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Abstract—When multiple networks are interconnected because of mutual service interdependence, propagation of phenomena

across the networks is likely to occur. Depending on the type of networks and phenomenon, the propagation may be a desired effect,

such as the spread of information or consensus in a social network, or an unwanted one, such as the propagation of a virus or a

cascade of failures in a communication or service network. In this paper, we propose a general analytic model that captures multiple

types of dependency and of interaction among nodes of interdependent networks, that may cause the propagation of phenomena. The

above model is used to evaluate the effects of different diffusion models in a wide range of network topologies, including different

models of random graphs and real networks. We propose a new centrality metric and compare it to more traditional approaches to

assess the impact of individual network nodes in the propagation. We propose guidelines to design networks in which the diffusion is

either a desired phenomenon or an unwanted one, and consequently must be fostered or prevented, respectively. We performed

extensive simulations to extend our study to large networks and to show the benefits of the proposed design solutions.

Index Terms—Interdependent networks, information diffusion, failure propagation, network design
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1 INTRODUCTION

MUCH of today’s infrastructure is organized in the form
of interdependent networks. Systems of water and

food supply, communications, fuel, financial transactions,
power generation and transmission are all examples of
interdependent networks, where the functionality or perfor-
mance of one network depends on the other. A failure in
one network may cause service degradation or failure in the
others. Failures can cascade multiple times between two
interdependent networks and therefore, result in a cata-
strophic spread, as described in the work of Parandehgheibi
et al. [1].

Nevertheless, failures are not the only phenomenoa that
can spread through interdependent networks. A similar
process of propagation can be observed in interconnected
social networks when information spreads among the nodes
of overlapping communities.

There is a considerable amount of literature addressing
the problem of modeling information diffusion or cascading
failures within a single network or across several interde-
pendent networks. Most of the works on cascading failures,
from those of Buldyrev et al. [2], [3], [4], [5], [6] to the more
recent works of D’Souza et al. [7], [8], are interested in
studying the network fragmentation resulting from the

propagation of a failure. They aim at characterizing the con-
ditions under which a phenomenon can spread through a
network, though still preserving the existence of a giant
working component of connected nodes in the network.

Parallel to this, there is a large body of work which
focuses on opinion dynamics, and attempts to characterize
the spread of information in a network under different
models of interaction among nodes, as in the works of
Leskovec et al. [9] and Kleinberg et al. [10], [11], [12].

Some works [5], [13], [14], [15], [16] study the propaga-
tion of phenomena through interdependent networks under
different scenarios. Only few of them, such as those from
Parshani et al. [5] and recently Yagan et al. [13] consider
engineering aspects of inter-dependent networks with the
purpose of either preventing or hastening cascades in a gen-
eral scenario.

Unlike previous work, in this paper we aim to provide a
framework that generalizes the study of phenomenapropaga-
tion, by developing a neutral model that allows the study of
both unwanted propagation and desired diffusion.We do not
make any assumption on the network topology, type of
phenomena or inter-connectivitymodel. The provided frame-
work considers heterogeneous interconnected networks, and
heterogeneous nodes that may have different characteristics
in terms of their propensity to be involved in the propagation
of a phenomenon and to affect other nodes.

We develop a general model that captures the inter-
dependency between two general networks and incorpo-
rates an aleatory delay in the occurrence of propagation
from node to node. By means of this model, we are able to
perform a structural analysis of the interdependent net-
works, and to study the impact of characteristics such as
inter-connectivity patterns and network structure in speed-
ing up or slowing down the propagation of phenomena
throughout the networks.
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The purpose of this analysis is to provide guidelines for
the design of inter-connectivity schemes that allow one to
control the speed and extent of the propagation process.

The contributions of this paper are the following:

� We propose a general threshold-based model for the
propagation of phenomena in heterogeneous inter-
dependent networks. This model generalizes the
characteristics of other previous approaches.

� We use an absorbing Markov model to investigate
the time process of the propagation.

� We perform extensive simulations to study the prop-
agation process over time under different scenarios.
We evaluate the impact of different parameters on
the speed of propagation, showing that those defin-
ing the inter-connectivity play a major role in affect-
ing the propagation process.

� We give design guidelines to make phenomena
propagation more controllable. We analyze the
impact of the degree of interconnecting nodes on the
speed of propagation within networks. We also
introduce a new metric of centrality that captures the
importance of a node in the propagation of phenom-
ena and propose ways to control the propagation
process by altering the characteristics of few high
centrality nodes.

2 RELATED WORK

A wide range of studies have been carried out in recent
years to predict and investigate the propagation of phenom-
ena across networked systems. Most of these focus on one
single topology and/or only investigate the asymptotic
behavior of the network. For example, the initial work by
Buldyrev et al. [3] considers a one-to-one coupling model
between two networks of identical size, where each node in
a network depends on only one node in the other. Like in
most of the works based on percolation theory, the work of
Buldyrev relates the robustness of the network to the size of
the giant connected component. The authors study the case
of a random attack on some nodes, and show that as long as
the fraction of initially failed nodes is below a critical thresh-
old, a significant part of the network remains functional.

A similar problem is tackled by works in the area of boot-
strap percolation, such as the work of Chalupa et al. [17]
and Baxter et al. [18], where the authors assume that the
propagation is ignited by a set of initially affected spreader
nodes. In [4], Buldyrev et al. focus on the role of intercon-
nectivity links between two interdependent networks in
influencing the speed and extent of propagation, in a simpli-
fied scenario where all the interconnecting nodes have the
same degree. Other later works tackle more realistic models
of inter-connectivity. Parshani et al. [5] study interdepen-
dent networks using percolation theory and show that
reducing interdependencies between networks below a crit-
ical value yields a continuous percolation transition. Stanley
et al. [6] generalize previous models by assuming random
interdependency between networks.

Other works give more emphasis to robust network
design.The work of Schneider et al. [19] gives guidelines to
maximize network robustness by recognizing nodes that
should not be in the interconnection between the two

networks. The work of Yagan et al. [13] focuses on cyber-
physical interdependent systems, and shows that a uniform
allocation of bidirectional edges to all nodes in the system is
the optimal design strategy against random attacks on
unknown topologies.

In all the aforementioned works, the authors assume that
propagation from one node to another follows an epidemic
model, where an affected node can propagate the phenom-
ena to any of its neighbors, regardless of the status of its
other neighbor nodes. By contrast, there is another line of
research, exemplified by the works of Kempe et al. [10], and
Watts at al. [20], which considers threshold-based propaga-
tion models, according to which a node can be affected by
the propagating phenomenon only if the number of its
affected neighbors exceeds a given threshold. The works of
Lee et al. [14], [15] extend the threshold model to the case of
multiple layers of interdependent networks, in particular
in [14] with heterogeneous response of nodes from one layer
to another.

Our work tackles important aspects that were not
addressed in previous work in a single unified framework.
First, we generalize the role of interconnectivity links, which
may reflect either a peer role or a functional dependency
relationship between nodes. Second, we study the temporal
process of propagation, considering a model which includes
an aleatory delay in the propagation which has a significant
impact, in terms of speed and extent of propagation with
time. Third, we address the study of propagation from a
network engineering perspective, highlighting the impact
on propagation of some structural properties of nodes and
their interconnections. To provide better understanding of
phenomena propagation in interdependent networks, we
propose a general model that can cover a wide range of phe-
nomena, from failure propagation to information diffusion,
and can be applied to any interdependent network system,
regardless of network topology, type of phenomena, and
inter-connectivity model. As also pointed out in the work
by Kitsak et al. [21], classic metrics of centrality do not
always identify the most influential spreaders in a complex
network. We introduce a new centrality metric that success-
fully identifies spreaders even in our general model of
propagation.

We clarify that, despite the generality of the proposed
framework, our work cannot be applied to model interde-
pendent networks for which failures do not propagate
according to a topological model, such as the power grid. In
fact, although most of the literature in this area in the last
decade have assumed an epidemic topological model
(neighbor to neighbor propagation) even for the propaga-
tion of failures along the nodes of a power grid, more recent
work by Hines et al. [22] highlighted that in this type of net-
work the propagation model is very specific. In fact, the
propagation of failures proceeds along the network, spread-
ing between points that may be far apart from each other
and not directly connected.

3 INTERCONNECTED NETWORK MODEL

Table 1 summarizes the notation used in the paper. Let us
consider two interconnected networks, represented by two
undirected graphs GX ¼ ðX;EXÞ and GY ¼ ðY;EYÞ, with nX

226 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2016



and nY nodes, respectively. We equivalently refer to these as
networks X and Y . Without loss of generality, we assume
that nodes belonging to the same network have peer roles.
For this reason we use undirected links to represent connec-
tions of nodes of a same network and model them through
a symmetric adjacency matrix. Notice that this assumption
has no impact on the analytical model of propagation,
which may as well work with directed links and asymmet-

ric adjacency matrix. We denote with AXX 2 f0; 1gnX�nX and

AYY 2 f0; 1gnY�nY the symmetric adjacency matrices repre-
senting the intra-links of networks X and Y , respectively.
The two networks are interconnected by means of directed

inter-links, according to the inter-connection matrices

AXY 2 f0; 1gnX�nY and AYX 2 f0; 1gnY�nX . We use directed
edges for inter-links to capture different models of inter-
dependency between heterogeneous networks.

Two nodes connected through an intra-link are intra-
neighbors. The set of intra-neighbors of node i 2 X is denoted

by Uintra
X ðiÞ ¼ fj 2 Xjði; jÞ 2 EXg, while the value of

Uintra
X ðiÞ�� �� is the intra-degree of node i 2 X. Similar notations

are introduced for network Y .
Given a node i 2 X, we define the set of inter-parents of i,

as Uinter
X ðiÞ ¼ fj 2 Y jAYXðj; iÞ ¼ 1g: We refer to Uinter

X ðiÞ�� �� as
the inter-degree of node i 2 X. Similar notation is used for
the interconnecting edges from network X to network Y .
Fig. 1 shows an example of two interconnected networks X
and Y , of six nodes each. Dashed lines are directed inter-
links, and solid lines are intra-links. As an example, the
presence of the directed inter-link from node 4 of X to node
1 of Y denotes that node 4 is an inter-parent of node 1. Simi-
larly, the intra-neighbors of node 5 of network X are nodes
2, 3, 6 ofX, while its only inter-parent is node 3 of Y .

3.1 Enabling Conditions for Propagation to a Node

We use the neutral term phenomenon to refer to either
desired or undesired propagating events, as a cascade of
failures or the diffusion of a piece of information or an opin-
ion. We also generically term as affected any node that has
been reached by the propagating phenomenon.

In the following we introduce a threshold-based propa-
gation model. This is a general parametric model that incor-
porates previous models as special cases. According to this
model a node may become affected by the phenomenon
only if the number of affected neighbors exceeds a given
threshold, and with a probability that is proportional to this
number. This reflects some real scenarios, such as the
spread of an opinion or the adoption of a new technology/
product in a social networks. In both cases the propagation
is more likely to occur when the number of affected nodes
in the network increases.

Previous works also contributed some threshold based
propagation models [10], [11], [12], [14], [20], [23]. Most of
these only considered a single network, with homogeneous

TABLE 1
Nomenclature and Notation

Notation Description

GX ¼ ðX;EXÞ graph of networkX
GY ¼ ðY;EYÞ graph of network Y
nx, ny number of nodes inX and Y
AXX, AYY adjacency matrixes ofX and Y
AXY, AYX matrixes of inter-links
Uintra
X ðiÞ � X intra-neighbors of node i 2 X

Uintra
Y ðjÞ � Y intra-neighbors of node j 2 Y

Uinter
X ðiÞ � Y inter-parents of node i 2 X

Uinter
Y ðjÞ � X inter-parents of node j 2 Y

kxxðiÞ 2 ½0; 1� intra-propagation threshold to i 2 X
(in% of affected intra-neighbors)

kyyðjÞ 2 ½0; 1� intra-propagation threshold to j 2 Y
kxyðjÞ 2 ½0; 1� inter-propagation threshold to j 2 Y
kyxðiÞ 2 ½0; 1� inter-propagation threshold to i 2 X
F0 set of initial spreader nodes
gintraðiÞ fraction of affected intra-neighbors of node i
ginterðiÞ fraction of affected inter-parents of node i
g 0
intraðiÞ number of affected intra-neighbors of node i

g 0
interðiÞ number of affected inter-parents of node i

P intra
prop ðiÞ propagation probability from

intra-neighbors to node i
P inter
prop ðiÞ propagation probability from

inter-parents to node i
pmaxXðiÞ propagation probability to i 2 X

from intra-neighbors when all
intra-neighbors are affected

pmaxYðiÞ propagation probability to j 2 Y
from intra-neighbors when all
intra-neighbors are affected

pmaxYX ðiÞ propagation prob. to i 2 X from
inter-parents when they are all affected

pmaxXY ðjÞ propagation prob. to j 2 Y from
inter-parents when they are all affected

KxxðiÞ intra-propagation threshold to i 2 X
(in number of affected intra-neighbors)

KyyðjÞ intra-propagation threshold to j 2 Y
KyxðiÞ inter-propagation threshold to i 2 X
KxyðjÞ inter-propagation threshold to j 2 Y
ST state space of the propagation process
s 2 ½0; 1�nxþny generic state of the propagation process
M transition probability matrix of the process
Mjs;s0 generic ðs; s0Þ-element ofM

IðconditionÞ indicator function of condition
Cv centrality of node v
a 2 fas;ai; nxg max# of nodes with inter-links from

networkX to Y , each with probability PXY

b 2 fbs; bi; nyg max# of nodes with inter-links from
network Y toX, each with probability PYX

Fig. 1. Interdependent network model. Dashed-lines are intralinks, solid
lines are interlinks.
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propagation thresholds. Unlike these works, we consider
interconnected networks, in which nodes have heteroge-
neous propagation thresholds and propagation probabili-
ties across the two networks and within a single network.
We address network heterogeneity by differentiating
between the way the propagation occurs within a network,
called intra propagation, and across two heterogeneous net-
works, referred to as cross propagation.

Our model is general for the following reasons:

1) It covers most of the traditional models of propaga-
tion, from contagion/epidemic models [24], [25] to
the threshold cascade model proposed by Kleinberg
et al. [12].

2) It does not assume a specific network topology, nor
any kind of inter-dependency in contrast to the pre-
vious works which usually assume a specific
scenario.

3) It considers a flexible probabilistic model of propaga-
tion that can be used for any type of network with
heterogeneous nodes by defining different values for
the thresholds and propagation probabilities.

4) Unlike some previous work by Havlin et al. [2], our
model does not rely on any assumption of having
only one type of propagation in each time step.
Notice that this assumption has no impact on the
percolation properties (percolation threshold and
size of the giant component). Nevertheless, to prop-
erly study the dynamics of the propagation process,
it is essential to consider that the phenomena can
propagate simultaneously in any direction, inside
one network and from one network to the other,
which reflects real-world scenarios.

Similar to the work on bootstrap percolation [17], [18], we
assume that initially only a subset F0 of nodes is affected by
the phenomenon. Unlike these works, we study the time
process of propagation among the nodes of the two net-
works. We consider discrete time steps. The propagation of
a phenomenon from one node to the others may occur in
one step or be delayed and occur after multiple time steps.

For the two interdependent networks, we introduce two
different threshold functions kxxðiÞ 2 ð0; 1� for i 2 X and
kyyðjÞ 2 ð0; 1� for j 2 Y , to model the propagation across

nodes of the same network. We also introduce two other
thresholds kyxðiÞ 2 ð0; 1� for i 2 X, and kxyðjÞ 2 ð0; 1� for

j 2 Y , to model the propagation across the two interdepen-
dent networks, from network X to network Y and vice
versa, respectively.

We denote by Pintra
prop ðiÞ the probability of propagation to

node i, due to the same network neighbors, i.e., intra-

neighbors, and by Pinter
prop ðiÞ the propagation probability

related to the inter-parents. In particular, assuming that a
fraction gintraðiÞ of intra-neighbors of node i 2 X are
already affected by the phenomenon, the probability that
the phenomenon propagates to i 2 X within one time step

is Pintra
prop ðiÞ, and is calculated as follows:

Pintra
prop ðiÞ ¼

g0
intra

ðiÞ
Uintra
X

ðiÞj j � pmaxXðiÞ if g 0
intraðiÞ � KxxðiÞ

0 if g 0
intraðiÞ < KxxðiÞ;

8<
: (1)

where KxxðiÞ ¼ kxxðiÞ � Uintra
X ðiÞ�� ��� �

and g 0intraðiÞ ¼ gintraðiÞ�d
Uintra
X ðiÞ�� ��e is the number of affected intra-neighbors of node

i. Here pmaxXðiÞ represents the probability that node i 2 X is
affected by the phenomenon within one time step, when all
of its intra-neighbors are already affected.

Fig. 2 shows the probability that a phenomenon propa-
gates to node i 2 X within one time step, as a function of
the number of intra-neighbors that are already affected. We
see that if the number of affected intra-neighbors of node i
is less than the threshold, the probability of propagation to
node i is zero. By contrast, when the number of involved
intra-neighbors exceeds the threshold, the probability of
propagation increases linearly with the number of affected
intra-neighbors.

Similarly, node i 2 X may be affected by the propagating
phenomenon due to the fact that some inter-parents are also
affected. Therefore, denoting with g 0interðiÞ the number of
affected inter-parents of node i, we define:

Pinter
prop ðiÞ ¼

g0
inter

Uinter
X

ðiÞj j � pmaxyxðiÞ if g 0interðiÞ � KyxðiÞ
0 if g 0interðiÞ < KyxðiÞ;

(
(2)

where KyxðiÞ ¼ kyxðiÞ � Uinter
X ðiÞ�� ��� �

and g 0
interðiÞ ¼ ginterðiÞd

� Uinter
X ðiÞ�� ��e, and where ginterðiÞ is the fraction of currently

affected inter-parents of node i. The parameter pmaxYXðiÞ rep-
resents the probability that node i 2 X is involved in the
propagating phenomenon within one time step after all
inter-parents of i inside network Y have been affected. We
use a similar notation for node j 2 Y by defining equations
analogous to Equations (1) and (2), where we use the thresh-
olds kyyðjÞ and kxyðjÞ to express the required fraction of
intra-neighbors and inter-parents of node i that must be
affected before i can become affected with positive probabil-
ity. For the sake of brevity, we will use pmaxð�Þ to refer to
the case where the transition probabilities are homo-
geneously defined, namely pmaxXð�Þ ¼ pmaxYð�Þ ¼ pmaxXYð�Þ ¼
pmaxYXð�Þ.

Our propagation model includes the characteristics of
previous models in a unique general framework, as we
highlight in the following examples.

The random threshold model introduced in [10], [11], can
be obtained by modeling a single network X and setting
kxxðiÞ to a random value, for each i 2 X.

The viral spread (one-to-one) epidemic model common
to many works [1], [2], [3], [4], [6] can be obtained by setting

Fig. 2. Probability of phenomena propagation from intra-neighbors to
node i 2 X within one time step.
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kxxðiÞ ¼ 1
Uintra
X

ðiÞj j, kyxðiÞ ¼
1

Uinter
X

ðiÞj j for any node i 2 X, and

kyyðjÞ ¼ 1
Uintra
Y

ðjÞj j, and kxyðjÞ ¼ 1
Uinter
Y

ðjÞj j for j 2 Y .

The partial dependency model presented in [2], [5]
(where only a fraction of nodes in X has support links from
network Y and vice versa), multiple-support dependency
relation model presented in [6], and same-degree mutual
dependency model presented in [4] (where a one-to-one
dependency is considered between nodes with identical
degree in the two networks) can be obtained in a straightfor-
ward manner by appropriately modeling the adjacency
matrices, and setting pmaxXYð�Þ ¼ pmaxYXð�Þ ¼ 1 and kxyð�Þ ¼
kyxð�Þ ¼ 1.

4 THE PROPAGATION PROCESS

We model the temporal evolution of the phenomenon prop-
agation with a Markov model. We denote by ST the set of
states of the model, where each state is defined as a vector

s ¼ ðs1s2 . . . snx
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{2X

snxþ1 . . . snxþny

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{2Y
Þ, in which sk (for k � nx) is 1

if node k 2 X is affected, and 0 if it is not affected by the
propagating phenomenon. Similarly, for k > nx, sk is 1 if
node k	 nx of network Y is affected and 0 otherwise. There-
fore, the initial state of the propagation process is
sinitial ¼ ðs1s2 . . . snxsnxþ1 . . . snxþnyÞ, where sk ¼ 1 if k � nx

^ > k 2 X \ F0 or k > nx ^ ðk	 nxÞ 2 Y \ F0, while sk ¼ 0
otherwise.

According to our propagation model, a node can be
affected by the phenomenon only if the number of its
affected intra-neighbors and/or inter-parents exceeds a
given threshold. Therefore, not all the binary vectors of
nx þ ny elements represent a feasible state of the process.

Based on the previous definitions, it is straightforward to
calculate the one-step transition probability matrix of the

process M 2 f0; 1gjST j�jST j, whose element Mjsi;sj gives the

probability that the network transits from state si to state sj.

4.1 Transition Probabilities of the Propagation
Process

In the following we describe how to calculate the one-step
transition probabilities of the propagation process.

We recall that M denotes the transition probability
matrix, and Mjs;s0 its generic element, corresponding to the

transition probability from state s to state s0. We also let
Ds ¼ s0 	 s. We will refer to the jth elements of vectors Ds
and s by Dsj and sj, respectively. Notice that, in order to cal-
culate Mjs;s0 we are only interested in transitions for which

Dsj ¼ 0; 1; 8j ¼ 1; . . . ; nx þ ny.

We denote by IðconditionÞ an indicator function, which
is equal to 1 if the value of the boolean condition is true,
and 0 otherwise. The generic element ofM can be calculated
as follows:

Mjs;s0 ¼
Ynxþny

j¼1

fj � IðDsj ¼ 0Þ þ f 0jIðDsj ¼ 1Þ
h i

; (3)

where fj denotes the probability that there is no change in
the jth component of the state when moving from state s to
state s0, and f 0j is the probability that there is such a change.

Notice that if there is no change in a state component, it
means that the related node is either already affected, or it
is unaffected and remains so. The latter case, may be due to
the fact that the conditions for propagation described in
Section 3.1 are not valid, or to the fact that the propagation,
although enabled by the propagation conditions, did not
occur in the current time step.

We now calculate the value of fj and f 0
j by separating the

terms related to network X and Y . In particular, fj, the
probability of having a change in the jth component when
the status change from s to s0, is as follows:

fj ¼
gxðjÞ if j � nx ^ sj ¼ 0;
gyðjÞ if j > nx ^ sj ¼ 0;
1 if sj ¼ 1:

8<
:

The term gxðjÞ can be calculated as

gxðjÞ ¼ IðgintraðjÞ < kxxðjÞÞ � IðginterðjÞ < kyxðjÞÞ
þ IðgintraðjÞ � kxxðjÞÞ � IðginterðjÞ < kyxðjÞÞ � �Pintra

prop ðjÞ
þ IðgintraðjÞ < kxxðjÞÞ � IðginterðjÞ � kyxðjÞÞ � �Pinter

prop ðjÞ
þ IðgintraðjÞ � kxxðjÞÞ � IðginterðjÞ � kyxðjÞÞ�

� �Pintra
prop ðjÞ �Pinter

prop ðjÞ;

(4)

where �Pintra
prop ðjÞ ¼ 1	 Pintra

prop ðjÞ and �Pinter
prop ðjÞ ¼ 1	 Pinter

prop ðjÞ.
We recall that Pintra

prop ðjÞ and Pintra
prop ðjÞ are defined in Equa-

tions (1) and (2), respectively.
In order to calculate the term gyðjÞ, we define j0 ¼ j	 nx

and apply a formula analogous to the one in Equation (4).
The term f 0

j denotes the probability that there is a change
in the jth component of the state vector, when going from
state s to state s0. As we did for the term fj we split f 0

j in the

contributions related to the two networks. Therefore,

f 0
j ¼

g0xðjÞ if j � nx ^ sj ¼ 0;
g0yðjÞ if j > nx ^ sj ¼ 0;
0 if sj ¼ 1:

8<
:

Hence the term g0xðjÞ can be calculated as follows:

g0xðjÞ ¼ IðgintraðjÞ � kxxðjÞÞ � IðginterðjÞ � kyxðjÞÞ�
� �Pintra

prop ðjÞ � Pinter
prop ðjÞ þ �Pintra

prop ðjÞ � Pinter
prop ðjÞ

þ Pintra
prop ðjÞ � �Pinter

prop ðjÞ�
þ IðgintraðjÞ < kxxðjÞÞ � IðginterðjÞ � kyxðjÞÞ � Pinter

prop ðjÞ
þ IðgintraðjÞ � kxxðjÞÞ � IðginterðjÞ < kyxðjÞÞ � Pintra

prop ðjÞ:

(5)

Finally, by considering j0 ¼ j	 nx, we can write, for the
nodes of network Y an Equation analogous to Equation (5).

Notice that, for a fixed set of network parameters, if the
intra-propagation threshold (kyy; kxx) and/or inter-propaga-
tion threshold (kxy; kyx) are smaller, it is more likely that the
propagation conditions of Section 3.1 are satisfied. This cor-
responds to an increase of f 0

j with respect to fj. Indeed,

from Equation (3) we see that to increase the speed of prop-
agation, we need to have f 0j > > fj to let the second term of

Equation (3) dominate the first. Also by fixing all network
parameters and increasing the value of pmax

 ð�Þ, we can
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predict that f 0j > fj, since f 0j is an increasing function of

Pintra
prop ; P

inter
prop while fj is an increasing function of �Pintra

prop ; �Pinter
prop

and therefore, a decreasing function of Pintra
prop ; P inter

prop . In Sec-

tion 7 we provide extensive simulations to validate these
claims.

4.2 Expected Time to Absorption

The phenomena propagation can be seen as an absorbing
Markov process, in which the absorbing states are those in
which either all nodes are affected, or no unaffected node
meets the propagation condition described in Section 3.1.

Notice that, depending on the value of the thresholds kxx,
kyy, kxy and kyx, and the set of initial starters F0, we may

have different absorbing states.
Standard techniques for the analysis of Markov processes

[26] can be applied to calculate the expected time to absorp-
tion of the proposed Markov model.

Let t be the number of non-absorbing state. Let

Q 2 ½0; 1�t�t be a squarematrix giving the transition probabil-
ities from non-absorbing to non-absorbing states. We define

the fundamental matrix N , ðI 	QÞ	1 ¼ I þQþQ2 þ � � � ;
where limk!1 Qk ¼ 0:

Let t̂ 2 Rt be a column vector representing the mean time

to absorption, where t̂i is the mean time to absorption when

the initial state is the ith non absorbing state. The value of t̂i
is the sum of the elements of the ith row of N . Therefore

t̂i ¼
Pt

j¼1 Nij.

5 DISCUSSION ON NETWORK DESIGN

We recall that the elements of the transition probability
matrix introduced in Section 4.1 depend on the adjacency
matrices of the two interdependent networks, on the thresh-
olds kxx, kyy, kyx, kxy, and on the parameters pmaxXð�Þ, pmaxYð�Þ,
pmaxYXð�Þ, and pmaxXYð�Þ. We also recall that all of these parame-
ters may have different values for each node.

All the above mentioned parameters can be tuned in the
network design phase to create a network with the desired
characteristics in terms of propensity to propagate phenom-
ena or robustness to them.

For example, in the context of failure propagation, higher
threshold values correspond to nodes that are less prone to
be affected by the propagation from either intra-neighbor or
inter-parent nodes. In terms of network design, to have a
node with a higher threshold we may adopt systems where
nodes are dependent on each other with some level of
redundancy.

In contrast, in the context of a social network, a higher
threshold in the propagation model may reflect a situation
in which individuals are not easily influenced and corrobo-
ration of consensus is needed before propagation can occur.

Similarly, the parameters pmaxXð�Þ; pmaxYXð�Þ, or pmaxYð�Þ and
pmaxXYð�Þ, represent the capability of a node to foster or pre-
vent the spread of a phenomenon. For instance, in the prop-
agation of failure, having a node with a high value of these
parameters implies that this node is more vulnerable and
tends to be affected by the failure with a higher probability.
As a design criterion, if some nodes play a critical role in
the connectivity of the network, it will be a good design
strategy to invest more effort in making these nodes more

robust and reliable, which lowers the values of the above
mentioned propagation probability parameters and implies
a slower, or less likely propagation.

In the context of information spreading in a social net-
work, a node with high values of these propagation proba-
bilities may be useful as it is rapidly affected, as soon as the
propagation conditions are satisfied.

This analysis gives some hints on how to design net-
works that may show a better behavior in terms of propaga-
tion, in both cases in which the propagation is either a
desired or an undesired event.

In order to control the propagation speed of the network,
a design strategy may consist of designing the network ele-
ments and their inter-connectivity so as to have the desired
values of the propagation parameters. Nevertheless, this
type of design may be costly, and it may not even be neces-
sary at every node. In a successful and cost efficient design
strategy we are interested in determining a subset of nodes
on which to intervene by adopting the necessary measures
to modify their propagation parameters with respect to the
rest of the network.

Hence it is of particular importance to be able to determine
which nodes play a critical role in the propagation andwhy.

In Section 7 we discuss experiments that determine the
impact of the node degree in affecting the propagation, with
particular focus on the nodes that are the endpoints of inter-
connecting edges between the interdependent networks. To
this purpose we investigate the impact of different inter-
connectivity patterns based on the degree of the intercon-
necting nodes. In particular, we experimentally investigate
the effect of interconnecting the networks by means of the
nodes with minimum or maximum degree, showing how
the degree of the interconnecting nodes plays a major role
in determining the speed of propagation across the interde-
pendent networks.

Nevertheless, it must be noted that the degree of a node
is just one of several possible metrics of node centrality that
can be adopted to determine the propensity of a node to
propagating phenomena.

In the next section we discuss several classic metrics of
centrality and we introduce a new metric specifically tai-
lored to propagation models based on threshold conditions.
In our experiments in Section 7 we compare the efficacy of
the centrality metrics in determining the most influential
nodes. We perform these comparisons by altering the prop-
agation parameters of the nodes with high centrality,
according to different metrics. We thus motivate the adop-
tion of efficient design strategies to create networks with the
desired propagation characteristics, by tackling the specific
characteristics of only the nodes with high centrality.

5.1 Proposed Centrality Metric

In graph theory and network analysis, the notion of
“centrality indicator” is used to refer to metrics that identify
the most important nodes within a graph.

Although classic centrality metrics [27], [28], [29] are
helpful in capturing the importance of the nodes inside a
single network, they may fail to quantify the importance of
the nodes in the interconnection of two heterogeneous net-
works. Moreover, classic metrics do not consider the role of
a node neighborhood in affecting the spread across the
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network according to the propagation conditions described
in Section 3.1. For example, a node may be central according
to classic centrality notions but it may still be unable to
spread the information across the network due to an insuffi-
cient number of nodes satisfying the propagation conditions
along these paths.

Considering the two interconnected networks as a single
network only partially solves the limited capability of clas-
sic metrics to capture the relevance of specific nodes to the
propagation. In contrast, considering the two networks as a
whole implies neglecting the differences between propaga-
tion inside one network and cross propagation across the
two networks. For example, in many real-world applica-
tions, after a phenomena happens in one of the two net-
works, the objective is to stop the propagation to the other
network. Therefore, in these cases, we only need to deter-
mine the important nodes for the propagation of the phe-
nomena from one network to the other one.

To determine the important nodes for the cross propaga-
tion, we investigated their evolution over time. We noticed
that whenever a phenomenon passes the border of one net-
work and reaches the borderline nodes of the other, the num-
ber of involved nodes increases significantly (see for example
Fig. 9). This confirms that the nodes that interconnect the two
networks can have a larger impact on the phenomena propa-
gation and therefore are more important. In fact, the border-
line nodes act as a firewall. Based on these observations, we
propose a new centralitymetric, called path-degree (PD) cen-
trality, that reflects the importance of the node in its local net-
work and in the context of interdependent networks, and at
the same time considers our thresholdmodel of propagation.

Unlike the traditional centrality metrics where the focus
is on the impact of a node on propagation inside one single
network, PD centrality focuses on propagation from one
network to the other network. Therefore, the proposed met-
ric gives a higher importance to the nodes that are located
on the border/close to the border of the two networks, thus,
are acting as hubs for the paths between the two networks.
Inspired by the definition of betweenness centrality [27],
path-degree centrality for a node v is defined as

Cv ¼
P

s2X;t2BY s 6¼t6¼v dstðvÞ if v 2 X;P
s2Y;t2BXs 6¼t6¼v dstðvÞ if v 2 Y;

�
(6)

where dstðvÞ represents the total number of shortest paths
from a node s to node t, that pass through node v. BX and
BY are the set of borderline nodes, inX and Y , respectively.

Unlike the classic notion of betweenness centrality, we
adopt a weighted measure of link length. The length lðpÞ of
a path p is calculated as follows:

lðpÞ ¼
X

8ni2pn sf g
deg ðniÞ � k ðniÞd e; (7)

where

degðniÞ ¼ UintraðniÞj j if ni 2 A ^ ni	1 2 A
UinterðniÞj j if ni 2 A ^ ni	1 2 B

�

kðniÞ ¼ kaa if ni 2 A ^ ni	1 2 A
kab if ni 2 A ^ ni	1 2 B;

�

where A;B can represent any of the two networks X;Y , and
A 6¼ B. Similarly, kaa may represent kxx or kyy.

The use of node degree as a weight in the calculation of
the path length, is motivated by the propagation model
introduced in Section 3.1. According to this model, the
impact that a single node can have on one of its neighbors
depends on the degree of the neighbor. In fact, if a node is
the only intra-neighbor of another node, and it is already
affected, there is a high chance that the intra-neighbor node
becomes affected too, according to the propagation condi-
tions of Section 3.1. In contrast, a node with multiple intra-
neighbors is less likely to be affected by a single neighbor,
because other intra-neighbors need to be affected to validate
the propagation conditions.

Based on our metric of path length expressed by Equa-
tion (7), increasing the degree of the nodes located on the
path (for a fixed value of kðniÞ), increases the length of the
path, and decreases the centrality of the node.

6 DETAILS ON THE SIMULATION ENVIRONMENT

Since the state space of the Markov model increases expo-
nentially with the number of nodes in the two networks, we
use our Markov model for evaluating medium size net-
works only. For larger size networks, we resort to a network
simulator based on MATLAB [30].

We will use this simulator to evaluate the impact of net-
work type, coupling models, set of initial spreaders, and
other aspects on the speed of propagation. Let F0 be the set
of initial spreaders, which is the set of nodes that are
affected by the phenomenon from the beginning. We want
to evaluate the number of nodes that are affected over time.

Unlike previous works in this area, [3], [4], [19], [31], that
study asymptotic statistical properties such as size of the
remaining giant connected component after a failure, we are
not looking at the asymptotic behavior of the phenomenon
propagation. Instead we investigate the propagation of the
phenomenonover time, andwhichnodes aremost likely to be
affected. The goal is to identify influential spreaders and to
determineuseful inter-connectionmethods that canhelpus to
designmoreefficientinterdependentnetworks.

6.1 Network Type

In the experiments, we investigate propagation in three well-
known artificial network models, namely Scale-Free (SF) [32]
which reflects the characteristics of preferential attachment in
WWW links, Small-World (SW) [33] indicating some types of
social networks, and Erdos-Renyi (ER) [34] used for complete-
ness in the analysis of random graphs. The study of these net-
works gives us a broad insight on how phenomena spreads
across the nodes of different topologies and allows us to per-
form extensive simulations under a wide range of experimen-
tal scenarios, with varying structural parameters of the
network model. In addition, we extend our study to real net-
work topologies to highlight the effect of variations of propa-
gation parameters. To this end, we consider real network
topologies taken from from the Center for Applied Internet
DataAnalysis (CAIDA) resource collection [35].

In each experiment where we use artificial networks, the
graphs GX and GY are generated according to one of these
three network growth models.
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Scale-Free. In a the scale-free network the degree distribu-
tion is defined by a power law, so most nodes have rela-
tively few links but a few nodes (called hubs) have a high
number of links. The contribution of the hubs to the overall
connectivity is very high with respect to those of nodes with
lower degree. This model is often used to represent the
WWW in which most web pages have only a few links con-
necting to them, but sites like Google and Yahoo have a
very large number of hyperlinks pointing to them [32]. To
generate a Scale-Free network, a seed network of few nodes,
nseed, is generated initially and additional nodes are added
with a preferential attachment procedure. The number of
links a new node can make to the existing network nodes,
mlinks, can control the average degree of the network.

Small-World. In this type of network, most nodes can be
reached from every other node via short paths. The idea
behind generating graphs with small-world characteristics
is to start with order and randomize a bit. Many empirical
graphs show small-world characteristics, e.g., Social net-
works, wikis such as Wikipedia, and gene networks [33]. In
our simulations, we start with a ring of n vertices in which
each vertex is connected to its ksw nearest neighbors, for a
given ksw. Then, each edge is rewired with a given probabil-
ity prw by choosing randomly a new vertex to connect.

Erdos-Renyi. In this model, a graph is constructed by con-
sidering a set of nodes and connecting them randomly. An
edge is added to each pair of nodes with probability p,
therefore, the distribution of the degree of any particular
vertex is binomial. An Erdos-Renyi network has the prop-
erty that the majority of nodes have a degree that is close to
the average degree of the overall network and that the devi-
ation from the average is rather limited. The distribution of
the links follows a Poisson distribution [34].

Where necessary, we will tune the network parameters
so as to obtain networks with a desired value of the average
node degree. An ER network with average degree d and n
nodes, can be generated by setting the probability of adding

an edge to p ¼ d
n. In the case of the SF network, we obtain a

network with the desired average degree by setting
nseed ¼ 5 and varying the number of links, mlinks, to which
each new node is attached. To generate a Small-World net-
work with a given average degree, we fixed the rewiring
probability to prw ¼ 0:4 starting from an initial ring-shaped
network with ksw neighbors for each node.

6.2 Inter-Connectivity (Coupling) Models

To cover a wide range of inter-connectivity models, we use
two schemes: a) randomized model, and b) designed model.
To evaluate the impact of the level of coupling between the
two networks GX and GY, for each set of models, we define
three different levels of inter-connectivity, namely high
inter-connectivity, sparse inter-connectivity, and intermedi-
ate inter-connectivity. For simplicity, in the remainder of
the paper, we will call borderline nodes all the nodes that are
endpoints of inter-connecting links between the two net-
works. In the following, we explain each model in detail.

Randomized Model. Borderline nodes are selected ran-
domly. We recall that interconnecting links are directed
edges. In this model, some nodes of network GX are selected
randomly. Let a 2 ½1; nx� be the number of such nodes. The

selected nodes have an outgoing link to each node of network
GY with probability PXY. Similarly, b nodes of network GY are
selected randomly, and each selected node can have an outgo-
ing link to each node of networkGX with probability PYX.

In our experiments, we distinguish three degrees of cou-
pling, by setting the values of a 2 fas;ai; nxg and
b 2 fbs;bi; nyg accordingly, with as < ai < nx and

bs < bi < ny.

1) High inter-connectivity: a ¼ nx and b ¼ ny.
2) Intermediate inter-connectivity: a ¼ ai and b ¼ bi.
3) Sparse inter-connectivity: a ¼ as and b ¼ bs.
Designed Model. In this model, the borderline nodes are

selected on the basis of some metrics. We believe that a met-
ric of centrality is a significant choice to engineering the net-
work so as to foster or reduce the spread of a phenomenon
between the two interconnected networks. For example, let
us consider the case of two interconnected social networks
GX and GY. By interconnecting nodes with higher centrality
in the two networks we can speed up the flow of informa-
tion. For the results shown in this paper, we determine the
set of borderline nodes on the basis of the intra-degree of
nodes. Depending on the intra-degree of the borderline
nodes, we define three categories of interest:

Min-Min Model. a nodes of network X with minimum
degree are connected to b nodes of network Y with mini-
mum degree.

Min-Max Model. a nodes of network X with minimum
degree are connected to b nodes of network Y with maxi-
mum degree.

Max-Max Model. a nodes of network X with maximum
degree are connected to b nodes of network Y with maxi-
mum degree.

6.3 Initial Spreaders

The choice of the nodes that are initially involved in the
phenomena may have a considerable impact on the speed
of propagation. To characterize this impact, we investigate
two different ways to define the set of initial spreaders F0.
In the proposed Markov model the state of these nodes is
set to one at time t ¼ 0.

Randomized Set. In this model, the initial spreaders are
randomly selected.

Designed Set. In this model, the initial spreaders are the
nodes with either maximum or minimum degree. This set-
ting could reflect a real case scenario in which the spread of
a failure may be the result of a targeted attack, or in the case
of a social network, a situation in which the information is
initially pushed to the most influential nodes with the pur-
pose to have a fast diffusion.

6.4 Verification of the Simulation Model

In the following we initially verify the consistency of the
simulator and the analytic model. As the analytic model
does not scale with the size of the network we can only ver-
ify the simulation model comparing the results obtained
with the theoretical Markov model and the simulator for
small size interdependent networks.

We consider two interdependent networks, each includ-
ing five nodes, i.e., nx ¼ ny ¼ 5. There are five outgoing
links from the nodes of network X to the nodes of network
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Y , and five outgoing links from the nodes of network Y to
the nodes of X, that make the inter-connectivity between
two networks. We set uniform propagation thresholds
throughout the nodes of the same network: kxx ¼ kyy ¼ 0:3;

kxy ¼ kyx ¼ 0:4. A node of network X is considered as the

initial spreader. It is also assumed that pmaxX ¼ pmaxY ¼
pmaxXY ¼ pmaxYX ¼ 0:8.

We assume that the set of initial spreaders includes one
single node that is selected randomly from network X. We
calculate the expected time to absorption using both the
analytical model of Section 4 and the simulator.

Fig. 3 shows the expected time to complete propagation,
which is the time until all the nodes of the two networks are
affected by the phenomenon. In the Markov model this met-
ric is calculated as described in Section 4.2. The expected
time to absorption using our simulator is obtained by aver-
aging over 10,000 runs. The error bars show the standard
deviation of the experiments.

The results of this comparison are related to networks gen-
erated according to the three network models described in
Section 6.1. In these experiments, the average degree of the
nodes for SF, ER, SW are 1:6; 2:8; 3:2, respectively. We see that
for all the three types of networkmodel, the simulation results
are very close to the results obtained by Markov model. In
Section 7 we perform extensive simulations on larger
networks to evaluate the propagation process described
in Section 4 and the design criteria discussed in Section 5.

7 SIMULATION RESULTS

In the following, we analyze the propagation process under
different network setups. We consider two interdependent
networks GX and GY, with 100 nodes each, nx ¼ ny ¼ 100.
Where not otherwise stated, we configure the propagation
conditions defined in Section 3.1 according to the following
threshold values, uniformly set for all the nodes inside each
network: kxx ¼ kyy ¼ 0:3; kxy ¼ kyx ¼ 0:4. We investigate the

percentage of the nodes that are affected by the propagating
phenomenon over time. For all results provided in this sec-
tion, a horizon of T ¼ 200 time steps is considered. Unless
explicitly mentioned otherwise, we generate networks X
and Y with average degrees of 4 or 6, by tuning the network
growth parameters as described in Section 6.1. Our results
represent the average of 500 random topologies. We assume
that the two networks are generated according to the same
network model, either ER, SF or SW.

7.1 On the Impact of the Network Model and of the
Choice of the Initial Spreaders

In this experiment, we investigate the effect of network
model on the speed of propagation. To have a fair compari-
son between different network models, we consider net-
works with same node average degree. In all the following
experiments we set pmaxð�Þ ¼ 0:8. We consider different
levels of random inter-connectivity, for which we set
PXY ¼ 0:05;as ¼ bs ¼ 2;ai ¼ bi ¼ 8 for the inter-connectivity
models. The results are shown for three different network
models, randomized and designed initial spreaders set, and
different levels of coupling between the two networks.

In all the experiments of this section, shown in Figs. 4, 5, 6,
and 7, we analyze the propagation of a phenomenon in the
three types of network models and show the percentage of
affected nodes over time. In Figs. 4 and 5 we consider net-
works with an average node degree of 4, and four initial
spreaders, with sparse and intermediate inter-connectivity,
respectively. In the scenario of Fig. 4, where the initial spread-
ers are selected randomly, the SW network generally produ-
ces a faster propagationwith respect to the other two network
models. The ER model is the slowest. In contrast, in Fig. 5 we
show that when we select the initial spreaders as the four

Fig. 3. Comparison between simulations and analysis (Markov model)
for the three network types.

Fig. 4. Different network models: Propagation process over time, Aver-
age degree of nodes = 4, F0 = 4 random nodes of network X.

Fig. 5. Different network models: Propagation process over time, Aver-
age degree of nodes = 4, F0 = 4 nodes of network X with max degree.

Fig. 6. Different network models: Propagation process over time, Aver-
age degree of nodes = 6, F0 = 4 nodes of network X with max degree.
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nodes ofXwithmaximumdegree, the Scale-Free network ini-
tially propagates the phenomenon faster than the others, but
the difference with the Small World model is considerably
lower. The Erdos-Renyi model is the slowest also in this case.
Fig. 6 shows the same results for a higher average degree. We
set the average node degree to 6, and we see that when the
inter-connectivity between the two networks is sparse, the SF
network propagates the phenomenon more than 2 times
faster than SWand 3 times faster thanER.Also in case of inter-
mediate inter-dependency, SF has the fastest propagation, but
the difference between themodels is less evident.

A similar set of experiments in shown in Fig. 7 for the
case of high inter-connectivity, where we show that for both
the choices of the spreader set, random or with maximum
degree, the network models show a trend that is very simi-
lar to that in the previous experiments, only propagating
the phenomenon faster.

We repeated these experiments for different configura-
tion of inter-dependency, and network average degrees,
and our results show that in most cases, the Scale-Free is the
fastest network model in terms of propagating the phenom-
ena to the whole network. The reason is that in the Scale-
Free network model, as soon as high degree nodes are
affected by the propagating phenomenon, there is a high
chance that many of the nodes connected to them are also
affected within a few time steps. This is because, the nodes
that are connected to the hubs have small degree, while this
is not the case for the other network models.

Also by comparing the results of sparse, intermediate
and high inter-connectivity models, we conclude that by
increasing the level of coupling between the two networks
X; Y , the speed of propagation is also significantly increased
and the three network models gets closer to each other. In
fact, when the level of coupling between the two networks
is sufficiently high, the three network models can be seen as
almost homogeneous.

Moreover by comparing the results of three network
models, and different models of initial spreaders selection,
we conclude that the impact of the initial spreaders on the
speed of phenomena propagation is more significant than
the impact of network model. In other words, by properly
selecting the initial spreaders in a slower network we can
obtain a faster propagation than selecting random spreaders
in networks that typically show a faster propagation.

For example, by looking at time t ¼ 80 in Figs. 5a and 4a,
we see that the average percentage of affected nodes for the
Erdos-Renyi model with a designed set of initial spreaders

is 82 percent, while it is less than 80 percent for the Scale-
Free and Small-World networks with a random choice of
the initial spreader set.

7.2 On the Impact of the Average Degree

In this section, we focus on the role of the average degree
(intra-degree) of the network graph on the speed of propa-
gation. We recall from Section 6.1 that network models ER,
SF and SW with varying average degree of nodes can be
obtained by properly setting the parameters defining the
network growth models. In order to investigate the impact
of average degree independently of other parameters, we
fix the inter-connectivity and intra-connectivity thresholds
in terms of number of affected intra-neighbor or inter-
parents (and not of their fraction with respect to total). We
set Kxx ¼ Kyy ¼ Kxy ¼ Kyx ¼ 2. We select 30 random nodes
as initial spreaders in network X and set pmaxð�Þ ¼ 0:8. Fig. 8
shows the results for the three network models under vary-
ing average degree.

In Fig. 8a we evaluate the time to reach 80 percent of the
final propagation extent under varying average degree. We
choose the 80 percent mark because this corresponds to the
time at which, on average, the propagation process shows
the maximum speed.

Fig. 8b shows the average percentage of nodes that will
eventually be affected by the propagating phenomenon for
500 random seeds.

As we see from both Figs. 8a and 8b, increasing the aver-
age degree will speed up the propagation. In the case of SF,
when the average degree goes from 2 to 8, Fig. 8a shows an
increase in the time necessary for the propagation to reach
the 80 percent mark. This increase in time is due to the
related increase in the extent of propagation, as confirmed
by Fig. 8b.

In contrast, when the degree goes from 8 to 10, the final
number of affected nodes is constant (equal to 100 percent
of the network nodes), and we see a decrease in the time to
reach 80 percent of the final propagation extent. A similar
trend is seen for ER and SW.

Whenever the number of affected nodes remains con-
stant by changing the average degree, the time to reach 80
percent of the final propagation extent decreases. This con-
firms that increasing the average degree causes an increase
in the propagation speed. The reason is that by increasing
the intra-degree of the nodes, we also increase the probabil-
ity that a sufficient number of neighbors of a node is
affected. Therefore, nodes reach the threshold faster and as
a result the speed of propagation increases.

Fig. 7. Different network models: Propagation process over time, Aver-
age degree of nodes = 4, a) F0 = 4 nodes of network X with max degree,
b) F0 = 4 random nodes of network X.

Fig. 8. Impact of average degree, (a) time to reach 80 percent of the final,
(b) average percentage of the affected nodes at T ¼ 200.
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From Fig. 8b, we also notice that for any value of degree,
the SF shows a faster propagation than the two other topolo-
gies, and is the only network which in this example achieves
the 100 percent of propagation extent, while ER and SW
reach only 69 and 55 percent, respectively.

7.3 On the Impact of the Inter-Connectivity Model

Now, we focus on the designed inter-connectivity models
discussed in Section 6.2. We fix the topology of networks
GX, GY, and only change the selection of the borderline
nodes. To motivate the importance of the nodes at the
edge of interconnecting links, we first analyze a simple
scenario of propagation. To show this we consider an
interdependent network system with 200 nodes, with two
networks of 100 nodes each. We assume that the set of
initial spreaders consists of 10 random nodes of X. The
coupling between the two networks is set to Min-Max
scenario, where a ¼ b ¼ 6. We investigate the percentage
of nodes that are getting involved in the phenomena over
time both in total, and for each network separately. The
goal is to analyze the propagation process across the two
networks. Fig. 9 shows the total number of involved
nodes, and the number of involved nodes in each net-
work for three different network models, Erdos-Renyi,
Scale-Free, Small-World. We see that for the three net-
work models, as soon a sufficient number of nodes in Y
are involved, there is a significant increase in the speed of
propagation. In fact, there is a point where the number of
involved nodes in Y remains constant for a while, and
after some time, it grows significantly and very fast. This
explains the impact of cross network propagation on the
overall speed of propagation.

Fig. 10 shows the propagation process over time, for four
scenarios of designed inter-connectivity, and for a Scale-
Free network model: (1) Max-Max, (2) Min-Min, (3) Max-
Min, and (4) Min-Max.

In this experiment, the average degree of the nodes in
both networks is 4, pmaxXð�Þ ¼ pmaxYð�Þ ¼ 0:8 and
pmaxXYð�Þ ¼ pmaxYXð�Þ ¼ 0:1. We set a ¼ 5 and b ¼ 3, meaning
that five nodes of each network with max/min degree are
selected, and each selected node of X is an inter-parent of
three selected nodes in network Y and vice versa.

Fig. 10a represents the results for a scenario with six ran-
domly selected initial spreaders in X. In contrast, Fig. 10b
shows the same results for the case in which the four initial
spreaders are the ones with maximum degree.

Notice that these results also confirm the conclusion that
we made in Section 7.1. When the initial spreaders are
selected as the ones with higher centrality, the propagation
speed is considerably faster.

According to the results shown by Fig. 10, the Min-Min
and Max-Min schemes have the lowest propagation speed.
This is because the initial spreaders are located at network
GX, where the phenomenon is generated. Since the border-
line nodes of Y are those with minimum degree, the impact
of the borderline nodes on other nodes in Y is lower. In fact,
in this set of experiments, the phenomena gets stuck at the
border of network Y, and cannot propagate further.

We also see that for the Max-Min scenario, the propaga-
tion is stopped, while for the Min-Max scenario it rapidly
proceeds until all the nodes of the two networks are
affected. Therefore, to ensure propagation in an interdepen-
dent network with Max-Min coupling model, the initial
spreaders should be selected as the nodes with highest
degree of network Y.

Figs. 11 and 12, show the results of a similar experiment
for Erdos-Renyi and Small-World networks, respectively.
To have a propagation speed comparable to the case of the
Scale-Free model, we set pmaxXYð�Þ ¼ pmaxYXð�Þ ¼ 0:8. The

Fig. 10. Inter-connectivity models: Process over time for scale-free net-
works, Average degree of nodes = 4, (a) F0 = 6 random nodes of network
X, (b) F0 = 4 nodes of X with max degree.

Fig. 9. Role of inter-connectivity nodes: Propagation process over time in
the interdependent network and inside each network.

Fig. 11. Inter-connectivity models: Propagation process over time for
Erdos-Renyi networks, Average degree of nodes = 4, (a) F0 = 6 random
nodes of network X, (b) F0 = 4 nodes of X with max degree.

Fig. 12. Inter-connectivity models: Propagation process over time for
Small-World networks, Average degree of nodes = 4, (a) F0 = 6 random
nodes of network X, (b) F0 = 4 nodes of X with max degree.
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results for these network models lead to the same conclu-
sions already discussed for the case of Scale-Free.

By comparing the two scenarios in Figs. 11 and 12, we
conclude that the Scale-Free network still provides faster
propagation compared to the Erdos-Renyi network, even
for the case in which the borderline nodes are less likely to
fail, i.e., pmaxXY ; pmaxYX is smaller.

To conclude our discussion of this experimental scenario,
for those networks in which the propagation is an
unwanted event, the Min-Min inter-connectivity model is
the best choice to slow down the propagation in both direc-
tions. Nevertheless it must be noted that by doing so, we
may also slow down the diffusion of information, because
we are forcing the degree of the inter-connectivity nodes to
be low, and as a side effect we may increase the average
length of the shortest paths. In some scenarios it may be use-
ful to introduce two operational modes, devoted to address
normal and abnormal circumstances. In normal circumstan-
ces the network could work in a Max-Max coupling mode,
while in abnormal situations, the network should switch to
the Min-Min coupling scheme.

In Fig. 13 we analyze the impact of the inter-connectivity
threshold on the speed of propagation. As we did in Section
7.2, we consider the time to reach 80 percent of the final
extent of network propagation in Fig. 13a, while Fig. 13b
shows the average final percentage of affected nodes (in
total for networks X and Y ). Results are shown for
pmaxð�Þ ¼ 0:8; kxx ¼ 0:5; kyy ¼ 0:3, average degree ¼ 8 and for
the designed Max-Max model of interconnectivity with
a ¼ b ¼ 6. Initially 20 random nodes are failed. We see that
by increasing the inter-connectivity threshold, for three net-
work topologies, the number of affected nodes is decreased,
while the time to reach 80 percent of the final number of
failed nodes is increased. This means that by increasing the
threshold, the speed of propagation is decreased.

7.4 On the Impact of High Centrality Nodes

We devote this set of experiments to analyzing the capabil-
ity of the new metric of centrality defined in Equation (6) to
identify the most influential nodes in a propagation process.

To evaluate the influence of a node i on the phenomena
propagation, we prevent it from being involved in the phe-
nomena, and observe the propagation under this condition.
In order to prevent node i from being affected, we set its
propagation probability to 0, namely pmaxXðiÞ ¼ pmaxYXðiÞ ¼ 0.
This means even if all of the parents of i are already affected,
the probability that i is successively affected is zero. This

implies that node i cannot propagate the phenomenon. If a
node is not critical in propagating the phenomena, making it
resistant may not lead to a significant change in the behavior
of the propagation. By contrast, precluding an influential
node from participating in the propagation process may
have a considerable impact on the propagation speed.

We considered two networks GX and GY, with
nx ¼ ny ¼ 100. We sorted the nodes on the basis of the cen-

trality metric and we determined the 5 percent of the nodes
with highest centrality in each network. We performed this
experiment for three different centrality metrics: 1)
betweenness centrality, 2) eigenvector centrality, and 3) the
PD centrality metric that is given in Equation (6). For these
nodes we set pmaxX ¼ pmaxYX ¼ 0. For all the other nodes of the
network, we set pmaxX ¼ pmaxY ¼ pmaxXY ¼ pmaxYX ¼ 0:8.

A set of four random nodes in X is selected as the set of
initial spreaders, and the propagation of the phenomena
over time through the two networks is observed. Fig. 14
shows the evolution of the phenomena propagation over
time, for the three types of networks, and for the three types
of centrality compared to the case with no exceptional
nodes, where all the nodes have the same propagation prob-
ability. For all cases shown in Fig. 14, by making the nodes
with high centrality resistant to the phenomena propaga-
tion, the speed of propagation is significantly reduced. The
behavior of phenomena propagation is different depending
on which metric of centrality is used to select the resistant
nodes. We see that the proposed centrality metric performs
better than the other metrics in terms of determining the
influential nodes, since the percentage of the affected nodes
after 400 time steps is much less when we adopt the new
centrality metric than with the other standard metrics. In
the case of the Small-World network, the difference between
the proposed metric and the standard metrics is not as large.
The reasons for this are the following: 1) the network is
more uniform in terms of the node degrees compared to the
SF and ER networks; 2) according to the SW model, most of
the nodes can be reached from every other node in a small
number of hops and therefore, the difference between short-
est paths and all other paths is not significant. Therefore, in
view of the node uniformity, there is a high chance that the
new and the classic centrality metrics will select the same
nodes.

In the case of an ER network using the PD centrality,
by making only 5 percent of the nodes resistant to the
phenomena propagation, we are able to stop the propaga-
tion of the phenomena from network X to network Y
when less than 10 percent of the nodes are affected. In
the case of the Scale-Free network, using the PD

Fig. 13. Impact of inter-propagation threshold, (a) time to reach 80
percent of the final status, (b) average percentage of the affected nodes
at T ¼ 200.

Fig. 14. Centrality: Comparison between different centrality metrics in
terms of the impact on the propagation speed (a) ER, (b) SF, (c) SW.
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centrality, the phenomena propagates from X to Y but it
stops very soon thereafter, i.e. the percentage of affected
nodes remains constant after 52 percent of the nodes are
involved. In contrast, using betweenness and eigenvector
centrality metrics, the phenomena almost fully propagates
except for the 5 percent of the nodes with exceptional
resistance, as can be seen in Fig. 14b. We performed simi-
lar experiments for many other scenarios and other val-
ues of pmaxð�Þ. All our results confirm that the proposed
metric can be successfully used to identify the influential
nodes in the context of phenomena propagation.

7.5 On the Impact of Interconnectivity Model and
Initial Spreaders in Real-World Network

We now consider the case of real network topologies and
study the impact of interconnectivity model and of the crite-
rion used to select the initial spreaders on the speed of propa-
gation. To represent networks X and Y we use the CAIDA
[35] networks AS28583 and AS10024, with 284 and 318
nodes, respectively. We model the inter-connectivity
between X and Y in two ways: randomized and designed.
We set kxx ¼ kyy ¼ 0:3; kxy ¼ kyx ¼ 0:4. For Fig. 15a, jF0j ¼ 30

nodes of network X with highest degree, and for Fig. 15b,
jF0j ¼ 30 random nodes of X. For the randomized intercon-
nectivitymodel, we set pmaxX ¼ pmaxY ¼ 0:8; PXY ¼ 0:025; PYX ¼
0:028;as ¼ bs ¼ 2;ai ¼ bi ¼ 8; a ¼ 284;b ¼ 318, and for the
designed model, we set a ¼ b ¼ 8. The average degree of
networkX is 2.92 and that of network Y is 2.11.

Fig. 15 shows the average percentage of affected nodes
over time. The results are averaged over 500 runs in which
we vary the random choice of border nodes of the random-
ized inter-connectivity model and the random selection of
the initial spreaders of the designed model. As expected, we
see that in the case of randomized inter-connectivity, the
high inter-connectivity model spreads phenomena faster,
and in the case of the designed model, the Max-Max inter-
connectivity provides faster propagation with respect to the
three other models. We also see that for the same number of
inter-connection links, intermediate inter-connectivity
model with high degree nodes as initial spreaders is faster
when compared to the designed model with random initial
spreaders. In the first case, a full propagation is achieved
while in the second case, the phenomena propagation only
reaches 77 percent of the network. This confirms the fact
that for similar levels of inter-connectivity, the choice of the
initial spreaders has more impact than the inter-connectiv-
ity model in influencing the propagation process.

8 NETWORK DESIGN REVISITED

In Section 7 we investigated the propagation of phenomena
for interdependent networks under different scenarios. We
performed an extensive set of experiments to evaluate the
impact of network characteristics, such as network struc-
ture, coupling model, selection of initial spreaders, and so
on, on the speed of propagation. Our work provides
insights toward designing efficient interdependent net-
works, confirming the discussion given in Section 5. From a
network design perspective, we can summarize our obser-
vations as follows:

(a) Under the same condition for the coupling and ini-
tial spreaders, the SF networks provide a faster prop-
agation speed with respect to the ER and SW, and
the ER has the slowest propagation on average.

(b) Under the same coupling scenario, the impact of the
selection of initial spreaders on the speed of propaga-
tion is more significant than the network model. To
this purpose we proposed a new metric of centrality,
called path-degree centrality, that is more accurate
than classic centralitymetrics in finding themost influ-
ential nodes in the propagation. Thus by having the
path-degree central nodes as initial spreaders in a
slow network such as the ER we will have a faster
propagation than choosing random nodes in SF or SW
networks.

(c) By increasing the level of coupling between two net-
works, the speed of phenomena propagation increases.
Coupling the nodes with highest centrality of each net-
work (e.g., degree, betweenness, path-degree, etc.)
increases the speed of propagation. By contrast, cou-
pling the nodes with minimum centrality decreases the
propagation speed.

9 CONCLUSION

In this paper, we proposed an analytical framework that
enables us to study the propagation of phenomena in a gen-
eral interdependent network and to derive useful guidelines
to design an efficient interconnected network system.

We performed an extensive experimentation to evaluate
the impact on the propagation speed of features such as net-
work structure, inter-network connectivity and choice of
initial spreaders. Furthermore, we proposed a new central-
ity metric that is more powerful than the standard centrality
metrics in determining the most influential nodes for the
propagation of a phenomenon across interdependent net-
works. Experiments show that our metric successfully
determines the nodes that are more influential than others
in determining the propagation speed. We showed that the
propagation speed can be slowed down, or increased by
making the high centrality nodes more resistant or more
propense to propagate the phenomenon.

As a future work we plan to investigate similar propaga-
tion models in the case of dynamic networks, where the
topology of the networks changes over time.
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