6. d=remove replicac∗ in sitej∗;
7. else
8. d=do nothing;
9. returnd;
10.}

Fig. 4. ALGORITHM FOR DECIDING WHICH REPLICA TO REMOVE.

new replica. To this end it first identifies which requests increase
would require additional replicas. This is accomplished in line 2
by determining the setI of the pairs(i, c) such that an increase
of requests for contentc at nodei cannot be served byr (line 2).
It then computes the setsJ(j, c) ⊆ I of users requests increment
that could be served by an additional replica of contentc in site
j (line 3). If not allJ(j, c) are empty , the content and location
of the additional replica is then chosen by finding the sitej∗ and
contentc∗ which maximizes|J(j, c)| (line 7). This to maximize
the probability of being able to satisfy a request increase.

removereplica() is called to determine whether to remove a
replica. To this end, first it identifies the setU of replicas which
should not be removed as they would be needed to serve an in-
crease in users requests (line 2). Then, it determines, among the
remaining replicas, the setJ of the candidates for possible re-
moval,i.e., all those replicas which are not used to serve current
requests (line 3). Among these, it chooses to remove a replica
from a nodej which serves the smallest set of access nodes
(line 5). Choosing the replica which serves the smallest popula-
tion should minimize the likelihood to remove a replica which
is going to be added soon again.

V. NUMERICAL RESULTS

In this section we evaluate and compare the performance of
the proposed replica placement algorithms. For the optimal
replica placement, we computed the optimal policy by solving
the Markov decision model with MATLAB. For the heuristic,
we wrote a simulator in C. The network topologies used in our
experiments are reported in Figure 5. The thin lines denote
slower links (with a weight of 2), the thick ones faster links
(with a weight of 1). We considered the small topologies to
assess the heuristic effectiveness with respect to the optimal pol-
icy. (Indeed only for such smaller cases we were able to com-
pute the optimal policy.) The larger topology, generated with
the gt-itm topology generator, was used to test the heuristic
in a more realistic setting. In all simulations, we used the fol-
lowing parameters:K = 2, V MAX

A = 2, λc
i = 1/C andµc

i = 1.
Moreover, we setCmaint = 1000, C+ = C− = 0. The values
of dmax, of V MAX

R and the number of contentsC were varied in
the different experiments.

The results for the small topologies are reported in table I
and II, respectively. In these experiments we setV MAX

R = 1 (at
most one replica per site) anddmax = 3. For the comparison,
rather than reporting the cost function values, we separately re-
ported the values of the three major factors which contribute to
the cost, namely, the average distance from a request to the serv-
ing replica, the average number of replicas, and the fraction of
requests which were not served (either because no such replica
existed or because the closest available replica was further away

TABLE I

TOPOLOGY OFFIGURE 5 (A). OPTIMAL AND HEURISTIC RESULTS.

C=1 av. distance av. # of replica % not served
Optimal 2.047 1.969 0
Heuristic 2.160± 0.162 1.945± 0.213 0

C=2 av. distance av. # of replica % not served
Optimal 2.362 2.720 0.021
Heuristic 2.352± 0.109 2.65± 0.176 0.010± 0.012

TABLE II

TOPOLOGY OFFIGURE 5 (B). OPTIMAL AND HEURISTIC RESULTS.

C=1 av. distance av. # of replica % not served
Optimal 2.435 2.401 0
Heuristic 2.441± 0.095 2.537± 0.283 0

C=2 av. distance av. # of replica % not served
Optimal - - -
Heuristic 2.480± 0.119 3.939± 0.192 0.038± 0.0048

thandmax). Simulations results include the 99% confidence in-
terval computed over 100 simulations.

The results show that the heuristic is very close to the optimal
behavior. The placement scheme followed by the heuristic only
leads to a2− 4% increase in the average users-replica distance
and in the number of replicas over what is computed by the op-
timal strategy. Observe that even for these small experiments,
we were not able to compute the optimal solution forC = 2
for the larger topology (the number of states was 314928 which
multiplied by the number of decision results in about 2 million
of variables for the linear problem).

In Table III we report the results for the large topology de-
scribed in Figure 5 (c), which includes 24 access nodes and 7

TABLE III

TOPOLOGY OFFIGURE 5 (C). HEURISTIC RESULTS.

C=1 av. distance av. # of replica % not served
dMax = ∞ 5.010± 0.148 10.438± 0.313 0
dMax = 10 5.199± 0.169 10.414± 0.430 0
dMax = 8 4.708± 0.158 11.279± 0.662 0

C=2 av. distance av. # of replica % not served
dMax = ∞ 5.233± 0.165 11.180± 0.574 0
dMax = 10 5.286± 0.180 11.188± 0.628 0.06%± 0.05%
dMax = 8 4.737± 0.105 12.770± 0.240 0.07%± 0.17%

C=4 av. distance av. # of replica % not served
dMax = ∞ 5.407± 0.111 11.252± 0.428 0
dMax = 10 5.406± 0.102 11.522± 0.682 0.06%± 0.07%
dMax = 8 4.833± 0.103 14.637± 0.476 1.36%± 0.79%
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Fig. 5. NETWORK TOPOLOGIES USED IN THESIMULATIONS .

replica nodes, forC = 1, 2 and 4 anddmax = ∞, 10 and 8.
In all these experiments, we setV MAX

R = 3. We observe that,
asdmax decreases, the average number of used replicas and the
probability of not serving user requests increases while the av-
erage distance decreases. This reflects the need to place more
replicas to meet the stricter constraint on the maximum user-
replica distance, and the increased difficulty of satisfying all the
requests once the number of possible replica sites that can serve
a user is throttled. On the other hand, all quantities increase
when the number of different contents hosted in the CDN in-
creases, as more replicas are needed to be able to serve a higher
variety of requests and since the limit on the number of replicas
per site leads to the additional replicas being placed further and
further away from the final user.

Even though we cannot directly compare the behavior of the
centralized heuristic with that of the optimal replica placement
in this scenario, we can observe that the behavior is close to
optimal. Indeed, from the Markov model, we can compute the
average number of requests from each access site, which is 0.4,
that multiplied by 24 sites yields an average of 19.2 requests
overall. Since each replica can serveK = 2 requests, we expect
for C = 1 anddMax = ∞ that no less than 10 replicas are
necessary to serve - on average - all the requests. We observe
that the obtained values are indeed very close to 10.

VI. CONCLUSION

In this paper we have provided a framework for the design of
replica allocation schemes dynamically placing and removing
replicas in response to changing users demand. By assuming
the users requests dynamics to obey to a Markovian model we
have first formulated the dynamic replica placement problem as
a Markovian decision process. This allowed us to identify an op-
timal policy for dynamic replica placement that can be used as
a benchmark for heuristics evaluation and provides insights on
how allocation and deallocation should be performed. Based on
the findings obtained through the analytical model we derived
and evaluated a centralized heuristic which allocates and deallo-
cates replicas to reflect the requests traffic dynamics, the costs of
adding, deleting and maintaining replicas, the servers load and
storage limits, and the requirements on the maximum distance
of the users from the ‘best replica’. The heuristic performance
evaluation has shown that the heuristic behavior is very close
to that of the optimal placement strategy, and that the heuristic
results in good performance in terms of low average number of
replicas, low user-replica average distance and low number of

requests that cannot be served.
On-going research activity is devoted to the design of dis-

tributed heuristics, to the development of a simulation frame-
work for the comparison with the solutions so far proposed in
the literature, and to the extension of the performance evalua-
tion to hot spot scenarios.
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