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In this paper, a non-preemptive prioritization scheme for access control in cellular networks is
analyzed. Two kinds of users compete for the access to the limited number of frequency
channels available in each cell: the high priority ones represent hand-off requests, while the
low priority users correspond to new call requests originated within the same cell. It is proved
the optimality of the threshold policy within a very wide class, while using an objective function
in the form of a linear combination of the blocking probabilities of the two streams of arriving
requests.
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A very important result achieved in the field of wireless communication is the capability to
support global roaming. The user, no longer tied to a particular fixed station, has ubiquitous
access to a wide variety of services from voice communication to data exchange and
elaboration, while roaming throughout the whole geographic area covered by the wireless
network.
The access control policy should be a trade-off solution between giving high priority service to
the hand-off requests, and avoiding the risk of compromising the whole traffic giving not
enough weight to the originating calls.
The purpose of this paper is to find the optimal access control policy in a wide class, including
well known algorithms such as the threshold [6,15, 20] and hysteresis policies [14,17]. A
Markov decision model, representing this wide class, has been formulated under the assumption
that there are two different priority arrival streams, related to hand-off and new calls. These
streams are generated by Poisson processes and service requirements for both streams are
identical and exponentially distributed. The assumption of exponentially distributed holding
times has been justified by Guerin[7] and is required for the tractability of the model.

The optimization analysis is carried out in two steps. Linear programming methods permit to
discard non stationary and randomized policies from the search for the optimum. The real
optimization phase is instead realized through dynamic programming methods.
The main contribution of this work is the analytical proof of the optimality of the threshold
policy when the objective function gives higher priority to the hand-off stream. This result has
an immediate practical application because the optimal threshold can be easily computed when
a few statistic parameters defining the traffic of requests are known. The originality of the
results comes from the observation that literature rarely presents comparisons among different

mailto:novella@fub.it


policies, which are either based on simulative results without analytical demonstration [14], or
limited to few policies [IS].
The paper is organized as follows. Section 2 describes the continuous-time Markov model. In
Section 3 this model is uniformized and discretized, in order to apply methods and results of the
theory of discrete-time processes. Section 4 demonstrates that the threshold policy is optimal
when using an objective function which is a linear combination of the blocking probabilities of
the two streams of requests. Section 5 presents some numerical results that confirm the
analytical results achieved in the previous sections. Section 6 concludes the paper.

The Markov processes describing the threshold [6,15,20] and hysteresis [14,17] policy are

shown in fig. 1 and fig.2, where AH and AL are the Poisson rates of the hand-off and originating

stream of requests respectively, while J.l is the exponentially distributed common service rate. T
is the threshold value for the threshold policy, while the two thresholds for the cycle of

hysteresis are M and M', with M<M'.
The index associated to each state represents its occupancy level, duplicated in the case of the
process representing the hysteresis policy, for which the system may behave differently
according to its past history in correspondence to the same occupancy level.
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Fig. 1. Transition diagram (threshold policy)
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Fig. 2. Transition diagram (hysteresis)

These algorithms can be seen as particular instances of the general Markov model we are
introducing.
The model represent a single base station with C available channels. Hand-off and originating

calls arrive at Poisson rates AH and AL, and require exponentially distributed service with

common rate j.1.

The service requirements (channel holding time) for hand-off and new call attempts could be
different but an average figure used in the model should be sufficiently accurate.
The memoryless property of all probability distributions in a Markov process makes impossible
to represent policies for which the behavior of the system strictly depends on its past history,

unless we use several different states to represent the same occupancy level. Each state s,
belonging to the finite set of states E of the Markov decision process, can be defined through a



couple of indexes (i,t), where i represents the number of busy servers, while t is a state tag,

with tE { 1,2, ...,k} introduced to allow different decisions in correspondence with the same

occupancy level i.
Let us consider the following set of possible actions that can be undertaken at each state of the

process:
aj:accept requests belonging to both streams, a3: deny access to hand-off calls,
a2: deny access to originating calls, a.j: deny access to both streams of requests.
Given sEE, n(s) is the occupancy level characterizing the state s. If s=(i,t), then n(s)=i.

Consider now a partition of the set E into classes Ei with the following properties: E=U~oEi'

where Ei={SEE, n(s)=i}.
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o

FigJ. Possible transition from state (i,c)

Starting from the state s E Ej, the termination of a service brings the system, at rate i·j.1, to any

state of the class Ei-bdenoted by Prec(s). On the other hand, a new request acceptance leads the

system, with rate A(a), to any state of the class Ei+b denoted by Succ(s).

In particular we have

{

AH+AL.ifa=al

A(a)= AH .lfa=a2.
AL Ifa=a3
o if a =a4

The not deterministic choice of the next state among the several states representing the

requested occupancy level follows the probability I'ZSk,with L Jrsk = I and similarly
kESUCC(S)

LJrsk = 1 .
kEPrec(s)

The transition matrix of the process is decision dependent:

\

1l(a)JrSk /[Il(a)+n(s),u] if kE Succ(s)

P:k = n(s),uJrSk/[Il(a)+n(s),u] if kE Prec(s)

o otherwise

It is now easy to find the right choice of the parameter I'ZSkand the set of stationary state-

decision associations by which to turn our general Markov decision model into the models of

fig. I and 2.
The threshold policy can be obtained by selecting I'ZSk,with s=(is,Js) and k=(h,jk), in the

following way: I'ZSk=1ifjs=jk=fixed_tag, for any fixed_tag else I'ZSk=O,and taking the decision aj

for all the state s with is lower than the threshold T, the decision a2 if T~ is <C and the decision

a.j if is=C.



The hysteresis policy can be obtained selecting two different tags tagl and tag2; JZSk=l if

I'=}k=tagl and is lower than the threshold M', JZSk=l ifI\=}k=tag2 and is higher the threshold M,

JZSk=l ifs=(M-l,tagl) and k=(M,tag2) or ifs=(M,tag2) and k=(M-l,tagl) and else JZSk=O, and

taking the decision aj for all the state s with}s =tagl, the decision a2 for the states with}s =tag2
and i.\<Cand the decision a-/ in the state (C, tag2) as shown in fig. 4.
It has to be noted that the generality of the defined model consists not only in the shape of its
transition diagram, but also in its including both pure stationary and not stationary policies of
the randomized kind.

The Markov chain {X(t)} related to the process described above is continuous-time. The dwell
time of the process in each state is exponentially distributed and not uniform, but decision

dependent. The set of rates which characterizes the process is bounded by Cj.1+AH+ AN, hence we

conclude the process is uniformizable. Adding dummy transitions from states to themselves, a
uniform Poisson process can be constructed which governs the epochs at which transitions take
place. The uniformization technique transforms the original continuous-time Markov chain with
not identical transition times into an equivalent continuous-time Markov process in which the
transition epochs are generated by a Poisson process at uniform rate. The uniformized Markov

process { X:( t) } is probabilistically identical to the continuous-time {X(t)}.

The theory of discrete Markov processes can be used to analyze the discrete-time embedded
markov chain of the uniformized model.

Let us assume uniform rate .11= Cj.1+AH+AN. The transition probabilities of the uniformized

process are:

[A(a)7rSk]I A

[n(s).u7rSk]I A

[A - A(a) - n(s ).u ] I A

o

if k E SUcc(s)

if k E Prec( s)

if s = k
otherwise

If access is denied to a call, the system is forced to pay a penalty, which will be higher (H) in
case of hand-off refusal rather than in case of refusal of an originating call (L). Referring to the
uniformized process, we can define the cost function in the following way:

o if a =al
L'AL I A if a=az

F(s,a)= H'AH1A ifa=a3 (3-2)

(L'AL I A)+(H'AH I A) if a=a4

Using the previous notation and denoting with N(T) the number of transitions being completed
at time T, and with Xn the state of the system at the time of the n-th transition, the average cost
objective function can be written as



We refer to [9] for the proof that the optimization procedures can be applied directly to the
discrete-time Markov process described by the embedded Markov chain of the uniformized one.
The optimal policy will be the same for the initial, the uniformized and the discretized process,
while the optimal values of the objective functions only differ in a constant factor.

It can be proved, by means of linear programming methods that it exists an optimal
deterministic stationary policy, i.e. not randomized, for which the decision chosen in
correspondence to each state is always the same, independently of the particular instant of time.
Observing the shape of the transition diagram in fig.3, it can be affirmed, without loss of
generality, that our general model can be restricted to the only processes with no transient states
and with only one communicating class of states, i.e. to the only unichain models. The unichain
assumption, together with the finiteness of C, implies the existence of a unique stationary
distribution which is independent of the initial state of the process.

The optimal solution can thence be expressed through a vector D* whose generic component
Dsa * represents the stationary probability that in correspondence to the state s, the system takes
the decision a.
Dsa=P{an=al Sn=S },

Dsa?O and
I,Dsa = 1 sEE,

aEA,

where As is the set of all actions that can be taken in state s.
Having observed that the optimal policy is a stationary one, we can interpret our objective
functions as a linear combination of some QoS parameters consisting in the two blocking
probabilities of the two streams of requests.
The expected value of the cost function can now be expressed in the form

z= I,Dsa·ps·r(s,a), (4-1)
(s,a )EC

where Ps represents the stationary probability that the system is in state s, and the product DsaPs
represents the joined probability for the system to be in state s and contemporaneously to take
the decision a.
As we have seen before, r(s,a) is the product between the penalty related to the decision a and

the probability of the outer event correspondent to the arrival of the request refused under the
application of such decision.
Through the application of the total probability theorem, we conclude that the average cost
function we have defined through the expressions ( 4-1 ) consists in:

z=P(hand-off-block)-H+P( originating call-block)L



Furthermore analyzing the topology of our transition diagram, we can also notice the total
absence of transient states that, together with the unichain assumption gives a particular shape
to the set of constraints of the linear programming problem related to our optimization
procedure.

x xDenoting Xsa ~ DsaAs, (s,a) E C, and recalling that Dsa=-2E.... = sa , aEAs, the linear
Ps ~>ja

jeAs

Lr(s,a}xsa
(s,a)eC

constrained to

Xsa :::::0 (s,a) EC

LXsa = (4-2)
(s,a)eC

L Xja = Lp~xsa jEE.
aeAj (s,a)eC

Proposition 1:
The linear programming problem ( 4-2 ) has an optimal solution which does not belong to the

randomized kind, for which DsaE {O,I}, i.e. is not fractionary.

Proof:
Thanks to the absence of transient states we conclude that the optimal solution !00 has the

following property: LaeA x~ > 0, Vs E E . Thence !00 has at least lEI strictly positive variables.
s

Summing up all their related equations deriving from the set of positiveness constraints, we

again find the equation L xsa = 1. We conclude the redundancy of one among the IEI+1
(s,a)eC

remaining constraints. The operations research applied to linear programming problems
demonstrates the existence of an optimal base solution containing a number of positive
variables at most equal to the number of non redundant constraints.
Without loss of generality we can suppose that !00 has this property. So we conclude that !00

contains at most lEI positive variables. Having stated before that the number of positive

variables is at least lEI and at most lEI, and that" A x~a > 0, Vs E E, we conclude that for all£..Jae ,

SEE there will be exactly a decision a for which x~ > O. This leads to conclude a very

important result which is the existence of a pure stationary optimal policy. This result gives us

the possibility to further restrict our consideration to policies for which DsaE{O,l}, excluding

policies belonging to the randomized kind. 0

The proof that the threshold policy is optimal among all the policies included in the general
model can be summed up as follows:



• The existence of an optimal policy for which the optimal decision does not depend on the
state tag, but depends on its occupancy level only, is proved by means of dynamic

programming methods.
• The optimality of the threshold policy is proved through the analysis of structural properties

of the optimal cost function.
Equivalence theorems between a continuous time process and its uniformization allow us to
exploit discrete-time optimization methods analyzing the discretization of the initial
continuous-time Markov decision process. A first step towards the optimization of the average
cost for the infinite horizon problem is the evaluation of the N-step optimal total discounted

cost Va (s, N) which can be calculated with the following dynamic programming equation:

Va (s, N) = min{P(s,a) + L ajJ:k' Va (k, N -I)}, where a = A / (17 + A), and 1] is the
aeA, keE

discount factor of the original continuous time model.
By induction on the number of steps K, in [2] we prove that \is and z, such that n(s)=n(z),

Va(s,K) = Va(z,K) \iKEN.

This means the best decision does not depend on the particular state in which the system is, but
on its occupancy level only. For this reason it can be defined the function W(·,·) on the domain

{O,1, ...,C} xN, with the following property: Va (s,K) = Va (z,K) =Wa(n(s),K).

The following dynamic programming equation is obtained for the total discounted cost for the

infinite horizon problem:

Wa (i) = lim Wa (i,k)
k-,>=

=~. wa(i -1)+ C- i . J1' Wa(i)+~. min{ H + wa(i); wa(i + l)} +
A+l1 A+17 A+17

A+ _L_. min{ L + Wa (i); Wa (i + l)} .
A+17

The structural properties of monotony and convexity of Wa (i) demonstrated in [2] imply the

following proposition.

Proposition 2:
The threshold policy is optimal within the class of policies described in section 2 of this paper

under the total discounted cost criterion, for the infinite horizon problem.

Proof:
The optimal policy chooses the best action to take in each state with the following rule:

u(i) = {I se Wa (i + 1)- :va (i) ~ L
o otherwIse

where u(i)=1 and u(i)=O imply respectively the acceptance or the refusal to service an

originating call, and

u(;) = {~
se wa(i + 1) - Wa(i) ~ H

otherwise



for what concerns with the hand-off stream of requests.

Since Wa (i) is monotone and convex, the term Wa (i + 1)-Wa (i) is non-decreasing, thence

two integers values hand iH can be found such that

h = arg min { Wa(i+ 1) - Wa(i) > L},

iH = arg min { Wa(i+ I) - Wa(i) > H},

where since H>L, it results that h< iH•

Therefore the optimal policy regarding the decision to accept or refuse to serve requests of the

originating call stream is: u(i)=l if i<h and u(i)=O for i? h, i.e. a threshold policy.
The same kind of policy is optimal for what concerns with the acceptance of hand-off calls, but
it can happen that iH > C, leading to some channels being idle, because h< iH, with
underemployment of the system resources. Thus the best solution is that of reserving (C- h)
channels to the hand-off requests never denying service to them.
The theorems of equivalence between a continuous-time Markov decision process and its
discretization permit to conclude that the threshold policy based on the parameter h is optimal

also for the initial continuous-time problem with discount factor 77· 0

The result obtained for the total discounted cost problem is extensible to the average cost
optimization problem. The finiteness of the set E and the fact that the Markov chain related to
the application of any policy in the general class described in section 2 belongs to the unichain

kind, imply that Wa(i)- WaCO)is uniformly bounded. This hypothesis implies that the optimal
policy, following the average cost criterion, satisfies the optimality equation shown below:

g+ j(i)=!..:..l!:..j(i-I)+ C-i 'f.L.j(i)+ ~ .min{H+ j(i);j(i+l)}+ AL .rnin{L+ j(i);j(i+l)}
A A A A

where g is a constant value g = lim(l- a)Wa (0),
a--71

and J (i) = lim[Wa
, (i) - Wa

, (0)] for any sequence ar ~ 1.
r-,;~

The function j(i) now defined has the same structural properties of the function Wa(i). With

analogous method to that used to demonstrate that the threshold policy is optimal for the total
discounted cost criterion, notice that the term (f{i+ I )-f(i)) is not decreasing so an integer h can
be found such that the threshold policy with threshold h is optimal within the general class
represented by the model described in section 2.
The proof that the optimal policy belongs to the threshold class dramatically decreases the
feasible region of the optimization problem. This allows a relevant reduction of the number of
iterations for the solution with the most common algorithms like the simplex or the policy
improvement.

In the previous sections it is proved the optimality of the threshold policy for a general model
including also the well known hysteresis policy. Given the number of channels C, the traffic



parameters }<-H, ,1,L and f1, we can find the optimal hysteresis policy searching for the values M
and M' (with M<M') for which a hysteresis model such as the one depicted in fig. 2 reaches the
minimum cost.

In accordance with the results demonstrated in Section 4, fig. 4 shows, for different values of

y = AH / (AH + AL) , that the cost of the optimal hysteresis policy is always higher than that of

the optimal threshold policy. Numerical values in fig. 4 are obtained with C=IO, ,1,=4, JF6, L=5
and H=5600.
The threshold policy based on the threshold value h reserves a fixed number of frequency
channels (C-h) to the hand-off stream of requests. In [2] we demonstrate the intuitive result that
the threshold value and, consequently the number of reserved channels, depends on the ratio
H/L. The number of reserved channels grows with the ratio H/L as we can see in fig. 5 for

different values of the handofffraction rand with C=IO, ,1,=4, JF6.
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In this paper an optimization method of channel assignment is proposed. The model is based on
a cost function which gives higher priority to hand-off requests than to originating calls. The
cost function has been studied through a decision Markov model characterized by a great
generality. This model is able to represent both not stationary policies and randomized
fractional policies. Moreover, thanks to the particular shape of its transition diagram, it allows
us to study policies of great interest such as the threshold policy and algorithms with one or
more cycles of hysteresis. The optimization analysis is carried out in two steps. Linear
programming methods permit to discard non stationary and randomized policies from the
search for the optimum. The real optimization phase is instead realized through dynamic
programming methods. We analytically demonstrate that if the objective function is the total
discounted cost function, or the average cost function applied to the infinite horizon problem,
the threshold policy always reaches the best performance.
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