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Abstract— Content Delivery Networks (CDN) design entails the place-  For the static case, simple efficient greedy solutions have been
ment of server replicas to bring the content close to the users, together with proposed in [8], [5] and [10]. In [8] Qiu et al. formulate the
an efficient and content aware request routing. In this paper we address the static replica placement problem as a minimimedian pl’Ob-
problem of dynamicreplica placement to account for users demand vari- . . .
ability while optimizing the costs paid by a CDN provider and the overall lem, ',n whichK repllcas have to be SeIeCFed so that Fhe §um _Of
performance of the distributed replica servers architecture. We formulate  the distances between the users and their ‘best replica’ is mini-
the dynamic replica placement problem as a Semi Markov Decision Pro- mized. A simple greedy heuristic is shown to have performance
cess accounting for the traffic conditions, the users level of satisfaction, as \yithin 50% of the optimal strategy. In [5] and [10] Jamin et al.
well as the costs paid to install, maintain or remove a replica from a site. ST .
The proposed model applies to general network topologies and considers and_RadOSIaVOV etal. propose far,]'OUt ba§ed heunsucs.m which
realistic constraints on network and servers capacity. The optimal strategy €plicas are placed at the nodes with the highest fan-out irrespec-
derived by means of the decision model provides the ground for designing tive of the actual cost function. The rationale is that such nodes
a centralized heuristic and is used as a benchmark for the heuristic evalu- gre likely to be in strategic places, closest (on average) to all
ation. Simulation results show that the proposed heuristic has a behavior other nodes. and therefore suitable for replica location. In [10] a
close to that of the optimal strategy and achieves very good performance in ' . ’
terms of low average distance from a user to the serving replica, low aver- performance evaluation based on real_'W_orld rOUter'le_Vd topol-
age number of replicas and high probability of being able to serve a request. 09y Shows that the fan-out based heuristic has behavior close to

the greedy heuristic in terms of the average client latency.

Keywords— Dynamic Replica Placement, Content Delivery Networks, All these solutions lack in Considering the dynamics of the
Semi Markov Decision Processes . .
system (e.g. changes in the requests traffic pattern, network
topology, replica sites). As a worst-case replica placement
I. INTRODUCTION would result extremely inefficient, this is indeed an important
ractical issue that has to be tackled. A simple approach could
Bhsist in periodically executing the static replica placement al-
orithms to react to system dynamics. However this approach

; ) ) . a twofold drawback: it may react slowly to the system dy-
content of third-party content providers, to mirroring or repllcaha ics (depending on the period between two different execu-
ing such contents on several servers spread over the world, A

v redirecti h he ‘b Bfts of the algorithm) and selects the ‘optimal’ replica place-
to transparently redirecting the customers requests to the t irespective of the current configuration, possibly leading
replica’ (e.g. the closest replica, or the one from which the ¢

N€ CUS significant reconfiguration costs.
tomer would access content at the lowest latency). Designing a

complete solution for CDN therefore requires addressing a num/n this paper we propose a different (and more natural) ap-
ber of technical issues: which kind of content should be hostBfPach. We introduce a dynamic allocation strategy which ex-
(if any) at a given CDN server (replica placement), which is tplicitly takes into account the system dynamics as we_II as the
‘best replica’ for a given customer, which mechanisms are usgsts of modifying the replica placement. The contributions

to transparently redirect the user to such replica. In this pafdrthe paper are twofold. By assuming the users requests dy-
we focus on the first problem: replica placement. namics to obey to a Markovian model we first formulate the

The majority of the schemes presented in the literature tacﬂlénamic repli(_:a placement problem as a Markovian decision
cess. Albeit this model may not accurately capture the user

the problem of static replica placement that can be formulat gpeess ) o :
as follows. Given a network topology, a set of CDN serve namics and can be numerically solved only for limited sized

and a given request traffic pattern, decide where content ha$fgNS: it allows us to identify an optimal policy for dynamic

be replicated so that some objective function is optimized whfgPlica placement that can be used as a benchmark for heuristics

meeting constraints on the system resources. The solution€¥g/uation and provides insights on how allocation and deal-
ation should be performed. Based on the findings obtained

far proposed typically try to either maximize the user perceiv o h th tical model deri q | |
quality given an existing infrastructure, or to minimize the CDN1"oUgh the analytical model we derive and evaluate a central-
d heuristic which allocates and deallocates replicas to reflect

infrastructure cost while meeting a specified user perceived péf . . . .
gasp P P requests traffic dynamics, the costs of adding, deleting and

formance. Examples of constraints taken into account are limie aini i th load and st limit d
on the servers storage, on the servers sustainable load, onfREt&!NING replicas, the servers load and storageé imits, an

maximum delay tolerable by the users etc. A thorough Surv]ig requirements on the maximum distance of the users from
t

of the different objective functions and constraints considered} ‘pest repllpa’._ The heuristic performance e\_/aluat|on shows
the literature can be found in [6]. at its behavior is very close to that of the optimal placement

strategy, and that the heuristic achieves very good performance

This work has been funded by the WEB-MINDS project supported by tig [€/Ms Of the low average number of replicas, the low user-

Italian MIUR under the FIRB program and by the POLLENS project supportd@Plica average distance and the small number of requests that
by ITEA. cannot be served.

The commercial success of the Internet has paved the way
the birth of Content Delivery Networks (CDN) providers. CD
providers are companies devoted to hosting in their servers



A few previous papers (e.g. [9] and [3]) have addressed timeunits of aggregate requests. No more théff**units of ag-
problem of dynamic replica placement. However, the proposgregate requests can be generated by an access node (to model
schemes are embedded in specific architectures for performihg limited access link bandwidth). Requests for a given con-
requests redirection and computing the best replicas. No franent are served by a suitable replica. To model user satisfaction,
work is provided for identifying the optimal strategy, and teve assume that user requests cannot be served by a replica at a
guantify the solutions performance with respect to the optimumlistance above a given threshalgl,,... Users requests are redi-

In RaDar [9] a threshold based heuristic is proposed to repléected to the best available replica. This can be accomplished
cate, migrate and delete replicas in response to system dynagseveral meang,e., anycast. We assume that each replica
ics. The overall proposed solution combines dynamic replican serve up td< unit of aggregate request for that content
allocation with servers load aware redirection to the best repligaplica service capacity limit). No more th&i}'**replicas can

to achieve low average users perceived latency while empioe hosted at a given site (site resource limit).

cally balancing the load among the CDN servers. No limits on We describe a given configuration of requests and replicas by
the servers storage and on the maximum users perceived latanewns of a state vectarof sizeC(|V| + |Vr]):

are explicitly enforced. In [3] two schemes designed for the= (a,r) = (a%,a%,...,a‘l‘, Vai,,‘,afv EERERLLINE
Tapestry architecture are presented. The idea is that upon a fe- 1 L2 2 4 rC ) B B
quest for content the access point neighborhood in the overldy 2: " " Ve’ 17" [Va[""" " | Vg|

network is searched. If there is a server hosting a replica of eWhiCh the variable:; represents the number of request units

requested content within a maximum distance from the user, 4Af & contentc € {1,...,C} atnodei € Vy , andrf is 'the
such server is not overloaded, the request will be redirectedigmber of replicas of contente {1,..., C'} placed at sitg €
this server (or to the closest server if multiple servers meet suéh ) ) o )
constraints). Otherwise a new replica is added to meet the useYVe associate to each state a cost - paid per unit of time - which
request. Two variants are introduced depending on the neia%jﬂhe sum of a cost derived from the users perceived quality
borhood of the Over|ay network which is searched for rep"c ,Sers to repllca d|Stance, number of unsatisfied requeStS) and of
and on the scheme used to select the best location for the iB&CDN infrastructure costs for hosting and maintaining repli-
replica. Though the ideas presented in the paper appear prorées-
ing they are tightly coupled with the Tapestry architecture, and\We measure users perceived quality by means of a function
the approach does not explicitly account for neither the costs4fx). This is given by the sum over all users requests of the
reconfiguration nor for possible servers storage limits. Finalijistance between the access node where the request is originated
no information is provided in [3] on the rule to remove replica@nd the replica serving it. Since requests are served by the best
making it hard to compare with this approach. available replica (i.e. the closest according to to links metric),

The paper is organized as follows. In sections Il and 11l tH&€ redirection itself requires the solution of a minimum cost
dynamic replica placement problem is formally formulated arfatching problem between the users requests and the available
discussed, and the semi Markov decision model used to derigglicas, with the distance between access nodes and service site
the optimal strategy is described. In section IV a centraliz&$ cost of the matching (assuming infinite cost whenever the dis-
heuristic is presented, followed by its performance evaluatiéice exceeds the threshalg,.). The solution of this problem
(Section V) A summary concludes the paper in section VI. y|EIdS the redirection scheme (Wthh request is served by which

replica) and the associated distance (cost).
1. PROBLEM STATEMENT A replica maintenance codt/ (x) is used to model the costs

) of hosting replicas and keeping them up to date. We use a simple
We model the Internet network topology as a weighted Unqi'roportional cost modeM (x) = Craint S

rected grapliz = {V, E'}. The vertex seV is the set of network o ;

nodes,gwhri)le eac{h edée in the detrepresents a physical net-WhereCM“mt Is a suitable constant.
work link and is labeled with some kind of distance metric, e.

the number of hops between the endpoints or a more comp
function that takes into account the available bandwidth, giviril
lower cost to the backbone links than to the low speed acc
links. We identify two subset®s andVy of the set of network

nodesV. V4 is the set of CDN access nodes where the reque

generated by the users enter the core CDN netwiggKs the set ate dynamic replica placement strategies. Given a state, a cost

of nodes in the core network where one or more content repliféjgcuon assc_mat(_ad to it and the costs of re.pllcatlng and delet-
:éy replicas, identify a strategy which dynamically allocates and

C
j€VR.e=1,...,C 5"

Two other costs”+ andC~ are paid by the CDN provider
hen dynamically adjusting the number of replicated servers,
i are associated to the decision to add or remove a replica

e%spectively.
Yhe minimization of the long run costs described above en-
les a decision making criterion that can be used to formu-

servers can be placed (called sites in the following). Figure eallocates replicas in response to users demand variations so
(c) shows a possiblé0 nodes hierarchical transit stub networ P 1N respo ; ; )
hat the overall cost is minimized while meeting the constraints

mo Oﬁ?g v(\)/mtaemc?? cl?é rrlég?éns%:tg;hgg cc etgg(?]lggg S?iﬂgrgﬁg; B the r_eplica service capacity a_n_d site resources. In the follow-
circles the sites that can host replicas, and the small black cir ! vlve |ntr0dufce a ll\AarkO\é_demstl)(I)n process”to derive th?. 0%’
nodes only used for sake of routing. Thin and thick links refle {n? sltrakt]egy. or solving this problem as well as a centralize
the low or high bandwidth of the links. Scalable heuristic.

We assume thaf’ content providers exploit the hosting ser-
vice of the CDN. Customers entering the CDN through an ac-
cess node iV, can therefore issue requests for on€'afets of
contents, and replicas of some of thiecontents can be placed The state of the Semi Markov Decision Process (SMDP) is
in each site inV’z. Requests entering the CDN are measurddrmulated as in the previous section Il by a vectoof size

IIl. A M ARKOV DECISION PROCESS FOR DYNAMIC
REPLICA PLACEMENT



C(|Val| + |Vr]): tOIState(yA,_yR) = (xa + €}, xr —€})
1: 1(a, r) :1 (ai, c;%, . ,;L‘lvA‘,af, = ,a‘QVA‘, . a’T:VAl’ with probability
Tyl gy ey i 3Ty e oy Tl (yee ey T )
A% [Vr| [Vr| piy =X d?fT(x, d); (3)
The states spackis then defined as:
to state(yA, yR) = (XA + ef, XR)
with probability

C C
A={x=(ar): ) af <V "k <y Vel ©
k=1 k=1 Pay = M7l d) - [L= 30 (it i) (4)
af,r¥ >0,Vi € Va,j € Va}. j=1k=1

Since the population of the described model is an aggregate figansition due to a departure of a unit of aggregate request for
ure of the requests traffic, the process dynamics is determinethtentc at site::
by changes in the average units of requests at an access sitédftate(ya, yr) = (xa — ef,xr + €; k) with probability
a given content. We model the aggregate request at sit& 4
for a contentk as a birth death process with birth-ratg and Py = (xa)f - pg - dit - 7(x, d); (5)
death-rate.?, respectively.
When the system is in state a state dependent decision cato state(ya, yr) = (xa — €f,xr — €) with probability
be made: a new replica of a given content can be placed at or
removed by a site or the system can be left as it is. Py = (Xa)§ - s - d;?* -7(x,d); (6)
The action spac® can be expressed by
to state(ya,yr) = (xa — €5, xgr) With probability

_ 1+ 41+ 1+ C+ 1—
D_{(d1 S LdE S d e
dyseoodiyy e dT s i), i € (0,13, Py = (xa)f pf - r(x,d) - [1= DD (dET 4+ dE)) (7)
kx j=1k=1
Z di* <l;i=1,...,|Vrl;z =+/-}.
Vik,x The transitions that are not considered in this list have proba-
bility 0.
The indicatod* = 1 represents the decision to add a replica In order to create a decision criterion for the described model,
of contentk in site: € Vg, while df* = 1 stands for the de- an objective function is formulated. The state-related castg

cision to remove a replica of contehtfrom sitei. If all the and M (x) introduced in section Il are paid per unit of time
indicators are null, the corresponding decision is to leave th& long as the system persists in the considered staf€he
replica placement as it is. For simplicity only one replica can m@stsC+ andC~ are instead transition-related and are only paid
placed or removed at each decision time. when a replica is actually added or removed, i.e. when the cor-
The action space is actually a state-dependent sub%eiubiere responding transition occurs.

a decision to add a replica is allowed only if the number of repli- Therefore a non-uniform cost function can be formulated as
cas hosted at the site is less than the maximum number of repli-

casVMAX and a decision to remove a replica can be made only r(x,d) =[A(x) + M(x)] - 7(x,d)+
if at least one replica is actually hosted in the considered site. Vel C
If the system is in state = (a,r) € A and the actionl € D is + Z Z(d§+c+ + d;ﬁcf)}.

chosen, then the dwell time of the statés 7(x, d) where ==

Val C ' The uniformization technique [2], [7], [11] transforms the
Z Z (A +aF . (1) original SMDP with non identical transition times into an equiv-
=1 k=1 alent continuous-time Markov process in which the transition
pochs are generated by a Poisson process at uniform rate. The
ansitions from state to state are described by a (discrete time)
é\rkov chain that allows for fictitious transitions from a state
itself. The uniformized Markov process is probabilistically
Identical to the non uniform model. The theory of discrete
Markov processes can then be used to analyze the discrete-time
embedded Markov chain of the uniformized model.

The transitions that may occur in this model from an initi i
statex to a final statey can be due to an increasing aggrega
request, in the form of a birth, or to a decreasing request, in
form of a death in the underlying multidimensional birth an
death process. The transition probabiﬁﬁg, from the statex =
(xa,xRr) to any statey = (ya,yr) € A under the decisiod,

takes one of the following expressions, Whefgs an identity A uniform ratel" can be taken as an upper bound on the total
vector with unary element in positiq@ - |Va| + 7).

i . . Putgomg rate from each state thus obtaining a continuous time,
Transmong, due to an arrival of a unit of aggregate request Qhiform process with raté/T". The following definition ofl"
contentc at sites:

) fits our needs.
to state(ya,yr) = (xa + €}, xr + €)
with probability Val C

T3 SIS VAR

pgy = A d?JFT(Xv d); ) i=1 k=1



The transition probabilities of the uniformized process adk d =do nothing;
formulated as in equations (2 - 7), substituting the non ur- while (TRUE) {

form dwell time 7(x, d) defined in equation (1) with the uni- 3. wait for a change im; take actiord;
form dwell time1/T", and adding dummy transitions from eacl. if (enoughreplicaon.increase(4,r))
state to itselfy = x 5. d=removereplica();
Val C 6 else
~ 1 4 7. d=addreplica();
ng:f'[F*ZZ()\fJFMf'(XA)?)}- 8. }
1=1 k=1
The cost function is uniformized as well, obtaining the fol- Fig. 1. REPLICA PLACEMENT ALGORITHM.
lowing formulation of7(x, d):
1. boolean enougheplicaon.increase( statea(r ) ) {
r(x,d) 2 foranyc=1,...,C andi € V4
F(x,d) =———— = —{[A(x) + M (x)]+ 3. if (lenoughreplica( @ + e¢, r) ) returnFALSE,
7(x,d)- T T ! g
4 returnTRUE
1 Vel C i . 5 )
. o+ o+ o+ — '
T d) Z S (dEret +dite).
j=1k=1 Fig. 2. ENOUGH._REPLICA_ON_INCREASK().

An optimal solution can be expressed through a decision vari-

ablerq that represents the probability for the system to be in vel i in ord . ilabil
statex and taking the decisiod. proactively replicates content in order to guarantee its availabil-

The Linear Programming (LP) formulation associated wit'II\y in case of future requests increases. At the same time, to

our SMDP minimizing the cost paid in the long-run execution iinimize the number of replicas, it detects and removes repli-
Cas which are not needed to serve either current requests or any

given by: possible unitary increase of them.
The algorithm we propose, shown in Figure 1, mimics as
Minimize close as possible this behavior. At each step, the algorithm de-
Z(xd)es F(x,d) - Tx.a termines first Whether_the _current re_plica configuratigmn ac-

' commodate any possible increase in user requesksis is ac-
constrained to @) cqmplished via the function enpugl?plicaorLincrease() (see
__— (x,d) €S Figure 2). In case that any possible increase in user requests can
> i be accqmmodated hythen the algorithm 90n5|ders Whgthgr it

(xd)es Txd d . is possible to remove a replica (remonaplica()); otherwise it
2deB™id = X (xd)es DxjTxd JjeA tries to find a site where to add a replica (a@glica()). (Ob-

serve that to mimic the behavior of the Markovian Decision Pro-
cess, actions are decided in a given state but only taken in corre-
whereS is the finite set of all feasible couples of vectors ofpondence of the next transition.)
the kind Gtate, decisiop The function enougheplicaon.increase@, r)) returns
The problem defined in (8) can be solved by means of COMRUEIf any possible increase ia can be served by the cur-
monly known methods of the operations research [4]. We usgght replica configuration andFALSE otherwise. To this end,
the simplex method with sparse matrix support. it uses the function enougteplica(f, r)) which determines
whether a given users access requastsin be served by the
set of replicag. (The function enougheplica() itself is com-
The solution to the optimization problem (8) is too compuputed by solving a minimum matching problem between users
tationally intensive but in the simplest scenarios. Therefore, iequests and the available replicas from the solution of which
general, it is not feasible to compute the optimal policy. Hexge can determine whether all requeshinan be served by.)
we propose an heuristic to decide the actibne D to take addreplica() is called to determine content and location for a
upon transitions on the request access veatoirhe heuristic
has been derived by closely studying how the optimal policy be- _
haved in our experiments. In particular, we considered the c%seac“(.’” addeplica (){ B : .
where the cost function imposes - in decreasing order - the fgl- find/ = {{i,c) ¢ € Va,e= L., | tlenoughreplical(a + e, 1))}
. foranyj € Vg,c=1,...,C

IV. HEURISTIC

lowing priorities to the resulting policy: (1) being able to serve. find J(j,¢) = {(i,¢) € I | enoughreplica@ + €¢, + &),
user requests; (2) minimizing the number of replicas; (3) min- (a+ef,r+ef) €A}

imizing the distance between users and replicas. This was &c-  if (max(; oy |J(j,¢)| > 0)

complished by setting the cost function parameters as follovs: (", c7) = argmaxlJ(j, c)l;

Conaint >> maxc £(e), with £(e) denoting the weight associ—;' elsgzp'ace replica content" in site,j;

ated with link e,C*T = C'~ = 0. With this choice, we expectedg d=do nothing;

the optimal policy to use the minimum number of replicas tm.  returnd;

serve all existing requests leaving at the same time enough sgare

capacity to accommodate for requests increases. In our exper-

iments, indeed, we observed that the optimal placement polidyd. 3. ALGORITHM FORDECIDING WHERE TOPLACE A NEW REPLICA.



1. action removaeplica (){

2. findU = {(j,c) j € Vr,c=1,...,C | 3i € V4 enoughreplica((a + €5, r)) AND !enoughreplica((a + ef,r — e?)), (a+ef,r— ej) e A},
3. findJ = {(j,c) j € Vr,c=1,...,C (j,c) ¢ U | enoughreplica(a, r — ef)), (a,r —e$) € A};

4. if (|J]>0)

5. (5%, c*) = argminy; oyc ;1Sj+1, S5 = {i, i € Va | distance(i, j) < dpax}

6. d=remove replica™* in site j*;

7. else

8. d=do nothing;

9. returnd,

10.}

Fig. 4. ALGORITHM FOR DECIDING WHICH REPLICA TO REMOVE.

new replica. To this end it first identifies which requests increase TABLE
would require additional replicas. This is accomplished in line 2 TOPOLOGY OFFIGURES (A). OPTIMAL AND HEURISTICRESULTS.

by determining the seft of the pairs(i, ¢) such that an increase

of requests for contertat node; cannot be served hy(line 2). ogti:nlm av. Qetance | av. #ofreplica | % not served
It then computes the seigj, ¢c) C I of users requests increment Heuristic | 2.160 £ 0.162 | 1.945 £ 0.213 0

that could be served by an additional replica of conteintsite . _

j (line 3). If not all J (34, c) are empty , the content and location ogti:rial a“'zd[fgi”ce av. #2 o7f2rgpl|ca % HSB Zelrved
of the additional replica is then chosen by finding the sitand Heurstc | 3353 £ 0109 565 £0176 | 0.010 £ 0013
contentc* which maximizegJ(j, ¢)| (line 7). This to maximize

the probability of being able to satisfy a request increase. TABLE Il

removereplica() is called to determine whether to remove a
replica. To this end, first it identifies the détof replicas which

should not be removed as they would be needed to serve an in-

TOPOLOGY OFFIGURE5 (B). OPTIMAL AND HEURISTIC RESULTS.

crease in users requests (line 2). Then, it determines, aMoNg the o — s e o ppr oo Seres
remaining replicas, the set of the candidates for possible re- Heuristic | 2.441 & 0.095 | 2.537 £ 0.283 0
moval,i.e., all those replicas which are not used to serve current = e
requests (line 3). Among these, it chooses to remove a replica Opti'mal — AL -
from a node; which serves the smallest set of access nodes [[ Heuristic | 2.480 £ 0.119 | 3.939 £ 0.192 | 0.038 £ 0.0048

(line 5). Choosing the replica which serves the smallest popula-
tion should minimize the likelihood to remove a replica which

is going to be added soon again. thand,,,..). Simulations results include the 99% confidence in-

terval computed over 100 simulations.
The results show that the heuristic is very close to the optimal
In this section we evaluate and compare the performancebgthavior. The placement scheme followed by the heuristic only
the proposed replica placement algorithms. For the optimehds to & — 4% increase in the average users-replica distance
replica placement, we computed the optimal policy by solvirgnd in the number of replicas over what is computed by the op-
the Markov decision model with MATLAB. For the heuristic timal strategy. Observe that even for these small experiments,
we wrote a simulator in C. The network topologies used in owe were not able to compute the optimal solution or= 2
experiments are reported in Figure 5. The thin lines dendts the larger topology (the number of states was 314928 which
slower links (with a weight of 2), the thick ones faster linksnultiplied by the number of decision results in about 2 million
(with a weight of 1). We considered the small topologies tof variables for the linear problem).
assess the heuristic effectiveness with respect to the optimal poln Table 11l we report the results for the large topology de-
icy. (Indeed only for such smaller cases we were able to cogeribed in Figure 5 (c), which includes 24 access nodes and 7

V. NUMERICAL RESULTS

pute the optimal policy.) The larger topology, generated with
thegt-itm  topology generator, was used to test the heuristic
in a more realistic setting. In all simulations, we used the fol-
lowing parametersi = 2, Vi"WX=2 )¢ = 1/C andyu¢ = 1.
Moreover, we seC,,4in: = 1000, C* = C~ = 0. The values

TABLE Il
TOPOLOGY OFFIGURE 5 (C). HEURISTIC RESULTS.

MAX : : Cc=1 av. distance av. # of replica % not served
Of daq, Of V5" and the number of contents were varied in T —oo 1 5010 £ 0145 | 10438 L0313 0
the different experiments. dnras = 10 | 5.199 £0.169 | 10.414 & 0.430 0
The results for the small topologies are reported in table ||_daaz =8 | 4.708 £0.158 | 11.279 £ 0.662 0
i i X
and Il, respectively. In these experiments welsff* = 1 (at == v disance | av Fofteplica | 9% notserved
most one replica per site) ankl,,, = 3. For the comparison, driaw — 00 | 5233 £0.165 | 11.180 £ 0.574 0
rather than reporting the cost function values, we separately rg- ¢se: =10 | 5286 £ 0.180 | 11.188 £0.628 | 0.06% + 0.05%
; ; : draw =8 | 4737 £0.105 | 12.770 £0.240 | 0.07% £ 0.17%
ported the values of the three major factors which contribute tg
the cost, namely, the average distance from a request to the sefy- c=4 av. distance av. # of replica % not served
ing replica, the average number of replicas, and the fraction of 4aa» = | 5.407£0.111 | 11.252 £0.428 _0
h. h t d (e.ther beca senos Ch re |;"‘dMaI =10 5.406 4+ 0.102 11.522 + 0.682 0.06% + 0.07%
requests which were not served (el u u P&, .., =8 | 4.833 £0.103 | 14.637 £0.476 | 1.36% & 0.79%

existed or because the closest available replica was further away




® generic node

O access node

replica node

(@) (b)

Fig. 5. NETWORK TOPOLOGIES USED IN THESIMULATIONS.

replica nodes, foc = 1,2 and 4 andd,,,, = o0,10 and 8. requests that cannot be served.
In all these experiments, we sEf"X = 3. We observe that, On-going research activity is devoted to the design of dis-
asd,,q, decreases, the average number of used replicas andtthrited heuristics, to the development of a simulation frame-
probability of not serving user requests increases while the awerk for the comparison with the solutions so far proposed in
erage distance decreases. This reflects the need to place rtt@diterature, and to the extension of the performance evalua-
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replica allocation schemes dynamically placing and removing
replicas in response to changing users demand. By assuming
the users requests dynamics to obey to a Markovian model we
have first formulated the dynamic replica placement problem as
a Markovian decision process. This allowed us to identify an op-
timal policy for dynamic replica placement that can be used as
a benchmark for heuristics evaluation and provides insights on
how allocation and deallocation should be performed. Based on
the findings obtained through the analytical model we derived
and evaluated a centralized heuristic which allocates and deallo-
cates replicas to reflect the requests traffic dynamics, the costs of
adding, deleting and maintaining replicas, the servers load and
storage limits, and the requirements on the maximum distance
of the users from the ‘best replica’. The heuristic performance
evaluation has shown that the heuristic behavior is very close
to that of the optimal placement strategy, and that the heuristic
results in good performance in terms of low average number of
replicas, low user-replica average distance and low number of
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