
An autonomic admission control policy for
distributed web systems

Novella Bartolini, Giancarlo Bongiovanni, Simone Silvestri
Department of Computer Science

University of Rome ”La Sapienza”, Italy
E-mail: {bartolini,bongiovanni,simone.silvestri}@di.uniroma1.it

Abstract—This paper tackles the problem of autonomic ad-
mission control for web clusters. The main contribution of this
work is the proposal of a new session admission algorithm that
self-configures a dynamic constraint on the rate of incoming new
sessions to guarantee the respect of Service Level Agreements
(SLA). Unlike other approaches, our policy does not need any
prior information on the incoming traffic, nor any assumption
on the probability distribution of request inter-arrival or service
time. Furthermore, it does not require any manual configuration
or parameter tuning.

We performed extensive simulations under a range of op-
erating conditions and compared our algorithm to other pre-
viously proposed approaches. The simulations show that our
policy rapidly adapts to the given traffic profile and improves
service throughput while respecting the response time constraints
imposed by the SLAs. It also improves service quality by reducing
the oscillations of response time and number of active clients
common to other policies.

I. INTRODUCTION

Nowadays a huge gamma of applications is accessed
through the Web. While it is impossible to formulate a unique
Quality of Service (QoS) requirement for all web based
applications, some key features are highly desirable and even
mandatory in many cases. Among these, overload control
is commonly recognized to be of primary concern. Most of
the previously proposed solutions rely on laborious parameter
tuning and manual configuration. Our study instead focuses
on adaptivity and autonomy of parameter configuration.

We address the problem of admission control policies for
server clusters offering typical session based services. Such
policies are implemented on Edge Points (EP), which are
access routers or application level dispatchers. EPs intercept
requests and make decisions to block or accept incoming new
sessions to increase the user perceived quality of admitted
sessions while at the same time providing an acceptable
admission probability.

Performance requirements are often detailed into Ser-
vice Level Agreements (SLAs). They can be mapped onto
component-level thresholds, whose suitable values are seldom
known a priori even in the most stable traffic scenarios.
Furthermore, the relationship between component-level and
SLA parameters varies under time-varying workload scenarios
and cannot be computed offline. To this purpose, we propose
the use of a learning activity to be performed at runtime
by the EPs, in order to monitor the application workload
and the system capacity. We designed an admission control

algorithm that works on the basis of such gathered information.
According to our proposal, the EPs dynamically calculate
an upper limit on the admission rate of new sessions. By
continuously adapting this limit to the most recently gathered
data, the system is also responsive to workload changes.

We designed a synthetic traffic generator, based on industrial
standard benchmarks and tested the proposed policy through
extensive simulations. The experiments showed that the system
is capable of self configuring the component-level parame-
ters to achieve the highest throughput compatible with the
agreements on quality specified in the SLA. We compared
our method to other admission control policies proposed in
literature, showing that it respects the agreements on quality
in all traffic scenarios, without any previous parameter tuning,
except for the SLA limit values, while the performance of
other admission control policies is very dependent on the
initial parameter setting. Our method also outperforms the
others by avoiding undesired oscillations of response time,
acceptance probability and of the number of ongoing sessions.

II. RELATED WORK

An exhaustive survey of related work in the area of
admission control for Web servers is out of the scope of
this paper and due to space limitations we just mention the
ones that are related to the area of autonomic computing.
There is an impressively growing interest in self-managing
systems, starting from several industrial initiatives from IBM
[1], Hewlett Packard [2] and Microsoft [3]. Nevertheless, little
effort has been spent on the problem of autonomous tuning of
QoS policies for web systems.

The problem of designing adaptive component-level thresh-
olds is analyzed in [4] for a general context of autonomic
computing. A critical problem of this proposal is the fact that
the most common threshold policies cause on/off behaviors
that often result in unacceptable performance. Our proposal is
instead based on a probabilistic approach and on a learning
technique, that dynamically creates a knowledge basis for the
online evaluation of the best decision to make even for traffic
situations that never occurred in the past history.

The authors of [5] study the problem of timing performance
control in the design of QoS policies. They propose to adapt
the time interval between successive decisions to the size of
workload dependent system parameters, such as the processor

queue length. We show that our algorithm shows a very little
dependence on the time interval between decisions.

The problem of autonomously configuring a computing
cluster to satisfy SLA requirements is addressed in [6]. Un-
like our work, this paper proposes a policy whose decisions
concern the reconfiguration of resource allocation to services.

The authors of [7] propose a technique for learning dynamic
patterns of web user behavior. A finite state machine represent-
ing the typical user behavior is constructed on the basis of past
history and used for prediction and prefetching techniques.

In [8] the problem of delay prediction is analyzed on the
basis of a learning activity exploiting passive measurements
of query executions. The proposed method is used to enhance
traditional query optimizers.

Proposals [7] and [8] contribute to improve the QoS of
web systems, but differently from our work, none of them
directly formulate a complete autonomic solution that at the
same time gives directions on how to take measures and make
corresponding admission control decisions for web cluster
architectures.

III. SERVICE LEVEL AGREEMENTS

The usual SLA formulation for web services imposes an
upper limit to the XSLA%− ile of the response time of undif-
ferentiated requests. A lower bound λSLA on the admission
rate of new sessions λadm(t) is also considered, imposing
that at any observation instant t, λadm(t) be at least equal
to min{λin(t), λSLA}, where λin(t) is the incoming session
rate.

Although our work may be applied to different formulations
of SLA, including the most typical one cited above, we argue
that a more detailed service level agreement should be in place
when web clusters are based on a tiered architecture [9], [10].
In such architectures, requests involving a processing activity
at different tiers may require processing times that differ by
orders of magnitude.

We consider the following SLA:
• RT i

SLA : maximum acceptable value of the 95%-ile of
the response time for requests of type i ∈ {1, 2, . . . , K},
where K is the number of cluster tiers.

• λSLA: minimum guaranteed admission rate. If λin(t) is
the rate of incoming sessions, and λadm(t) is the rate of
accepted sessions, this agreement imposes that λadm(t) ≥
min{λin(t), λSLA}

• TSLA: observation period during which measurement sam-
ples are gathered to check the satisfaction of the SLA
constraints.

IV. AUTONOMIC ADMISSION CONTROL ALGORITHM

We propose a probabilistic admission control algorithm
that accepts as many new sessions as possible within the
performance constraints imposed by the SLA described in
section III. The admission probability is dynamically adjusted
according to a prediction of the future workload and system
availability, and to an estimate of the corresponding 95%−ile
of the response time.

Our algorithm is shown in figure 1: the described steps
are iteratively executed over fixed time intervals of length
tAACAobs . Phase B represents the continuous time behavior of the
algorithm during the time interval [tn, tn+1), while phases C,
D and E are executed at the end of each iteration.

Fig. 1. Autonomic Admission Control (AACA) algorithm

For sake of simplicity, we leave the description of the
parameter initialization (phase A) at the end of the algorithm
description.

1) Session admission control and raw measurement - phase
B: According to the algorithm phase B, the admission rate
of new sessions is limited to λ∗(n). This rate limitation is
obtained by admitting new sessions with probability p(n) =
min{1, λ∗(n)/λ̂in(n)}, where λ̂in(n) is a prediction of the
session arrival rate for the next iteration interval. This predic-
tion is based on the incoming session rate λin(n−1) observed
during the previous time interval, that is, λ̂in(n) = λin(n−1).

During each time interval, raw measures of the response
time of requests belonging to ongoing sessions are collected
to be processed at the execution of phase C. We define the set
T n

i as the set of observed response times (measured by the
EP) for requests of type i, i ∈ {1, 2, . . . , K} during the time
interval [tn, tn+1).

2) Statistics update - phase C: Phase C is executed at the
end of each time interval. It consists in the calculation of some
statistic parameters based on the raw measurements collected
during phase B:

• RT i(n), that is the 95%-ile of the set T n
i , for i ∈

{1, 2, . . . , K},
• λin(n), that is the average incoming rate of new sessions

observed during the time interval [tn, tn+1),
• λadm(n), that is the average rate of actually admitted

sessions during the time interval [tn, tn+1).

3) Build curve set - phase D: Purpose of this phase is
the use of the statistics collected during the previous phase,
to build K time varying curves that represent the relation
between the session admission rate and the observed response
times of requests involving the K tiers of the cluster architec-
ture.

A statistical measure calculated from raw samples taken
during a single iteration may be not fully representative for
two reasons: first, the workload is subject to variations that
may cause transient effects; second, the number of samples
may not be sufficient to ensure an acceptable confidence level.
For this reason, we introduce a method to collect measures
and associate them with a metric that gives a quantitative
evaluation of their representativeness.

Let us consider the set of raw measures
RN

i ,
{
(λadm(n), RT i(n)), n ∈ {Nmin, . . . , N}

}
, where

i ∈ {1, 2, . . . , K}, Nmin , max{(N − Ndelete), 0} and
where the value Ndelete is introduced to limit the usage of
obsolete measures, according to an aging technique based on
a time window.

Let us partition the Cartesian plane into rectangular intervals
of length lλ along the λadm axis as shown in figure 2. For
every interval [(k − 1)lλ; klλ), with k = 1, 2, . . . we define
the set P i

k , {P ∈ RN
i , P = (λadm, RT i), s.t. λadm ∈ [(k −

1)lλ; klλ)}. We calculate the barycenter Bi
k of the k-th interval

as the point with average coordinates over the points of the
same interval.

An interval has no barycenter if there is not any recent
measure available in P i

k in any n-th interval, with n ≥ Nmin.
Figure 2 shows the collected statistics taken at run-time at
the database tier of an example scenario. It also evidences the
calculated barycenters.

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2

95
%

-il
e

R
T

(s
ec

)

Average Session Arrival Rate (session/sec)

Raw measures
Baricenters

RT Curve
RTSLA 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2

95
%

-il
e

R
T

(s
ec

)

Average Session Arrival Rate (session/sec)

Raw measures
Baricenters

RT Curve
RTSLA

Fig. 2. Curve set construction

We define the curve set Gi(n) as the set of barycenters
calculated at the n-th iteration. We introduce the metric v(B),
for B ∈ Gi(n) to give a quantitative evaluation of the
reliability of the measure represented by the barycenter B.
In particular, be Bi

k = (λB
k , tBi

k) the barycenter of the k-th
interval. Be lt an arbitrarily sized interval along the response
time axis. Let us define the set Square(Bi

k) , {P ∈ P i
k, P =

(λP , tP), s.t. tP ∈ [tBi
k − lt, t

Bi
k + lt]}. We define v(Bi

k) as
the cardinality of the set Square(Bi

k).
Thanks to the aging technique and to the frequent updates,

the curve set Gi(n) is a highly dynamic structure, that contin-
uously adapts itself to changing workload situations making
it possible to forecast the response time corresponding to any
possible workload rate, by means of interpolation techniques.

As initial setting of our curve construction phase we insert
in the set Gi(0), i ∈ {1, 2, . . . , K} a point that represents the
lower bound on the 95%-ile of the response times of the K
types of requests. This point is the 95%-ile of response time
measured when the system is in a completely idle state, that
is when λadm=̃0. In order to calculate the average response
time of this situation we use an offline benchmark, obtaining
the point P i

bench = (0, RT i
bench). Notice that this parameter

is a characteristic of the hardware architecture in use and is
not subject to manual tuning since it does not vary with time.

4) Update policy - phase E: This phase starts with a test to
verify the validity of the rate limit λ∗(n) adopted in phase B.
To this extent, we define two types of error in the evaluation
of λ∗(n):

1) the rate limit was respected but the agreements were
violated for at least one type of requests: the rate limit
adopted in the present interval could have been too high
and should be decreased to meet the SLA;

2) the rate limit was exceeded but none of the agreements
was violated: the rate limit adopted in the present
interval could have been too low and can be increased
to improve the service throughput.

If none of these errors occurred, the upper limit on the
admission rate of new sessions was properly set. Assuming
that the traffic workload that will be observed in the next
iteration will be similar to the one observed in the current
iteration, there is no need to change the value of the rate limit.
Therefore, in absence of errors, λ∗(n + 1) = λ∗(n).

If otherwise, one of these errors has occurred the value of
λ∗(n+1) needs to be updated. To this purpose phase E defines
the construction of a function ti = f i(λadm) that represents
the curve set in its most reliable points. In particular we refer
to the set G̃i(n) ⊆ Gi(n) = {F ∈ Gi(n) s.t. v(F) ≥
L × maxB∈Gi(n) v(B)}, where L is a given percentage (in
the following experimental section VII we set L = 80%).
This way we consider the only barycenters that have been
calculated on the basis of a sufficient number of occurrences
of raw measures. The function ti = f i(λadm) is calculated
by interpolating the trend between subsequent points of the
set G̃i(n). The updated rate limit can thus be computed as
λ∗(n) = mini=1,...,K f i−1

(RT i
SLA). Due to space limitations,

we do not give details on the construction of the function
f i(n) and on the interpolation technique. We refer the reader
to the technical report [11] for further details on this topic.

5) Initial setting - phase A: As initial setting of our
algorithm we use n = 0, λ∗(0) = λSLA and p(n) = 1. The
setting of the point P i

bench with value P i
bench = (0, RT i

bench)
has been detailed in section IV-3. P i

bench constitutes the first

point in the curve construction; it can be substituted with the
origin O = (0, 0), with no impact but a little difference in the
time to converge to a stable choice of λ∗(n).

V. OTHER ADMISSION CONTROL STRATEGIES

In this section we describe other previously proposed QoS
policies to make performance comparisons. These policies can
be formulated in many variants depending on the considered
performance objectives. We limit our analysis to the optimiza-
tion of response time which is tightly bounded to the user
perceived quality of web applications.

A. Threshold Based Admission Control

Fixed threshold policies have been proposed in many fields
of computer science, and in particular for web applications
with several variants [12], [13], [14].

According to the Threshold Based Admission Control
(TBAC) policy, the EP makes periodic evaluations of the 95%-
ile of response time, every tTBACobs seconds. If the calculated
value exceeds a threshold T TBAC

AC , the EP rejects new sessions
and only accepts requests that belong to ongoing sessions. On
the contrary, if the value of the 95%-ile of the response time
is lower than T TBAC

AC , new sessions are always accepted.

B. Probabilistic Admission Control

The Probabilistic Admission Control (PAC) is a well known
technique of control theory, commonly used when oscillations
are to be avoided. This policy was proposed for Internet
services in [15], while a similar version was also proposed in
[16]. According to this policy, a new session is admitted with
a certain probability, whose value depends on the measured
response time. The system accepts all new sessions as long as
the server load is sufficiently low, i.e. the measured response
time is under the threshold T PAC

low . The acceptance probability
is gradually reduced as the load grows, while the system does
not accept any new session when the workload exceeds the
threshold T PAC

high. In the general case the acceptance probability
is a piece-wise linear function of the measured 95%-ile of the
response time r, and has the following formulation:

p(r) ,

1 if r ≤ Tlow
r−Thigh

Thigh−Tlow
if Tlow < r ≤ Thigh

0 if r > Thigh

(1)

The value of r and of the admission probability p(r) are
updated every tPACobs seconds.

VI. SIMULATION ENVIRONMENT

In order to make performance comparisons among the
different policies, we developed a simulator on the basis of
the OPNET modeler software [17]. In this section we describe
how we model the main entities of the simulation environment:
clients, EP and application servers.

A. Client model and traffic generation

According to our model, each client issues a user session
consisting of a sequence of logically related requests.

We assume that the interarrival time of new sessions follows
a negative exponential distribution with average 1/λ. The
interarrival time of requests belonging to the same session
is more complex: after the first request, each client injects
subsequent requests waiting for the corresponding response
(response time), and spending some time analyzing the content
of the received response (think time).

The typical user interaction with a web application can be
represented as a particular sequence of phase transitions. In
order to have a realistic traffic generator, we used the phase
model of an industrial standard benchmark: SPECWEB2005
[18]. This benchmark takes into account the most relevant
types of dynamic content (php and jsp included). It models an
e-commerce site for the sale of assembled personal computers.
Each phase of this model represents a different step of the
interaction of the client with the web application, from the
login procedure to the customization of a product and the
possible purchase. Transitions among phases may happen with
given probabilities. We refer to [18] for a detailed description
of the state model and of the functionalities of each phase.

Upon reception of a response, the next request is sent after
the think time Tthink spent by the user analyzing the received
web page. Our model of Tthink is based on TPC-W [19], [20]
and on other works in the area of web traffic analysis such
as [21]. As in the TPC-W model, we assume an exponential
distribution of think times. We also assume a lower bound of 1
sec to the think time. Therefore Tthink = max{− log(r)µ, 1},
where r is uniformly distributed in the interval (0,1] and µ =
10 sec.

To model a realistic user behavior, we also introduce a
timeout to represent the maximum response time tolerable by
clients. Therefore, the interaction of a client with the web
application may end for three possible reasons: a) session
block, the EP denies service to the client’s first request (no
navigation session is started); b) session drop, no response is
received within the client timeout and the ongoing session is
interrupted; c) successful session termination, all responses are
received in time and the user voluntary terminates the session.

B. Edge point model

The role of the EP is of primary importance for our
proposal, since it hosts the implementation of the admission
controller, as extensively detailed in section V.

C. Server model

In our experiments we refer to a typical three tier cluster
organization: pure http requests involve the http server tier,
servlet requests involve the application tier while database re-
quests reach the third tier requiring the execution of a query to
the database. Requests are served using a time sharing, round
robin scheduling. Different types of requests are characterized
by different processing times. We use an approximate estimate
of the average processing times of the different categories on

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500

95
%

-il
e

R
T

(s
ec

)

tobs (sec)

AACA
TBAC

PAC
RTSLA

Fig. 3. 95%-ile of database RT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

tobs (sec)

AACA
TBAC

PAC

Fig. 4. Session admission probability

the basis of the experiments detailed in [13]. The service time
of a single session request is exponentially distributed with
the following parameters: average execution time of pure http
requests is 0.001 sec, while for servlet request is 0.01 sec and
for database requests is 1 sec.

In the same way we defined the client timeout, we also
define a timeout at the server level, so that, in our model,
servers do not waste computing resources processing requests
coming from clients who already abandoned the site. Each
server drops the requests that have not been completed before
the expiration of the corresponding client timeout.

VII. SIMULATION RESULTS

In this section we present a comparative study of the AACA,
TBAC and PAC policy. For sake of brevity, we conduct our
analysis on the database tier only. The database tier is in fact
the one that most frequently becomes the bottleneck of typical
web architectures.

All the experiments of this section are conducted with 10
application servers and a client timeout of 8 sec. The fixed
threshold T TBAC

AC of the TBAC policy is always set in agreement
with the SLA constraints on the 95%-ile of response time:
T TBAC
AC = RTSLA. The thresholds of the PAC policy are defined

as follows: T PAC
low = 3 sec and T PAC

high = RTSLA, in agreement
with the SLA constraints.

The first set of experiments (figures 3 and 4) is introduced to
study the sensitivity of these policies to the parameter setting.
A key parameter in the definition of the three policies is the
time between successive decisions tobs.

Figures 3 and 4 show that the performance of the AACA
policy does not vary significantly when varying the value of
tobs. The same cannot be said for the other two policies: TBAC
and PAC. To understand the reasons of the different behavior
of the three policies let us consider first the case of AACA. For
short values of tobs, statistic parameter values are calculated
frequently on the basis of poor sets of raw measures. The
low confidence level of such metrics is compensated by the
high number of points that are used to construct the curve set
(phase D of the algorithm, as detailed in section IV-3). Such

points contribute to the quantitative evaluation of the reliability
function v(·) we define on the set of barycenters. The choice
of reliable barycenters allows our algorithm to correctly recon-
struct the relationship between the session admission rate and
the 95%-ile of the response time and then to find the maximum
admission rate that can be adopted to respect the agreements
on quality. As tobs grows, less points are available for the
construction of the curve set. In this case, although the curve
set is constructed on the basis of a smaller number of points,
it still permits a good estimate of the maximum adoptable
admission rate because these points have a higher confidence
level. Although the period between subsequent decisions is a
parameter that requires manual sizing, this set of experiments
shows that for the AACA policy there is no need to perform
fine and laborious tuning. On the contrary, the TBAC and
PAC policy benefit from shorter periods between succeeding
decisions. Short decision periods make the system capable of
rapidly correcting wrong decisions and of reacting to workload
changes. Long decision periods instead induce more intense
oscillations in case of high load and cause scarce utilization in
low load situations. The plot of error bars in figure 3 as well
as in the following figure 5 shows the effective differences in
performance among the three policies and the reliability of the
simulation results.

Aim of the second set of results (figures 5 and 6) is to show
the behavior of the three policies under varying workloads.

In the following experiments we set the SLA threshold,
RTSLA, to 5 sec. Since the TBAC and PAC policy take
advantage of short periods, while the AACA policy is almost
independent of this setting, in order to have fair comparisons
among the three policies we use the following parameter
setting for the subsequent experiments: tTBACobs = tPACobs = 10 sec
(a sufficiently short period that allows the TBAC and PAC
policy to work at their best), while we set tAACAobs = 60 sec (in
order to relieve the system of the too frequent unnecessary
decisions that would be made with shorter inter-observation
periods).

As figure 5 shows, when the traffic load is high, the AACA
policy finds the suitable session arrival rate and admits as many

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10

95
%

-il
e

R
T

(s
ec

)

Average Session Arrival Rate (session/sec)

AACA
TBAC

PAC
RTSLA

Fig. 5. 95%-ile of database RT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

Average Session Arrival Rate (session/sec)

AACA
TBAC

PAC

Fig. 6. Session admission probability

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

3 4 5 6 7 8

95
%

-il
e

R
T

(s
ec

)

RTSLA (sec)

AACA
TBAC

PAC

Fig. 7. 95%-ile of database RT

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 4 5 6 7 8

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

RTSLA (sec)

AACA
TBAC

PAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 4 5 6 7 8

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

RTSLA (sec)

AACA
TBAC

PAC

Fig. 8. Session admission probability

sessions as possible to remain under the SLA limits. When the
traffic is low, it accepts almost all incoming sessions, as figure
6 points out.

On the other hand, the other two policies work properly only
for a short range of operating conditions. As usually happens
with non adaptive policies, TBAC and PAC under-utilize the
system resources in low workload conditions, and violate the
QoS agreements when the workload is too high.

Figures 5 and 6 reveal the possible difficulties in the
choice of the proper parameter setting for the TBAC and
PAC policies, since a value that may work for a particular
traffic scenario (e.g. thresholds T TBAC

AC = 5 sec when λ = 1.5
sessions/sec or T PAC

high = 5 sec when λ = 3 sessions/sec)
may cause SLA violations or system under-utilization in other
cases.

Purpose of the third set of simulations (figures 7 and 8) is
to test the policy behavior with different SLAs. We tested the
AACA, TBAC and PAC policies under six different values of
the SLA threshold RTSLA, ranging from 3 to 8 seconds. We
set T TBAC

AC = T PAC
high = RTSLA, while T PAC

low = 3 sec.
Figures 7 and 8 show the 95%-ile of the database response

time and of the new session admission probability respectively.
These figures evidence the main drawbacks of the TBAC and

PAC policies discussed earlier. In case of low threshold (from
3 to 6 seconds), TBAC does not prevent SLA violations,
while for higher values it causes system under-utilization. This
behavior is confirmed by the trend of the session admission
probability: too many sessions are accepted or refused for low
and high SLA threshold values respectively.

In the same scenario the PAC policy performs a more con-
servative admission control, admitting less sessions than the
TBAC policy. Although the PAC policy admits less sessions
than the TBAC, it still violates the SLA under low thresholds
(from 3 to 4 seconds), and under-utilizes the system resources
when high thresholds (from 5 to 8 seconds) are in use. The
AACA policy, instead, always respects the SLA, guaranteeing
a high probability of admitting new sessions without under
utilizing the system.

The last set of results (figure 9) studies the problem of
performance stability. To this extent we analyze how the
number of active users varies over time.

The TBAC policy shows an evident oscillatory behavior
due to its on/off nature. The PAC policy, although introduced
with the explicit goal to reduce the oscillations that commonly
characterize the threshold based policies, also shows a high
variability of the number of active sessions.

One of the main reasons why these policies cannot guaran-
tee a stable behavior is that the admission controller works at
session granularity. In fact, an admitted session traverses the
cluster tiers according to a given life-cycle phase model (as
discussed in section VI-A), and for this reason does not have
an immediate impact on all cluster tiers. At the same time, a
decision to stop admitting new sessions will have an impact
on the perceived performance only after the end of a sufficient
number of sessions. This induces the TBAC policy to accept all
incoming sessions for too many iterations before the measured
response time exceeds the threshold. Once the threshold is
exceeded, this policy reacts refusing all incoming sessions,
but the response time remains over the threshold until the end
of a sufficient number of sessions. The PAC policy reduces the
amplitude of the oscillations, with respect to TBAC, but does
not solve this problem completely. The AACA policy, instead,
shows a stable behavior thanks to the learning mechanism that
allows the system to properly adapt the session admission rate.

 0

 100

 200

 300

 400

 500

 25000 25500 26000 26500 27000 27500 28000

N
r.

A
ct

iv
e

S
es

si
on

s

time (sec)

AACA
TBAC

PAC

 0

 100

 200

 300

 400

 500

 25000 25500 26000 26500 27000 27500 28000

N
r.

A
ct

iv
e

S
es

si
on

s

time (sec)

AACA
TBAC

PAC

Fig. 9. Number of active sessions

VIII. CONCLUSIONS

In this paper we address the problem of admission control
for web based systems. We introduce an original policy,
named AACA, that is based on a self-learning measurement
framework that permits the self-configuration of its parameter
setting and a rapid adaptivity. Our policy does not require any
prior knowledge of the incoming traffic, nor any assumption on
the probability distribution of request inter-arrival and service
time. Unlike other proposals in the area, our policy works
under a wide range of operating conditions without the need of
laborious manual parameter tuning. It is entirely implemented
on edge points, be them access routers or application level
dispatchers, and does not require any modification of client
and server software.

We compared our policy to other previously proposed
approaches. Extensive simulations show that it permits an
excellent utilization of system resources while always respect-
ing the limits on response time imposed by service level
agreements. We also show that our policy improves service
quality by reducing oscillations of response time and number

of active sessions (common to other policies that work at
session granularity).

The impact of network load on the self-learning activity
at the basis of the AACA policy is under study and will be
considered as an extension of this work.

REFERENCES

[1] “Ibm: the vision of autonomic computing,”
http://www.research.ibm.com/autonomic/manifesto.

[2] “Hewlett packard: Adaptive enterprise design principles,”
http://h71028.www7.hp.com/enterprise/cache/80425-0-0-0-121.html.

[3] “Microsoft: The drive to self-managing dynamic systems,”
http://www.microsoft.com/windowsserversystem/dsi/default.mspx.

[4] D. Breitgand, E. Henis, and O. Shehory, “Automated and adap-
tive threshold setting: enabling technology for autonomy and self-
management,” Proceedings of the International Conference on Auto-
nomic Computing (ICAC), 2005.

[5] X. Liu, R. Zheng, J. Heo, Q. Wang, and L. Sha, “Timing performance
control in web server systems utilizing server internal state information,”
Proceedings of the IEEE Joint International Conference on Autonomic
and Autonomous Systems and International Conference on Networking
and Services (ICAS/ICNS), 2005.

[6] Y. Li, K. Sun, J. Qiu, and Y. Chen, “Self-reconfiguration of service-
based systems: a case study for service level agreements and resource
optimization,” Proceedings of the IEEE International Conference on Web
Services (ICWS), 2005.

[7] S-Pradeep, C. Ramachandran, and S. Srinivasa, “Towards autonomic
web-sites based on learning automata,” Proceedings of the ACM World
Wide Web Conference (WWW), 2005.

[8] J.-R. Gruser, L. Raschid, V. Zadorozhny, and T. Zhan, “Learning
response time for websources using query feedback and application
in query optimization,” The International Journal on Very Large Data
Bases, vol. 9, no. 1, March 2000.

[9] V. Cardellini, E. Casalicchio, and M. Colajanni, “The state of the art
in locally distributed web server systems,” ACM Computing Surveys,
vol. 34, no. 2, pp. 263–311, 2002.

[10] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,”
IEEE Transactions on the Web, to appear 2007.

[11] N. Bartolini, G. Bongiovanni, and S. Silvestri, “An autonomic admission
control policy for distributed web systems,” University of Rome, La
Sapienza, Research Report nr.: 05/2007, 2007.

[12] L. Cherkasova and P. Phaal, “Session based admission control: a
mechanism for peak load management of commercial web sites,” IEEE
Transactions on Computers, vol. 51, no. 6, 2002.

[13] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel, “A method for
transparent admission control and request scheduling in e-commerce
web sites,” Proceedings of the ACM World Wide Web Confer-
ence(WWW), May 2004.

[14] N. Bartolini, G. Bongiovanni, and S. Silvestri, “Distributed server
selection and admission control in replicated web systems,” The IEEE
Proceedings of the 6th International Symposium on Parallel and Dis-
tributed Computing (ISPDC), 2007.

[15] Z. Xu and G. v. Bochmann, “A probabilistic approach for admission
control to web servers,” Proceedings of the International Symposium on
Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), July 2004.

[16] J. Aweya, M. Ouelette, D. Y. Montuno, B. Doray, and K. Felske, “An
adaptive load balancing scheme for web servers,” International Journal
of Network Management, vol. 12, pp. 3–39, 2002.

[17] “Opnet technologies inc.” http://www.opnet.com.
[18] “Specweb2005 design document,”

http://www.spec.org/web2005/docs/designdocument.html.
[19] “The transaction processing council (tpc). tpc-w,”

http://www.tpc.org/tpcw.
[20] D. Menasce, “Tpc-w: A benchmark for e-commerce,” IEEE Internet

Computing, May/June 2002.
[21] H. Weinreich, H. Obendorf, E. Herder, and M. Mayer, “Off the beaten

tracks: Exploring three aspects of web navigation,” Proceedings of the
ACM World Wide Web Conference (WWW), 2006.

