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Abstract

Overload control is a challenging problem for web-based applications, which are
often prone to unexpected surges of traffic. Existing solutions are still far from
guaranteeing the necessary responsiveness under rapidly changing operative con-
ditions. We contribute an original Self-* Overload Control (SOC) algorithm that
self-configures a dynamic constraint on the rate of incoming new sessions in order
to guarantee the fulfillment of the quality requirements specified in a Service Level
Agreement (SLA). Our algorithm is based on a measurement activity that makes
the system capable of self-learning and self-configuring even in the case of rapidly
changing traffic scenarios, dynamic resource provisioning or server faults. Unlike
other approaches, our proposal does not require any prior information about the
incoming traffic, or any manual configuration of key parameters.

We ran extensive simulations under a wide range of operating conditions. The ex-
periments show how the proposed system self-protects from overload, meeting SLA
requirements even under intense workload variations. Moreover, it rapidly adapts
to unexpected changes in available capacity, as in the case of faults or voluntary ar-
chitectural adjustments. Performance comparisons with other previously proposed
approaches show that our algorithm has better performance and more stable be-
havior.
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1 Introduction

Quality of Service (QoS) management for web-based applications is typically
considered a problem of system sizing: sufficient resources are to be provi-
sioned to meet quality of service requirements under a wide range of operat-
ing conditions. While this approach is beneficial in making site performance
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satisfactory in most common working situations, it still leaves the site unable
to face sudden and unexpected surges in traffic. In these situations, in fact,
it is impossible to predict the intensity of the overload. The architecture in
use, although over-dimensioned, may not be sufficient to meet the desired QoS
under every possible traffic scenario. For this reason, unexpected increases in
requests and, above all, flash crowds are considered the bane of every internet
based application.

Due to the ineffectiveness of static resource over-provisioning, several alter-
native approaches have been proposed for overload management in web sys-
tems, such as dynamic provisioning, dynamic content adaptation, performance
degradation and admission control. Most of the previously proposed work on
this topic relies on laborious parameter-tuning and manual configuration that
preclude fast adaptation of the control policies.

This study is motivated by the need to formulate a fast reactive and au-
tonomous approach to admission control. We contribute an original Self-*
Overload Control algorithm (SOC) that, as the name suggests, has some fun-
damental autonomic properties, namely self-configuration, self-adaptation and
self-protection.

The proposed algorithm is designed to be adopted by web cluster dispatch-
ing points (DP) and does not require any modification of the client and/or
server software. DPs intercept requests and make decisions to block or accept
incoming new sessions to meet the service level requirements detailed in a
Service Level Agreement (SLA). Decisions whether to accept or refuse new
sessions are made on the basis of a dynamically adjusted constraint on the
admission rate. This constraint is updated and kept consistent with system
capacity and time-varying traffic behavior by means of an autonomous and
continuous self-learning activity. This latter is of primary importance if human
supervision is to be avoided. In particular, the proposed system is capable of
self-configuring its component level parameters according to performance re-
quirements. It rapidly adapts its configuration even under time-varying system
capacity as in the case of server faults and recovery, or during runtime system
maintenance. Furthermore, it self-protects from overloads by autonomously
tuning its own responsiveness.

Unlike previous solutions, our approach ensures the reactivity necessary to
deal with flash crowds. These are detected as soon as they arise by a simple
change detection mechanism. The faster the traffic changes, the higher the
rate of policy updates. This rate will be set back to lower values when the
workload conditions return to normality.

Our proposal is oriented to the management of web-based traffic, and for this
reason provides admission control at session granularity. Nevertheless, it does
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not require any prior knowledge about incoming traffic, and can be applied to
non-session based traffic as well.

We designed a synthetic traffic generator, based on two industrial standard
benchmarks, namely SPECWEB2005 and TPC-W, which we used to run sim-
ulations under a wide range of operating conditions. We compared SOC with
other commonly adopted approaches: it turns out that SOC is superior to
previous solutions in terms of performance and stability even in the presence
of flash crowds.

A wide range of experiments have been conducted to test the sensitivity of
the proposed solution to the configuration of the few start-up parameters. The
experiments show that the behavior of our policy is not dependent on initial
parameter setting, while other policies achieve an acceptable performance only
when perfectly tuned and in very stable scenarios.

The experiments also highlight the ability of the system to react autonomously
to flash crowds, server faults and runtime capacity adjustments, which, to the
best of our knowledge, were never addressed by other previously proposed
policies.

Our paper is organized as follows: in section 2 we formulate the problem of
overload control in distributed web systems. In section 3 we sketch the basic
actions of the proposed overload control policy. In section 4 we introduce our
algorithm in deeper detail and in Section 5 we explain the self-learning mech-
anism at the basis of our approach. In section 6 we introduce some previous
proposals that we compare with our own in section 7. Section 8 outlines the
state of the art of admission control in autonomic distributed web systems
while section 9 sets forth our conclusions.

2 The problem

We tackle the problem of admission control for web based services. In this con-
text, the user interacts with the application by issuing a sequence of requests
and waiting for the related responses. Such requests are logically related and
form a so-called navigation session. As justified by [1, 2] we make the admis-
sion control work at session granularity, i.e., requests belonging to admitted
sessions are never filtered by the admission controller.

Since the system should promptly react to traffic anomalies, any type of solu-
tion that requires human intervention is to be excluded. For this reason we ad-
dress this problem by applying the autonomic computing [3] design paradigm.
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Fig. 1. Three tier architecture of a web cluster

We consider a multi-tier architecture [4, 5]. Each request may involve execu-
tion at different tiers. The most typical example of such an architecture is
the three-tier cluster organization, where pure http requests involve the http
server tier, servlet requests involve the application tier, while database re-
quests reach the third tier requiring the execution of a query to a database.
The reference architecture is shown in figure 1. Each tier may be composed
of several replicated servers, while a front-end dispatcher hosts the admission
control and dispatch module. The processing time of requests at different tiers
may vary significantly.

The quality of service of web applications is usually regulated by an SLA.
Although our work may be applied to different formulations of the SLA, we
introduce the following one that takes into account the heterogeneity of the
cluster tiers:

• RT i
SLA : maximum acceptable value of the 95th percentile of the response

time for requests of type i ∈ {1, 2, . . . , K}, where K is the number of cluster
tiers;

• λSLA: minimum guaranteed admission rate. If λin(t) is the rate of incoming
sessions, and λadm(t) is the rate of admitted sessions, this agreement imposes
that λadm(t) ≥ min{λin(t), λSLA};

• TSLA: observation interval between two subsequent verifications of the SLA
constraints.

Meeting these quality requirements under sudden traffic variations, dynamic
capacity changes or even faults, requires novel techniques that guarantee the
necessary responsiveness. In such cases, respecting the agreement on response
time is a challenging problem. Some other performance issues arise as well,
such as the necessity of avoiding the oscillatory behavior that typically affects
some previous proposals, as we show in the experimental section 7.

3 The idea

We designed SOC, a session-based admission control policy that dynamically
self-configures a constraint on the incoming rate of new sessions. This con-
straint corresponds to the maximum load that the system can sustain without
violating the agreements on the quality of service. It cannot be set off-line
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because it depends on the particular traffic rate and profile that the system
has to face. Indeed, the same session rate may induce very different workloads
on the system and dramatically different response times.

In order to make our proposal work without any prior assumptions about
incoming traffic, we introduce a self-learning activity that makes the system
aware of its capacity to sustain each particular traffic profile as the profile is
when it comes. To this purpose, we make the system measure the relation-
ship between the rate of admitted sessions and the corresponding measure of
response time. By accurately processing raw measurements, the system can
“learn” the maximum session admission rate that can be adopted in obser-
vance of the SLA requirements. A proper admission probability is therefore
calculated considering the incoming session rate and the maximum tolerable
rate.

Our algorithm is sketched in figure 2. SOC works in two modes, namely
normal mode and flash crowd management mode, switching from one to the
other according to the traffic scenario under observation. During stable load
situations the system works in the normal mode and performance controls are
regularly paced at time intervals of length T SOC

AC . If a sudden change in traffic
scenario is detected, the system enters the flash crowd management mode,
during which policy updates are made at every new session arrival in order
to control the overload. The introduction of this mode ensures accuracy and
responsiveness at the same time.

As soon as the overload is under control, the system goes back to the normal
mode and starts again performing periodic updates of the admission policy
and of the knowledge basis.

Under both modes, capacity changes may occur at runtime, as a consequence
of server failures or maintenance operations. The system is informed regard-
ing the occurrence of such events because either a server does not reply as
requested, as in the case of server failures, or an explicit message comes from
the administrator who is performing maintenance procedures.

In both cases, the acquired knowledge is scaled and reinterpreted on the ba-
sis of the available information regarding the occurred capacity change. This
makes our system capable of working jointly with another overload control
technique: dynamic provisioning [6].

According to our proposal, the admission controller should operate at the ap-
plication level of the protocol stack. This is because session information is
necessary to discriminate which requests are to be accepted (namely requests
belonging to already ongoing sessions), and which can be refused (requests
that imply the creation of a new session). The cluster dispatcher can dis-
criminate between new requests and requests belonging to ongoing sessions
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Fig. 2. Self-* Overload Control (SOC) algorithm

because either a cookie or an http parameter is appended to the request. This
technique ensures two important benefits: 1) the admission controller can be
implemented on DPs, and does not require any modification of client and
server software, 2) the dispatcher can immediately respond to non-admitted
requests, sending an “I am busy” page to inform the client of the overload
situation. This avoids the expiration of protocol time-outs affecting the user-
perceived performance and also mitigates the retrial phenomenon.

4 Self-* Overload Control (SOC) Policy

SOC provides a probabilistic admission control mechanism which filters in-
coming sessions according to an adaptive rate limit λ∗. This limit is calculated
on the basis of the information gathered during a continuous self-learning ac-
tivity. In order to perform this activity, the system takes measurements to
learn the relationship between the observed Response Time (RT) and the rate
of admitted sessions. The value of λ∗ is then calculated as the highest rate
that the site can support without violating the constraints on the response
time defined in the SLAs. The admission control policy is then formulated
by varying the admission probability according to a prediction of the future
workload and to the estimated value of λ∗.

As described in figure 2, algorithm actions are triggered by different events.
Under normal mode, new sessions, whose arrival determines the event New Session,
are blocked by the admission controller with a given probability. In this mode,
the system continuously takes raw measurements related to the session interar-
rival time and to the response time of requests belonging to admitted sessions.
The clock tick, identified by the event TICK, makes the system process the raw
measurements and update the knowledge basis (self-learning activity). After
this knowledge update, the system calculates a new upper limit on the ses-
sion rate and consequently a new admission probability. The detection of a
traffic surge, associated to the event Flash Crowd, brings the system to the
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flash crowd mode. Under this second operative mode the system adjusts the
admission probability at each event New Session (i.e. much more frequently
than in the normal mode). Notice that the system is not allowed to alter the
knowledge basis when working in the flash crowd mode, given the sudden
variability of the observed traffic pattern. When the system detects that the
flash crowd is under control, in correspondence to the event Normal Traffic,
the algorithm switches back to normal mode. Under both modes, the events
Maintenance and Fault/Recovery cause the execution of a knowledge scaling
procedure as described in section 5.3.

The transition between the two modes is regulated by a change detection
mechanism and may occur at any time t from the start of the current iteration
(last TICK event).

In order to describe this mechanism, we introduce some notations. We denote
by N the number of admitted sessions in the last t seconds. We also denote by
σλ the standard deviation of the admitted rate observed at runtime when the
admission control is actually blocking some traffic. The parameter σλ measures
the intensity of the inherent variability of the admitted rate λadm.

The system switches from normal to flash crowd mode if both the following
conditions are met:

• the currently admitted rate exceeds the limit λ∗ by q times the measured
standard deviation of the admitted rate, that is ((N/t) > (λ∗ + q · σλ)),

• N exceeds the expectations for a single iteration, that is (N > λ∗ · T SOC
AC ),

where the second condition is introduced as a complement to the first, to
avoid the occurrence of change detections in consequence of occasionally short
interarrival times between subsequent sessions.

The system returns to normal mode only when the instantaneous rate of ad-
mitted sessions returns under the limit λ∗. In this case we can assume the
unexpected surge is under control and the policy can return to normal mode,
during which performance controls are paced at a slower and regular rate.

4.1 Normal mode

Under the normal operative mode, described in the left block of figure 2, the
system admits new sessions with a probability that is updated every T SOC

AC

seconds, that is, at each TICK event. This probability update is necessary to
ensure the fulfillment of the SLA under time varying traffic conditions. The
update mechanism works on the basis of the information made available by
the self-learning activity detailed in section 5.
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This mode provides a probabilistic session admission control. At the beginning
of the n-th iteration, the admission probability p(n) is calculated on the basis
of a prediction of the system capacity to serve incoming traffic in observance of
the SLA requirements. To this end the system estimates the future incoming
session rate λ̂in(n) and the maximum rate λ∗(n) that it can sustain without
violating the agreements under the observed traffic profile.

The estimate of the incoming session rate λ̂in(n), for the next iteration interval
[tn, tn+1), is obtained by means of an exponential moving average with weight
α = 0.5.

We assume that an estimate of the current session arrival rate λ̂in(n) can be
calculated as follows λ̂in(n) = αλin(n− 1) + (1−α)λ̂in(n− 1). The algorithm
is sufficiently robust to possible false predictions, as they will be corrected at
the next iterations, making use of updated statistics. Notice that although a
complete analysis of the sensitivity of this load prediction is out of the scope
of this paper, experiments have been conducted by using prediction based on
only instantaneous values of the interarrival session rate, with similar results.
The introduction of the exponential average only reduces the noise in the
measurements.

In order to estimate the upper limit λ∗(n) of the incoming session rate to be
adopted to meet the agreements, the algorithm makes use of the information
collected by means of the self-learning activity. For the sake of clarity, we defer
the description of this activity to section 5. In this section we only say that,
through this activity, the system obtains an updated estimate of the functions
that relate the admitted session rate λadm and the response time RT i at each
tier i, i = 1, . . . , K. We indicate such functions by f̂ i

(n)(λ), as calculated at the
n-th iteration.

The upper limit λ∗(n) is obtained by inverting the functions f̂ i
(n)(λ) in corre-

spondence to the value of the maximum tolerable response time RT i
SLA spec-

ified in the SLA and calculating λ∗(n) = mini=1,...,K λ∗
i (n), where λ∗

i (n) =

f̂ i−1

(n) (RT i
SLA).

The DP can configure the session admission probability according to the fore-
cast of incoming traffic given by λ̂in(n) and admit new sessions with proba-
bility p(n) = min{1, λ∗(n)/λ̂in(n)}.

This on-line self-tuning of the admission probability has several benefits. On
the one hand, the highest possible rate of incoming sessions is admitted. On the
other hand, it prevents the system from being overloaded, by quickly reducing
the admission probability as the traffic grows.

The initial parameter setting of our algorithm has little impact on its perfor-
mance thanks to its self-configuration and self-adaptation capabilities. Indeed,
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even if the starting setup is incorrect, the self-learning activity will soon create
the knowledge basis needed to adapt the algorithm configuration. As initial
setting we use p(0) = 1 and continue admitting all incoming sessions until the
first estimate of f̂ i

(n)(λ) becomes available.

4.2 Flash crowd mode

The flash crowd mode is introduced when incoming traffic shows a sudden
surge, possibly related to the occurrence of a flash crowd. This mode is de-
scribed in the right block of figure 2. Its execution makes statistical metrics be
updated every time a new session is admitted, thus ensuring both reactivity
and adaptivity.

Although statistical metrics are updated at each session arrival, no learning
mechanism is activated in flash crowd management mode, due to the high
variability of incoming traffic. The purpose of statistical metrics updating
is the continuous monitoring of the intensity of incoming traffic λin. This
value is used to update the admission probability p(n) accordingly, by setting
p(n) = λ∗/λin.

In flash crowd mode, all statistical metrics are calculated over a moving win-
dow which comprises the set of the last ⌊λ∗ · T SOC

AC ⌋ admitted sessions. The
higher the incoming session rate λin, the smaller the time interval during
which the statistical metrics are calculated, thus ensuring system reactivity
without compromising the reliability of the measurements.

5 Self-learning activity

The aim of this self-learning activity is to store and update information re-
garding the functions f̂ i

(n)(·). These functions represent an estimate of the rela-
tionship between the observed traffic rate λadm and the corresponding response
time RT i, i = 1, . . . , K at each tier. This activity is of primary importance
for determining the autonomous behavior of SOC. It is performed at runtime
when the system is working in normal operative mode and is made possible by
the continuous collection of raw measurements related to session interarrival
time and to request execution time.

All actions mandated by the normal operative mode are iteratively executed
at regular time intervals of the same length as the admission control period,
that is, T SOC

AC seconds.
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5.1 Measurement analysis

During each iteration the system takes measurements of the response time of
the different tiers. It should be noted that request differentiation occurs only
for measurement purposes, that is, after the request execution. For this reason
it occurs without mis-classification problems.

We define T n
i as the set of raw measurements of response time for requests of

type i, i ∈ {1, 2, . . . , K} taken during the n-th iteration interval [tn, tn+1) of
length T SOC

AC .

At the end of each iteration, the system calculates the following statistical
metrics:

• RT i
n, that is, the 95th percentile of the set T n

i , for i ∈ {1, 2, . . . , K};
• λin(n), that is, the average incoming rate of new sessions observed during

the time interval [tn, tn+1);
• λadm(n), that is, the average rate of admitted sessions during the time inter-

val [tn, tn+1).

It should be emphasized that a statistical metric calculated from samples
of raw measurements taken during a single iteration interval is insufficiently
reliable for two reasons. First, workload is subject to variations that may
cause transient effects. Second, the number of samples may not be sufficient
to ensure an acceptable confidence level. The use of longer sampling periods
may allow the collection of more numerous samples, but it is impossible to
define the length of such a period for any possible traffic situation. Indeed,
the incoming workload may change before a sufficiently representative set of
samples is available. Moreover, too long a sampling period may lead to the
low responsiveness of the admission policy.

The idea at the basis of our proposal is to collect these statistics under the
range of workload levels observed during the past history of the system.

With this aim, let us consider the set of stat pairs:
Ri , {(λadm(n), RT i

n), n ∈ {0, 1, . . .}}.

We partition the Cartesian plane into rectangular intervals, named slices, of
length lλ along the λadm axis, as shown in figure 3. In the experimental section
7.1, we show that experiments prove the independence of the algorithm perfor-
mance from the initial setting of lλ. This is due to the aggregation technique
that we detail as follows.

For every interval [(k−1)lλ; klλ), with k = 1, 2, . . . we define P i
k = {(λadm, RT i)|λadm ∈

[(k − 1)lλ; klλ)} that is the set of i-th tier stat pairs lying in the k-th slice.
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Then we calculate the barycenter Bi
k = (λB

k , RT Bi
k ) of the k-th interval as the

point with average coordinates over the set P i
k. In particular,

Bi
k ,

( ∑

(λz ,RT i
z)∈Pi

k

λz/|P
i
k|,

∑

(λz ,RT i
z)∈Pi

k

RT i
z/|P

i
k|

)

for each tier i, where i ∈ {1, 2, . . . , K}.

An interval has no barycenter if P i
k = ∅.

Figure 3 shows the collected stat pairs taken at run-time at the database
tier of a typical scenario. It also highlights the barycenters for each interval.
This picture shows the curve labeled RT curve obtained through offline bench-
marks in order to give a visual representation of the ideal curve that would
be constructed in case of perfect knowledge.

Every time a new point is added to a set P i
k, the system updates the cardi-

nality of the set being modified, and recalculates the related barycenter. It
should be noted that this update is performed for only one set at a time (sets
that have not been modified do not require statistic updates) and is incre-
mentally calculated with respect to a short statistical representation named
barycenter summary. The use of such a summary avoids computational and
storage costs that the system would incur if all pairs had to be considered.
In particular the summary of the barycenter Bi

k is composed of the tuple
< (λB

k , RT Bi
k ), ( σλ(B

i
k), σRT (Bi

k)), N(Bi
k) > where the first element repre-

sents the barycenter coordinates, the second element is the standard devia-
tion in both coordinates, and the third element is the cardinality of the related
slice, that is, N(Bi

k) = |P i
k|.

We note that not all barycenters are alike in terms of representativeness and
reliability. We quantitatively evaluate their representativeness in terms of stan-
dard error in both coordinates. Barycenters calculated with a standard error
lower than terr in any coordinate are considered reliable, while the others are
discarded. In particular we consider a barycenter Bi

k reliable if:

max
{

σλ(B
i
k)√

N(Bi
k)

,
σRT (Bi

k)√
N(Bi

k)

}
≤ terr.

It should be emphasized that other metrics of reliability can be introduced in-
stead of the standard error without significant impact on the proposed method-
ology. In a previous study [7] we had already achieved appreciable results by
considering a measure of reliability as simple as the cardinality N(Bi

k).
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Fig. 4. Aggregated slice barycenters

5.2 Curve construction

Let Bi be the set of reliable barycenters for the i-th tier, ordered on the basis
of the first coordinate λadm. Since we know that the relation between λadm and
RT i is monotonically not decreasing, we can assume that if two subsequent
barycenters of Bi do not satisfy this basic monotonicity property, the corre-
sponding slices can be aggregated to improve measurement reliability. To this
end the sets of stat pairs related to the corresponding intervals are aggregated
and a new barycenter is calculated for the aggregated slice. The slice aggre-
gation process continues until Bi contains only barycenters in growing order
in both the coordinates, as shown in figure 4. We note that this procedure
permits a further validation of the measurements, in addition to the previ-
ously performed test on the standard error values. This makes our proposal
less sensitive to the particular barycenter reliability metric in use.

After a few aggregations, the function fi(·) that relates λadm and RT i is es-
timated by means of linear interpolation of the set Bi, thus obtaining the
piecewise linear function f̂ i

(n)(·), where the subscript (n) stands for the iter-
ation step at which the estimate is updated. In particular, the interpolation
between the last two points is extended to provide at least a rough estimate
even for values of λadm that are greater than those actually sampled.

For the start-up setting of the curve construction phase, we use Bi = {P i
bench},

where P i
bench = (0, RT i

bench) represents a lower bound on the 95th percentile
of the response times of type i requests. This point is the 95th percentile of
response time measured at the i-th tier, when the system is in a completely
idle state, that is when λadm=̃0. In order to calculate the average response
time in such a situation, we use an offline benchmark, obtaining the points
P i
bench = (0, RT i

bench), i ∈ {1, 2, . . . , K}.

The proper setting of the points P i
bench is not a key point in the algorithm,

since as self-learning activity progresses, more measures are available to build
f̂ i

(n)(·) with growing accuracy.
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Due to the frequent updates, the constructed curve constitutes a highly dy-
namic structure that continuously adapts itself to changing workload situa-
tions. The function f̂ i

(n)(·) can be used to obtain a prediction of the response
time corresponding to any possible incoming workload rate.

We note that the use of common regression techniques as an alternative to
linear interpolation is inadvisable, because it would require a prior assumption
about the type of functions being parametrized for the regression. Experiments
conducted using different traffic profiles (e.g., with SPECWEB2005 [8] and
TPC-W [9] oriented traffic generators) show that, apart from monotonicity,
no other structural property is generally valid for all possible traffic scenarios.
This would make it difficult to choose the correct type of regression (e.g.
polynomial, exponential, power law).

5.3 Self-learning in the case of capacity variations

The resource availability of a web cluster may vary over time for several rea-
sons. For example, capacity variations may occur when service providers rein-
force the server pool by adding new servers or substituting old ones. Dynamic
provisioning schemes may imply autonomous architectural readjustments [6]
as well. Lastly, resource unavailability may occur as a consequence of server
failures.

This self-learning activity needs to take this variability into account since it
means it is necessary to update the learned information on the basis of the
new resource configuration.

Before the system collects sufficient measurements reliably to update self-
learned information, there is a time interval during which an insufficient num-
ber of post-capacity variation measurements are available to reliably construct
the functions f̂ i

(n)(·). For this reason, we let the system use the information
gathered prior to the capacity change by scaling it proportionally to the degree
of the capacity variation.

We assume the existence of a mechanism appropriate to permit the system to
detect a capacity variation and its extent as soon as it occurs. Let Cpre and
Cpost be the initial and final capacity respectively, in terms of capacity units.
Note that the concept of capacity unit does not imply server uniformity. Each
server capacity can be measured in terms of capacity units by executing an
offline benchmark before the addition of the server to the cluster. We measure
the extent of the capacity variation by means of the ratio ρ , Cpost/Cpre. This
ratio is used to scale the knowledge basis constructed before the variation.

We remind the reader that each barycenter is associated with a summary of
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its statistic properties, namely coordinates, standard deviation and cardinal-
ity of the related slice. The scaling procedure consists of constructing a new
set Bi

ρ by scaling the values of the barycenter summaries for all barycen-
ters in Bi. In particular, the barycenter Bi

k, summarized by the tuple <
(λB

k , RT Bi
k ), ( σλ(B

i
k), σRT (Bi

k)), N(Bi
k) >, is scaled to the barycenter Bi

kρ

with the summary < s1, s2, s3 >, where:

s1 = (ρλB
k , RT Bi

k );

s2 = (ρσλ(B
i
k), σRT (Bi

k));

s3 = max





[
ρσλ(B

i
k)

terr

]2

,

[
σRT (Bi

k)

terr

]2


 .

Note that the value of s3 is chosen as the minimum cardinality that still ensures
barycenter reliability. In this way, the scaled knowledge basis is responsive to
the addition of new measurements that will either confirm or invalid barycenter
reliability.

6 Other admission control strategies

In this section we describe other previously proposed QoS policies, and make
performance comparisons in the next section. These policies can be formulated
in a variety of ways depending on the performance objective under considera-
tion. We limit our analysis to the optimization of response time, since this is
closely related to user perceptions of quality.

6.1 Threshold-based admission control

Fixed threshold policies have been proposed in many fields of computer sci-
ence, and in particular for web applications with several variants [1, 10, 11].

According to the Threshold Based Admission Control (TBAC) policy, the DP
makes periodic evaluations of the 95th percentile of response time of each tier,
every T TBAC

AC seconds. If there is at least one tier for which the 95th percentile
of response time exceeds a threshold RT TBAC, the DP rejects new sessions and
only accepts requests that belong to ongoing sessions.

On the contrary, if the value of the 95th percentile of response time at each tier
is lower than RT TBAC, all new sessions are accepted for the next T TBAC

AC seconds.

Similarly to all threshold-based policies, this policy implies a typical on/off
behavior of the admission controller, causing unacceptable response time os-
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cillations. Furthermore, its performance is particularly sensitive to parameter
set-up (i.e., the choice of the threshold RT TBAC and of the period between
two succeeding decisions T TBAC

AC ). For this reason it cannot be used in traffic
scenarios characterized by highly variable workloads.

6.2 Probabilistic Admission Control

The Probabilistic Admission Control (PAC) is a well known technique in con-
trol theory and is commonly used when oscillations need to be avoided. This
policy was proposed for Internet services in [12], while a similar version was
also proposed for web systems in [13].

According to this policy, a new session is admitted with a certain probability
whose value depends on the measured response time. Every T PAC

AC seconds, at
the n-th iteration, the DP evaluates the 95th percentile of response time of
each tier, RT i

n, i = 1, . . . , K, and compares it with two thresholds, RT PAC
low and

RT PAC
high.

The session admission probability is a piece-wise linear function of RT i
n for-

mulated as follows: p(n+1) = mini=1,...,K pi(RT i
n), where pi(RT i

n), abbreviated
with pn

i , has the following value:

pn
i =





1 if RT i
n ≤ RT PAC

low

RT PAC
high−RT i

n

RT PAC
high−RT PAC

low

if RT PAC
low < RT i

n ≤ RT PAC
high

0 if RT i
n > RT PAC

high

(1)

Note that the two threshold values RT PAC
high and RT PAC

low that characterize this
policy are arbitrarily set offline independently of the observed incoming session
rate and of the time T PAC

AC between two succeeding decisions. As we show in
section 7, the performance of this policy is heavily dependent on the proper
tuning of these parameters.

7 Simulation Results

In this section we present a comparative analysis of the SOC, TBAC and PAC
policies. We also conduct a performance study of the SOC policy under several
working scenarios. This serves to evidence its stability and its capabilities to
react promptly to sudden workload changes and capacity variations.

We developed a simulator on the basis of the OPNET modeler software [14].
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In our simulation setting, we assume that the interarrival time of new sessions
follows a negative exponential distribution with average 1/λin. The interarrival
time of requests belonging to the same session is more complex and follows
the phase model of an industrial standard benchmark: SPECWEB2005 [8].

Upon reception of a response, the next request is sent after a think-time inter-
val Tthink. Our model of Tthink is based on TPC-W [9,15] and on other studies
in the area of web traffic analysis such as [16]. As in the TPC-W model, we
assume an exponential distribution of think times with a lower bound of 1
sec. Therefore Tthink = max{− log(r)µ, 1} where r is uniformly distributed
over the interval [0,1] and µ = 10 sec.

To model user behavior realistically, we also introduce a timeout representing
the maximum response time tolerable by users. If the timeout expires before
the reception of a response, the client abandons the system.

In our experiments we refer to a typical three-tier cluster organization such as
the one depicted in figure 1.

We map each phase of the session state model onto a specific tier of the three
available ones.

We use an approximate estimate of the average processing times of the different
tiers on the basis of the experiments detailed in [10]. We assume each session
phase requires an exponentially distributed execution time set as follows: the
average execution times of pure http, servlet and database requests are 0.001
sec, 0.01 sec and 1 sec, respectively.

For the sake of brevity, we conduct our analysis on the database tier which
is the bottleneck of the architecture considered in these simulations. Thus we
simplify the previously introduced notation leaving out the tier index. This
way the limit on the database response time defined in the SLA is indicated
with RTSLA.

Unless stated otherwise, all the experiments of this section are conducted
with 20 application servers, a client timeout of 8 sec and RTSLA = 5 sec. The
fixed threshold T TBAC

AC of the TBAC policy is set in agreement with the SLA
constraints on the 95th percentile of database response time, therefore T TBAC

AC

= RTSLA. The thresholds of the PAC policy are set as follows: T PAC
low = 3 sec

and T PAC
high = RTSLA, in agreement with SLA constraints.
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7.1 Parameter sensitivity

This set of experiments is introduced to study the sensitivity of these policies
to the parameter setting. The focus of this study is two key parameters: the
length of the admission control period TAC, common to the three policies under
consideration, and the amplitude of the intervals partitioning the λadm axis, lλ,
used in in the SOC policy proposed in this paper.

7.1.1 Sensitivity to the setting of T SOC

AC

The aim of these experiments is to study the performance sensitivity of SOC
to the TAC parameter, that is, the length of the admission control period.

Figures 5 and 6 show that the performance of the SOC policy does not vary
significantly with variations in TAC. The same cannot be said for the other two
policies, TBAC and PAC. To understand the reasons for the different behavior
of the three policies, let us first consider the case of SOC. For short values of
TAC, statistical metrics are calculated frequently on the basis of poor sets of
raw measurements. The low confidence level of such metrics is compensated
by the high number of points that are used to construct the set of barycenters
B.

Such points contribute to the quantitative evaluation of the reliability measure
defined on the set of barycenters. The choice of reliable barycenters allows our
algorithm to reconstruct the correct relationship between the rate of admitted
sessions and the 95th percentile of response time and then to find the maximum
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admission rate that can be adopted while still respecting quality agreements.
With increasing TAC, fewer points are available for the construction of the curve
set. In this case, although the curve set is constructed on the basis of a smaller
number of points, it still permits a good estimate of the maximum adoptable
admission rate because these points have a higher confidence level.

Although the period between subsequent decisions is a parameter that requires
manual sizing, this set of experiments shows that there is no need to perform
fine and laborious tuning, since the behavior of the SOC policy is almost the
same for a wide range of values of this parameter.

The TBAC and PAC policy obviously benefit from shorter periods between
successive decisions. Short decision periods make the system capable of rapidly
correcting wrong decisions and of reacting to workload changes. By contrast,
long decision periods induce more intense oscillations in the case of high loads,
and cause scarce utilization in low load situations.

The TBAC and PAC policies take advantage of short periods, while the SOC
policy is virtually independent of this setting. Thus, in order to compare the
three policies fairly we use the following parameter setting for the subsequent
experiments: T TBAC

AC = T PAC
AC = 10 sec, which is a sufficiently short period to

allow the TBAC and PAC policies to work optimally. Since this setting has no
impact on the behavior of the SOC policy, we set T SOC

AC = 60 sec. This relieves
the system of the unnecessarily frequent decisions that would be made with
shorter inter-observation periods.

7.1.2 Sensitivity to the setting of lλ

The SOC policy proposed in this paper, requires manual definition of the lλ
parameter, that is, the amplitude of the intervals partitioning the λadm axis.
The purpose of these experiments is to show that the setting of this parameter
does not influence the performance of our policy, permitting a correct self-
configuration of the optimum admission rate λ∗ under a wide range of values
of lλ. To this end, we analyzed performance in terms of 95th percentile of
response time and session admission probability, varying the amplitude of the
intervals. Moreover, we considered three different architectures with 10, 20
and 30 application servers, respectively.

Figure 7 shows the measured 95th percentile of response time as a function of
lλ. This figure highlights how the SOC policy can meet the SLA independently
of the amplitude of the intervals and also under different system capacities.
Figure 8 reveals that manual tuning of the lλ is not labor-intensive because
the system behaves properly under a wide range of values.

Moreover, the slice aggregation technique further reduces the dependency of
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SOC behavior on the tuning of this parameter. Indeed, the system is able to
self-configure a proper limit on the rate of admitted sessions, guaranteeing
the fulfillment of the SLA and an optimal utilization of system resources,
independently of the setting of lλ and system capacity.

As a conclusion of this set of experiments, we can state that although SOC is
based on the off-line configuration of lλ, this does not significantly reduce its
autonomy. In the following experiments we set lλ = 0.3, without significant
impact on the achieved results.

7.2 Performance under different SLA requirements

The purpose of this set of simulations (figure 9 and 10) is to test policy behav-
ior under different SLAs. We tested the SOC, TBAC and PAC policies under
six different values of the SLA threshold RTSLA, ranging from 3 to 8 seconds.
We set T TBAC

AC = T PAC
high = RTSLA, while T PAC

low = 3 sec. The incoming session rate
was set to λin = 2.3 sessions/sec.

Figures 9 and 10 show the 95th percentile of database response time and the
new session admission probability respectively. These figures underscore the
main drawbacks of the TBAC and PAC policies discussed earlier. In the case
of low threshold (3.5-6.5 seconds), TBAC does not prevent SLA violations,
while for higher thresholds it causes system under-utilization. This is demon-
strated by the trend of the session admission probability shown in figure 10:
too many sessions are accepted or refused for low and high SLA threshold val-
ues respectively. The same can be said for the PAC policy, for which figures 9
and 10 exhibit a SLA violation when RTSLA ≤ 4.5 and system under-utilization
for higher threshold values.

In contrast, our policy, instead, never violates the agreements. Indeed, thanks
to its learning capabilities, SOC properly adapts the admission probability to
the given performance requirements.
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7.3 Performance under different workload intensities

The aim of this set of results (figures 11 and 12) is to study the TBAC, PAC
and SOC policies under different system workloads.

The SOC policy correctly self-learns the relation between the response time
and the rate of admitted sessions, independently of the incoming workload.
Moreover, it self-optimizes resource utilization, admitting as many new ses-
sions as possible, and finding the highest admission rate that respects SLA
limits. On the one hand, as shown in figure 11, when traffic load is high, our
policy finds the suitable session arrival rate and admits as many sessions as
possible, while remaining within SLA limits. On the other hand, when traffic
is low, it accepts almost all incoming sessions, as figure 12 shows.

In contrast to SOC, non-adaptive policies such as TBAC and PAC typically
under-utilize system resources in low workload conditions, and violate QoS
agreements when the workload is high.

This behavior of the TBAC policy is due to its on/off nature. Even in a low
workload scenario, momentary peaks of requests can cause the DP to measure
high values of the 95th percentile of response time, possibly registering an SLA
violation for a short time interval. The TBAC policy reacts to this situation by
refusing all new sessions for one or even more intervals, likely causing system
under-utilization. The TBAC policy demonstrates performance problems in
high load scenarios as well. When measurements reveal that new sessions can
be admitted under SLA constraints, the TBAC policy admits all incoming
new sessions for the subsequent inter-observation period, possibly causing an
uncontrolled growth of the system load and oscillations of response time.

The PAC policy has similar problems, due to the way it calculates session
admission probability for the next interval. Equation (1) assumes a linear
dependence of response time on session admission probability. Given a value of
the 95th percentile of response time, the PAC policy selects the corresponding
value of the admission probability, independently of the incoming session rate.
However, this value may not be suited to different workload scenarios.
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Furthermore, this policy shows a high dependence on the tuning of the inter-
observation period. This parameter is of primary importance because session-
based admission decisions do not have an immediate effect on response time.
An incorrect tuning of this parameter leads to oscillatory policy behavior,
although less severe than in the case of the TBAC policy.

7.4 Performance stability

This set of results (figures 13 and 14) studies the problem of performance
stability over time. To this end we analyze how the number of active users
and the 95th percentile of response time vary over the simulation time.

The TBAC policy shows oscillatory behavior due to its on/off nature. The
PAC policy was introduced with the explicit goal of reducing the oscillatory
behavior that characterizes common threshold-based policies. Nonetheless, it
also shows a high variability of the number of active sessions and response
time.

One of the main reasons why these policies cannot guarantee stable behavior
is that the admission controller works at session granularity. In fact, an ad-
mitted session traverses the cluster tiers according to a given life-cycle phase
model, and for this reason it does not have an immediate impact on all clus-
ter tiers. At the same time, a decision to stop admitting new sessions has an
impact on perceived performance only after the end of a sufficient number of
sessions. This can lead the TBAC policy to accept all incoming sessions for
too many rounds before the measured response time exceeds the threshold.
Once the threshold is exceeded, this policy reacts by refusing all incoming
sessions. However, the response time remains over the threshold until the end
of a sufficient number of sessions. The PAC policy reduces the amplitude of
the oscillations compared with TBAC, but it does not solve this problem com-
pletely.

By contrast, the SOC policy maintains stable behavior for the response time
and the number of active sessions. Its self-learning activity makes it possible to
build a consolidated knowledge of system capacity relative to incoming traffic,
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which in turn is used to derive a good and stable estimation of the optimal
admission rate. Through the self-monitoring phase, the admission probability
is properly set with respect to the incoming load, thus stabilizing the number
of active sessions, and consequently the response time.

7.5 Performance under time varying traffic load

In the following experiments we studied the capabilities of SOC to react prop-
erly to sudden changes in incoming traffic, with and without activating the
flash crowd management mode described in section 4.2.

Figure 15 characterizes the traffic scenario of this set of experiments. It shows
a session arrival rate subject to several sudden surges of growing intensity.

In figures 16, 17, 18 and 19, the complete version of SOC with both modes
is named Flash Crowd Management (FCM). A basic version of SOC working
only in normal mode (that is, obtained by de-activating the change detection
mechanism) is called Base.

Figure 16 shows how the introduction of the flash crowd mode makes the
system capable of significantly mitigating spikes in response time caused by
the occurrence of flash crowds. In contrast, these spikes are evident in figure
17, which shows that without proper flash crowd management, a violation of
the service level agreements is unavoidable.

Figures 18 and 19 focus on the management of the flash crowd that occurs at
100000 seconds of simulations.

These figures highlight the increased reactivity of SOC when using flash crowd
management support. The Base version takes almost 40 seconds to discover the
occurrence of a flash crowd and consequently modify admission probability;
while the enhanced version reacts almost immediately.

Is is important to note the time-scale difference between figures 18 and 19, as
well as the fact that a 40 second delay in discovering a flash crowd implies
the system is in overload for almost 500 seconds. This is largely because the
admission controller works at session granularity.

In particular, figure 19 shows how the Base version of SOC is incapable of
managing such a flash crowd. This can be seen especially from the high values
of the 95th percentile of response time, which not only do violate SLA con-
straints but even exceed user time-out. This means that users are abandoning
the site due to poor performance or system unavailability. On the contrary,
the use of flash crowd mode makes the system capable of maintaining response
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time at acceptable levels by rapidly reducing session admission probability as
soon as the surge in demand is detected.

7.6 Run-time Capacity Variations

The following experiments demonstrate the behavior of our algorithm under
time-varying system capacity and stable traffic profile. In all the experiments
of this subsection we varied only the capacity of the database tier. The first two
tiers both maintained 10 equally equipped servers, whose average service time
was 0.001 sec and 0.01 sec respectively. We introduce three sets of experiments
conducted by increasing and decreasing the cluster capacity with homogeneous
and heterogeneous servers.

7.6.1 Cluster of homogeneous servers

We start our analysis with a set of experiments in which the available capacity
varies due to the addition of homogeneous servers. The number of servers at

23



 0

 1

 2

 3

 4

 5

 6

 7

 8

 40000  60000  80000 100000 120000 140000

 0

 10

 20

 30

 40

 50

E
st

im
at

ed
 o

pt
im

al
 a

dm
is

si
on

 r
at

e 
λ*

A
va

ila
bl

e 
se

rv
er

s

time (sec)

Estimated λ*

Available servers

Fig. 20. Rate limit
(homogeneous capac-
ity increase)

 0

 200

 400

 600

 800

 1000

 40000 60000 80000 100000 120000 140000

 0

 10

 20

 30

 40

 50

N
r.

 a
ct

iv
e 

se
ss

io
ns

A
va

ila
bl

e 
se

rv
er

s

time (sec)

Active sessions
Available servers

 0

 200

 400

 600

 800

 1000

 40000 60000 80000 100000 120000 140000

 0

 10

 20

 30

 40

 50

N
r.

 a
ct

iv
e 

se
ss

io
ns

A
va

ila
bl

e 
se

rv
er

s

time (sec)

Active sessions
Available servers

Fig. 21. Active ses-
sions (homogeneous
capacity increase)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 40000  60000  80000 100000 120000 140000

 0

 10

 20

 30

 40

 50

95
%

-il
e 

R
T

A
va

ila
bl

e 
se

rv
er

s

time (sec)

95%-ile RT
RTSLA

Available servers

Fig. 22. Response time
(homogeneous capac-
ity increase)

the database tier (initially set to 10) grows by ten units every 30000 seconds.
All the servers have an exponentially distributed service time whose average
value is 1 sec. The average session arrival rate is set to 6 sessions/sec.

Figure 20 shows that the estimated rate limit properly follows the increment
in the number of servers, and grows in proportion. This result is obtained
because of the scaling procedure introduced in section 5.3 .

Analogous results are detailed in figure 21, showing how the number of ac-
tive sessions in the system also grows proportionally to system capacity. Both
figures 20 and 21 enlighten the rapid reactivity of the algorithm to the new
system configuration. Figure 22 shows that although there is a significant
runtime change in cluster architecture and in session acceptance rate, SLA
requirements are always met. In fact, response time remains steadily close to
the SLA limit without perceivable variations even when architectural capac-
ity changes. This result is particularly important as it shows how capacity
improvements can be made at run-time in a way that is completely transpar-
ent to the user. Note that the variance of response time decreases with time
due to the increased rate of accepted sessions, leading to a more numerous
sample set.

7.6.2 Cluster of heterogeneous servers

We now introduce experiments conducted on a cluster of heterogeneous servers
for which we consider capacity variations at the database tier only. For sim-
plicity we divide the available servers into two types: top- and low-quality
servers. The capacity of a low-quality server is measured as 1 capacity unit,
and corresponds to an average execution time of 1 second per request (at
the database tier), while a top-quality server has two capacity units and a
corresponding average execution time of 0.5 seconds.

Maintenance

In this subsection we consider the case of runtime maintenance, where added
servers belong to the top type. The initial cluster configuration provides 20
servers, of which 10 are top- and 10 are low-quality servers (for a total of
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30 capacity units). The maintenance intervention consists in the addition of
10 top-quality servers after 60000 seconds (leading to a total of 50 capacity
units).

In this case the rough estimate of the new rate limit conducted with the
scaling procedure causes a momentary underestimation of the system capacity,
as seen in figure 23. After a short transient period learning activity causes
the acquisition of more reliable information, thus allowing a rapid correction
of the estimated rate limit. Figures 24 and 25 show how this momentary
underestimation causes a short period in which the system is slightly under-
utilized with respect to the agreements.

Fault

In this subsection we consider the case of an architectural fault, where a group
of servers suddenly becomes unavailable. We consider two scenarios, namely
the fault of a group of top-quality servers and the fault of a group of low-
quality servers. In both scenarios, the initial cluster configuration provides 30
servers of which 20 are top- and 10 are low-quality servers (for a total of 50
capacity units).

In the first scenario the fault causes the sudden unavailability of 10 low-quality
servers after 60000 seconds (leading to a total of 40 capacity units). In this
case the scaling procedure has effects similar to those described in the case of
maintenance, and causes a momentary underestimation of the system capacity,
as shown in figures 26, 27 and 28.

In the second scenario, the fault causes the sudden unavailability of 10 top
quality servers after 60000 seconds (leading to a total of 30 capacity units).
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In this case the scaling procedure produces a momentary overestimation of
system capacity and a slight temporary violation of the agreements on quality
for a very short transient period as depicted in figures 29, 30 and 31. Nev-
ertheless, the self-learning capabilities of the proposed algorithm allow rapid
correction of the estimated capacity and quick adaptation of the admission
control policy to return the system to SLA constraints on response time.

8 Related Work

There is an impressively growing interest in autonomic computing and self-
managing systems, starting from several industrial initiatives from IBM [3],
Hewlett Packard [17] and Microsoft [18]. Although self-adaptation capabilities
could dramatically improve web system reactivity and overload control during
flash crowds, little effort has been devoted to the problem of autonomous
tuning of QoS policies for web systems.

A great deal of research [1, 2, 10, 19–22] proposes non autonomic solutions to
the problem of overload control in web server architectures.

The application of the autonomic computing paradigm to the problem of over-
load control in web systems poses some key problems concerning the design of
a measurement framework. The authors of [23] propose a technique for learn-
ing dynamic patterns of web user behavior. A finite state machine representing
typical user behavior is constructed on the basis of system past history, and is
used for prediction and prefetching techniques. In reference [24], the problem
of delay prediction is analyzed on the basis of a learning activity exploiting
passive measurements of query executions. Such predictive capability is ex-
ploited to enhance traditional query optimizers.

The proposals presented in [23, 24] can partially contribute to improving the
QoS of web systems. However, in contrast to our work, none of these directly
formulates a complete autonomic solution that also shows how to take mea-
surements and make corresponding admission control decisions for web cluster
architectures.
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The authors of [25] also address a very important decision problem in the
design of the monitoring module: the timing of performance control. They
propose to adapt the time interval between successive decisions to the size of
workload dependent system parameters, such as the processor queue length.
The dynamic adjustment of this interval is of primary importance for threshold
based policies for which a constant time interval between decisions may lead
to oscillatory behavior in high load scenarios, as we have shown in Section 7.
Simulations reveal that our algorithm is not subject to oscillations and shows
a very little dependence on the time interval between decisions.

The problem of designing adaptive component-level thresholds is analyzed in
[26] in the general context of autonomic computing. The mechanism proposed
in the paper consists in monitoring the threshold values in use by keeping track
of false alarms with respect to possible violations of service level agreements.
A regression model is used to fit the observed history. When a sufficiently
confident fit is attained, the thresholds are calculated accordingly. On the
contrary, if the required confidence is not attained, the thresholds are set to
random values as if there were no history. A critical problem for this proposal
is the fact that the most common threshold policies cause on/off behavior that
often results in unacceptable performance. By contrast, our proposal is based
on a probabilistic approach and a learning technique, dynamically creating a
knowledge basis for the online evaluation of the best decision to be made even
for traffic situations that never occurred in past history.

The problem of autonomously configuring a computing cluster to satisfy SLA
requirements is addressed in [27]. This paper introduces a design strategy for
autonomic computing that divides the problem into different phases, called
monitor, analyze, plan and execute (MAPE, according to the terminology in
use by IBM [28]) in order to meet SLA requirements in terms of response time
and server utilization. Unlike our work, the authors of this paper designed a
policy whose decisions concern the reconfiguration of resource allocation to
services.

The design of SOC is inspired by the policies we introduced in our previous
articles [7, 29]. Here we have added a change detection and a decision rate
adaptation mechanism to manage flash crowds, as well as the scaling procedure
to handle capacity variations.

9 Conclusion

In this paper we address the problem of overload control for web based systems.
We introduce an original autonomic policy named SOC, characterized by self-
configuration, self-adaptation and self-protection properties. SOC exploits a
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change detection mechanism in order to switch between two modes according
to the time variability of incoming traffic.

When incoming traffic is stable the policy works in normal mode, in which
performance controls are paced at a regular rate. The policy switches to flash
crowd management mode as soon as a rapid surge in demand is detected. It
then increases the rate of performance controls until incoming traffic becomes
more stable. This permits a fast reaction to sudden changes in traffic intensity,
and a high system responsiveness.

Our policy does not require any prior knowledge about incoming traffic, or
any assumptions about the probability distribution of request inter-arrival
and service times.

Unlike other proposals in the field, our policy works under a wide range of
operating conditions without the need for laborious manual parameter tun-
ing. It is implemented entirely at dispatching points, without requiring any
modification of client and server software.

We have compared our policy to previously proposed approaches. Extensive
simulations have shown that it permits an excellent utilization of system re-
sources while always respecting the limits on response time imposed by service
level agreements. We have shown that our policy reduces the oscillations in
response time which are common to other policies. Simulation results also
highlight the ability of our proposal to react properly to flash crowds and to
capacity variations that may occur as a consequence of failures or runtime
maintenance procedures. We have demonstrated how SOC rapidly adapts the
admission probability in such situations so as to keep the overload under con-
trol.
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