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Abstract—Vulnerability due to inter-connectivity of multiple
networks has been observed in many complex networks. Previous
works mainly focused on robust network design and on recovery
strategies after sporadic or massive failures in the case of
complete knowledge of failure location. We focus on cascading
failures involving the power grid and its communication network
with consequent imprecision in damage assessment. We tackle
the problem of mitigating the ongoing cascading failure and
providing a recovery strategy. We propose a failure mitigation
strategy in two steps: 1) Once a cascading failure is detected, we
limit further propagation by re-distributing the generator and
load’s power. 2) We formulate a recovery plan to maximize the
total amount of power delivered to the demand loads during the
recovery intervention. Our approach to cope with insufficient
knowledge of damage locations is based on the use of a new
algorithm to determine consistent failure sets (CFS). We show
that, given knowledge of the system state before the disruption,
the CFS algorithm can find all consistent sets of unknown failures
in polynomial time provided that, each connected component of
the disrupted graph has at least one line whose failure status is
known to the controller.

Index Terms—Interdependent networks; Cascading failures;
Power Grids

I. INTRODUCTION

Needless to say, power grids are one of the most critical

infrastructure in our everyday lives. Large-scale blackouts in

the power grid due to propagating failures, natural disasters

or malicious attacks, can severely affect the operation of other

interconnected critical infrastructures and cause catastrophic

economic and social disruptions.

In September 2003, a large cascading blackout, in Italy, led

to the shortage of 6400 MW of power, which caused a com-

plete system collapse. The cascade began when a tree flashover

caused a 380-kV line to fail between Italy and Switzerland

[1]. The cascade lasted approximately several minutes, a time

sufficient for enabling countermeasures, which could have

mitigated and limited the blackout propagation. The main

cause of most cascading failures including 2003 Italian and

Northeast US-Canada blackout is reported to be inadequate

training, planning and operations studies to respond to the

emergency [1, 2]. This highlights the necessity of a holistic

power control strategy that utilizes real-time monitoring to

detect, predict and prevent possible failures. Furthermore, it is

crucial to have a strategic recovery plan that ensures effective

use of the available resources during the recovery process.

The functionality of the electric power grid and its damage

assessment rely on the operation of a monitoring system.

Such a monitoring system utilizes communication lines to

interact with power grid controllers, to notify them of detected

damage involving overloaded power lines. When a cascading

failure affects the power grid, the monitoring system and

the communication network are also likely to fail, inevitably

compromising the completeness and reliability of damage

detection and assessment.

Previous works addressed the problem of cascading failures

involving the power grid and the communication network.

The majority of these works aimed at characterizing the

residual functionality of the networks subject to failure, on

the basis of network topology, size and location of the initial

damage which caused the cascading phenomenon. Recovery

was mostly considered only in the unrealistic case of complete

knowledge of the damage, and with interventions aimed at

restoring network functionality under the assumption that

failure propagation has ended.

In this paper, we address, for the first time, the study of

mitigating an ongoing cascade of failures in a power grid

and maximizing the provided energy by recovering damaged

network elements while the cascade is still in progress and

knowledge of the network damages is only partial. Uncertainty

of the exact location of the disrupted network components

poses a new challenge that has never been successfully tackled.

We study the impact of cascading failures in power grids and

propose a mitigation strategy in two phases that (1) stops the

cascade when the system is still in transient state, and (2)

provides a recovery schedule that maximizes the total amount

of power delivered to demand loads over all the steps of the

recovery process.

In the following, we summarize the most important contribu-
tions:

• We tackle the problem of mitigating an ongoing cascade

(first phase) by formulating the minimum cost flow as-

signment (Min-CFA) problem as a linear programming

optimization. Min-CFA aims at finding a DC power flow

setting that stops the cascading failure at minimum cost.

We define the total cost, the total weighted amount of

reduced power due to the re-distribution of the power in

the generators and loads without violating the overload

constraint at each line.

• We study the problems related to the interdependency of

the power grid and its communication network and show
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that, in the absence of complete knowledge of failure

locations, classic cascade prevention approaches may not

work as they should.

• We address the recovery phase (second phase) formulat-

ing the problem of maximizing the restored accumulative

flow (Max-R). We show that Max-R is NP-hard and

propose a heuristic recovery strategy which works under

partial knowledge of damage locations by calculating

consistent failure sets to locate failures.

• We performed an experimental evaluation, considering

cascading failures in a power grid and its monitoring

communication network. We use real data from the Italian

high-voltage transmission grid (HVIET) and its commu-

nication network (GARR) [3, 4, 5]. The experiments

show that when 60% of the network is disrupted, our

cascade prevention approach (Min-CFA) finds the optimal

solution with 54.39% of the demand satisfied. While,

without a cascade prevention algorithm, the whole system

fails. Furthermore, our backward recovery approach on

average delivers 20% more power to the loads with

respect to a shadow-pricing approach inspired by the

work in [6].

While our recovery approach is proposed for a case study of a

power grid and a communication network, our approach invites

further work on recovery of other interdependent networks.

The remainder of this paper is organized as follows. Sec-

tion II discusses the background and motivation behind this

work. In section III, we explain the Min-CFA and Max-R
optimization problems and show that Max-R is NP-Hard.

Section IV describes our algorithms. Section V shows our eval-

uation methodology and experimental results and Section VI

concludes the paper with a summary.

II. BACKGROUND AND MOTIVATION

Most of the research on large-scale failure management has

concentrated on the recovery of a single network. Bartolini et

al. [7], Al Sabeh et al. [8], Tootaghaj et al. [9] and Wang et al.

[10] jointly address the progressive recovery of a single data

communication network after a large-scale disruption.

In complex networks however, multiple heterogeneous net-

works may be interconnected and interdependent. Because of

the interdependency between different components, perturba-

tions caused by failures, physical attacks or natural disas-

ters may propagate across the different networks. To study

the interactions in a complex network, graph-based models

are typically used, where nodes are the system components

and edges model the interactions or dependencies between

different components of the same or of different networks.

A cascading failure may propagate across the nodes of the

complex network traversing the dependency edges across a

same network or multiple networks, possibly accelerating and

eventually resulting in a potentially total failure of the system.

Cascading failures in interdependent networks have been

studied in several works [11, 12, 13, 14, 15, 16]. The existing

works on interdependent networks can be broadly classified

into three categories: 1) those which study the interaction

through percolation theory [14, 15, 16, 17], 2) works which

try to identify most vulnerable nodes and design failure

resilient networks [11, 18, 19, 20, 21], 3) and the works

which try to find the root cause of failures [22, 23]. To

the best of our knowledge, the problem of mitigating and

recovering from cascading failures, during the transient regime

of the propagation process, has not been studied extensively.

Percolation/epidemic-based approaches depend on having a

prior knowledge about the probabilistic model of failure

propagation, which is hard to obtain. In addition, real systems

usually have a deterministic failure propagation. For example,

if a power line fails, a certain number of communication

routers will stop working. Finding the root cause of the

propagating failure is shown to be NP-Hard [22], but is the

key to design restoration algorithms. Identifying the most

vulnerable nodes and root cause of failures helps to design

failure-resilient systems but does not provide a mitigation

solution when the failure happens in the system.

Cascading failures in power grids can be due to a permanent

short circuit, e.g. a tree falls on a transmission line etc., or due

to a to a temporary failure, e.g. a temporary short circuit in

a transmission line. When a short circuit happens in one of

the transmission lines, the controller sends a ”trip” signal to

the breakers and the breakers set open. The controller tries to

connect the breaker multiple times before the line fails. In case

of a permanent failure, the breaker stays open circuit. After

a line fails in the system, the power re-distributes according

to Kirchhoffs and Ohms laws. This can cause other lines to

be overloaded and trigger new failures. The cascaded failures

can trigger multiple times and spread over the entire network.

Unlike the approach proposed in [18], that re-distributes the

power flow evenly over all transmission lines, we use the DC

power flow model [24, 25] which is widely used in studies of

cascading failures.

The operation and reliability of today’s power grid is highly

dependent on the operation of the communication network that

provides the necessary information needed by the supervisory

control and data acquisition (SCADA) system to respond to

emergency situations. The required data is measured and gath-

ered at the substations from the intelligent electronic devices

(IEDs), control circuit breakers and phasor measurement units

(PMUs) [26, 27]. While the security of the control system is

itself an important challenge on the reliability of the power

grids (e.g. a compromised controller can send a trip signal

to disrupt the power grid) [28, 29], we focus on the inter-

dependency between the operation of the monitoring system

and the controller to avoid the cascaded failure.

III. PROBLEM DEFINITION

We consider a complex system for which some failures are

detected while the propagation is still in the transient regime.

We propose a mitigation strategy to avoid further cascade

and a recovery plan to maximize the total operability of the

network during K steps of recovery. We define the power grid
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TABLE I: Summary of notations.

Notation Explanation
Gp = (Vp, Ep) undirected graph modeling the power grid. Vp is the

set of nodes and Ep is the set of links
Gc = (Vp, Ec) undirected graph modeling the communication net-

work. Vc is the set of nodes and Ec is the set of
links

Gi ∈ Vp generator node Gi ∈ Vp where the power is inserted
Li ∈ Vp load node Li ∈ Vp where the power is extracted
Ji ∈ Vp junction node Ji ∈ Vp where the power just flows by

EB,t
p ⊆ Ep set of broken edges in the red area

EU,t
p ⊆ Ep set of edges in the grey area whose failure patterns is

unknown

EW,t
p ⊆ Ep set of edges in the green area which are known to be

working correctly

F t
ij power flow in line (ij) at time t

θti voltage angle of node i at time t
xij series reactance of line (ij)
P t
i power generated/consumed at node i at time t

Bt nodal admittance matrix at time t
wGi

weighted cost of increasing the power in generator
Gi

wLi
weighted cost of shedding the power of load Li

Pmax
Gi

maximum power that can be generated in Gi

P demand
Lj

demand load at Lj

Fmax
ij maximum capacity of the line (ij)

ER
k set of restored edges at iteration k

δ(ij),k decision variable to repair (ij) ∈ EB,t
p at the kth

iteration
rij resources needed for repairing (ij)
Rk available resource at iteration k of the recovery

operability to be the accumulative amount of power delivered

to satisfy the demand load over the K recovery steps. Our

approach can be extended to the use of other operability

measures such as the total number of working power lines

etc. Table I shows the notation used in this paper.

The power and communication networks are modeled

as undirected graphs Gp = (Vp, Ep) and Gc = (Vc, Ec)
respectively. Transmission lines are monitored by several

sensors deployed nearby that area. The aggregated data are

then sent to closest communication node and to the control

center. Also the control commands are sent to the closest

communication node. Therefore, each power line is monitored

and controlled through the closest communication node. Each

node i ∈ Vp in the power grid can be 1) a generator Gi,

where the power is inserted, 2) a load Li, where the power

is extracted, or 3) a junction Ji where power flows by. As

transformer and generator failures are extremely unlikely, we

hereby assume that failures only occur in power lines (Ep).

Further, we consider the inter-dependency between the power

grid and the communication network such that failures in the

communication network would lead to lack of information in

the control center. We assume that the communication network

gets power from an emergency source in case of failures in

the power grid and ignore the ping pong failures between the

two networks.The edges in the power grid graph Gp may be

in three different states:

1) the set EB,t
p ⊆ Ep is the set of certain broken edges

Monitor the flows

Solve DC Power 
flow optimization

Grey area detection Recovery Phase

Cascade 
Prevention

Solve DC Power 
flow optimization

Multi-stage recovery

Fig. 1: Recovery Process: 1) Re-distribution of power, 2)

Recovery phase.

(hereby denoted as red edges) at time t 1.

2) the set EU,t
p ⊆ Ep is the set of edges of unknown

working status (denoted as grey edges) at time t,
3) the set EW,t

p ⊆ Ep is the set of certain working edges

(denoted as green edges) at time t.

A. 2-phase Recovery approach: Power grid case study

In this section, we study the mitigation of cascading fail-

ure and related recovery process in a power grid. Figure 1

illustrates the two phases of this process: 1) mitigation of the

cascade using a combination of load shedding and adjustment

of the generated power, and 2) recovery phase.

1) Cascade mitigation (Min-CFA): We model the cascading

failure in a power system using a DC load flow model [24].

The DC power flow model provides a linear relationship be-

tween the active power flowing through the lines and the power

generated/consumed in the nodes, which can be formulated as

follows:

F t
ij =

θti − θtj
xij

, (1)

where, F t
ij is the power flow in line (ij) at time t, xij is

the series reactance of line (ij) and θti and θtj are the voltage

angles of node i and j at time t. The power flow of node i can

be found by summing up the power flows of all its adjacent

power lines:

P t
i =

∑
j

F t
ij (2)

We can re-write the power flow model as a linear system of

equations as follows:

P t = Btθt (3)

where Bt is nodal admittance matrix at time t, btij = − 1
xt
ij

for i �= j and btii =
∑
k

1
xt
ik

.

Once a transmission line trips, the power is redistributed

according to Equation (3) and if the power exceeds the

1Notice that in order to be able to assess an edge damage, the edge
must be connected to a working communication node in Gc. The working
communication node provides the failure status of the edge to the central
controller and can send power adjustment commands to the connected loads
or generators.

5656565656



maximum threshold on another line (ij), the transmission line

(ij) will also disconnect unless we reduce the total load or re-

distribute the generated power.

Theorem 1. The power flow model (Equation 3) is always
solvable for each connected component of the power graph.

Proof. The nodal admittance matrix, B, of a connected graph

with n nodes is always rank(B) = n − 1 because one can

construct a graphic matroid from a given graph where the

nodal admittance matrix is a weighted incident matrix. It is

known that the rank of a weighted incident matrix is equal

to the rank of any basis (tree) in the graph which is n − 1
[30, 31]. To make this equation solvable, one of the equations

is removed and the node associated with that equation is

chosen as a reference angle θ1 = 0. If the graph has c
connected components, the rank of its admittance matrix is

n−c. Therefore, the DC power flow model for each connected

component of the graph has a unique solution.

Once we detect an outage of the transmission line, we

readjust power and load according to the optimization prob-

lem described in the following. The Minimum Cost Flow

Assignment (Min-CFA) optimization problem minimizes the

total cost of reducing the load or generator’s power. Let wGi

be the weighted cost of reducing the power in generator Gi

and wLi be the weighted cost of decreasing the power of load

Li. The Min-CFA problem to avoid the cascaded failures can

be formulated as follows:

minimize
∑

Gi,Lj∈Vp

wGi
(P 0

Gi
− P t

Gi
)− wLj

(P t
Lj
− P 0

Lj
)

subject to 0 � P t
Gi

� P 0
Gi
, ∀Gi ∈ V t

p

0 � P t
Lj

� P demand
Lj

, ∀Lj ∈ V t
p

− Fmax
ij � F t

ij � Fmax
ij , ∀(ij) ∈ Et

p∑
Gi,Lj∈Vp

P t
Gi

+ P t
Lj

= 0.

P t
Gi

=
∑
j

F t
ij , ∀Gi ∈ V t

p , (ij) ∈ Et
p

P t
Li

=
∑
j

F t
ij , ∀Li ∈ V t

p , (ij) ∈ Et
p

P t
Gi

= Btθt, ∀Gi ∈ V t
p

P t
Lj

= Btθt, ∀Lj ∈ V t
p

F t
ij =

(θti − θtj)

xij
, ∀(ij) ∈ Et

p

(4)

The first constraint indicates that the power generated at each

generator cannot exceed the initial power at each generator. If

we had full knowledge about the location of failures, we could

have a more relaxed constraint to increase the power at some

of the generators without violating a maximum threshold.

However, under uncertain failure we reduce our solution space

to decrease the possibility of consequent cascades due to

unknown knowledge. The second constraint shows that the

reduced load cannot exceed the demand. The third constraint

shows that the power flowing through each line cannot exceed

the maximum capacity of the line. The fourth constraint is the

power conservation condition, i.e. the total power generated

in the generators should be equal to the total power consumed

in the loads. The fifth and sixth constraints show that the total

power generated/consumed at each node should be equal to the

total power flow through its edges. The last three constraints

reflect the DC power flow model.

2) Recovery Phase (Max-R): In the general cascading fail-

ure model, suppose that recovery of each failed power line

(ij) ∈ EB,t
p leads to the restoration of

∑
P k
Lj
(Repk) power

units in the loads’ demand. Where Repk = {(i, j) ∈ EW,k
p }

is the set of restored and working power lines at iteration

k. Also, suppose that at each iteration k of the recovery Rk

resources are available and repairing (ij) needs rij resources.

The maximum recovery (Max-R) optimization can be modeled

as a mixed integer programming where we maximize the

accumulative delivered power over K steps of the algorithm.

Assuming that at each iteration we have enough resources to

repair at least one disrupted edge, we set K to be the total

number of disrupted edges. Let EW
k be the set of lines which

have been restored or are working up to time step k and let

ER
k be the set of restored edges up to iteration k. The Max-R

recovery problem is formulated as follows:

maximize

K∑
k=1

∑
Lj∈Vp

P k
Lj
(Repk) ,

subject to

k∑
m=1

∑
(ij)∈ER

k

δ(ij),m.rij ≤
k∑

m=1

Rm k = 1, ...,K ,

K∑
k=1

δ(ij),k ≤ 1, ∀(ij) ∈ ER
k k = 1, ...,K ,

δ(ij),k ∈ {0, 1}, ∀(ij) ∈ ER
k k = 1, ...,K ,

(5)

where δ(ij),k is the decision variable to repair (ij) ∈ EB
p at

the kth iteration of the algorithm. The first constraint indicates

that at iteration k of the recovery, Rk resources are available;

if the resources are not used in the k-th iteration of the

recovery, the unused resources can be used in the following

steps. The second constraint shows that each broken line can

only be repaired once. Note that the total delivered power in

the objective function changes with respect to the recovery

schedule. The objective function is the accumulative power

flow measured at the loads in the K steps of execution of the

algorithm. With P k
Lj
(Repk) we denote the power received by

load Lj when the recovery decision δ(ij),k is made up to step

k leading to the restoration of the power lines Repk. One

needs to re-solve the DC power flow optimization problem

to find
∑

P k
Lj
(Repk) since the set of working lines, Repk,

at time step k changes based on the current and previous

decisions of the recovery schedule δ(ij),k. Note that in the

recovery phase, we remove the generator’s power reduction

constraint and the generator and load’s power increases
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gradually until all demand loads are satisfied.

Theorem 2. The problem of Max-R is NP-Hard.

Proof. We prove the NP-hardness of the Max-R problem

showing that it generalizes the Knapsack problem. We recall

that the Knapsack problem considers a set of items I , each

item i ∈ I has a size Si and a value Vi > 0. The problem

is to find a subset I ′ ⊆ I such that S(I ′) ≤ S and V (I ′) is

maximized, where S(I ′) =
∑

i∈I′ Si and V (I ′) =
∑

i∈I′ Vi.

In the following we show how we can build, in polynomial

time, an instance of a single stage (K = 1) of Max-R problem

whose solution corresponds to the solution of the generic

formulation of the Knapsack problem given above.

Since we consider a single stage of the Max-R problem,

we assume R resources are available to repair all disrupted

lines (ij) ∈ EB,t
p . We also assume that we have complete

information about the disrupted lines. Let us consider a set

of generators I , each generator corresponding to an element

i ∈ I of the Knapsack problem, producing a flow equivalent to

the value Vi of the element. Each generator i ∈ I is connected

to a unique common load L with a broken line, whose

repair cost is equivalent to the size Si of the corresponding

Knapsack element. We also assume that the load L has a

demand of at least the summation of all flows (
∑

i∈I Vi).

We set the recovery budget of Max-R equal to S, the size

of the Knapsack. This instance of Max-R can be defined

in polynomial time starting from any instance of Knapsack.

Solving this instance of Max-R, corresponds to finding a list

of links to be recovered with cost limited by S, such that

the flow reaching the common load L is maximized, which

is equivalent to selecting the Knapsack subset I ′ ⊆ I with

maximum value, and bounded size S, which completes the

proof that any instance of the Knapsack problem can be

polynomially reduced to the solution of an instance of Max-R,

which implies the NP-hardness of Max-R.

As Max-R is NP-hard, we consider two polynomial time

heuristics, (Max-R-shadow-pricing) and (Max-R-Backward) in

Section IV.

Remark: Note that the maximum recovery problem is a

combinatorial optimization and the total flow that each line

can add to the final solution of the problem is unknown

in advance and depends on the recovery schedule of other

lines. The marginal flow that each line can add to the current

solution of the problem can be found by solving the Min-CFA
problem introduced in section III-A1 which itself is a linear

programming optimization. We call the marginal utility (flow)

added by recovery of each line the ”shadow price” referring

to the amount of flow assigned to the currently unknowable

value of the flow that can be added to the final solution by

repairing a broken line.

We now consider an example where the underlying commu-

nication network is disrupted and therefore, the controller

fails to make appropriate decision to stop the cascade. We

then propose a consistent failure set (CFS) algorithm in

P2 = 1.5

P3 = -2.0

P1 = 0.5

x12 = 1/3 P21=0.375

(a) All lines working.

P2 = 1.5

P3 = -2.0

P1 = 0.5

x12 = 1/3 P21=1.5

(b) Failure in line (23).

Fig. 2: An example of a 3-bus network where active power

and reactances are in pu.

Section IV-A to cope with lack of knowledge.

An illustrative example: Consider the network given in

Figure 2, using the DC power flow model to calculate the

power flows in the lines, where the reference angle is θ1 = 0,

we have:(
θ02
θ03

)
=

(
5 −2
−2 4

)−1 (
1.5
−2

)
=

(
0.125
−0.4375

)
(6)

The power flow through each line is then computed as follows:

F 0
12 =

θ012
x12

= 3× (0− 0.125) = −0.3750, (7)

F 0
13 =

θ013
x13

= 2× (0− (−0.4375)) = 0.875, (8)

F 0
23 =

θ023
x23

= 2× (0.125− (−0.4375)) = 1.125. (9)

If the power line 23 gets disrupted as in Figure 2b, the

power redistributes according to DC power flow model, where

F 1
21 = 1.5 and F 1

13 = 2. Suppose that the maximum power

that each line can tolerate is Fmax
ij = 1.3. Therefore, after

the first line gets disrupted, the whole system collapses and

the demand load cannot be satisfied. However, if we know

the exact location of the failure, the controller may reduce the

generator’s power to satisfy a degraded quality of service. One

trivial solution of Min-CFA to this problem is to reduce the

second generator’s power to P 1
2 = 0.8 and reduce the load to

P 1
3 = −1.3 without violating the maximum power on each

line. However, under the uncertainty of the exact location of

the failure, the controller fails to make appropriate decisions

and the whole network collapses.

IV. METHODOLOGY

In this section, we first describe the consistent failure set ap-

proach to detect the status of grey lines. Then, we describe two

heuristic algorithms to solve Max-R. Inspired by the proposed

approach in [6] that finds a progressive recovery schedule in a

data communication network, we first propose a shadow price-

based approach with polynomial time complexity and then

propose a polynomial time backward approach that solves a

single stage of the problem and traces back until it finds the

recovery schedule for all stages.
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A. Finding a Consistent Failure Set (CFS)

In order to detect the grey area, we use an algorithm, which

starts with the nodes that have the smallest number of grey

edges.

Lemma 1. In the power grid graph Gp, if there exists a node
ni ∈ Vp which has only one grey neighbor link e = (ni, nj) ∈
Et

p, the exact status of the grey edge e can be discovered.

Proof. The exact status of a single grey edge attached to a

node ni can be determined using the power flow equation 2,

i.e. the power generated/consumed at node ni can be found by

summing the power flow of all its adjacent power lines.

Lemma 2. If the grey area does not contain a cycle and there
exists at least one edge in the power grid graph Gp whose
status is known, the exact status of all grey edges can be
found in O(|EU,t

p |).

Proof. If the grey area does not contain any cycles, there exists

at least one node that has only one grey neighbor link e and

therefore, according to lemma 1, the exact status of e can be

found. This procedure can be repeated to find the status of all

grey edges in O(|EU,t
p |).

For the case study of a graph Gp which has one or multiple

cycles in its grey area, we propose a consistent failure set rule

to detect the exact status of unknown transmission lines. We

assume the power generated/consumed in each generator/load

or junction is known before the disruption. The algorithm

starts by finding the status of grey edges, which are not

within a cycle and are the only grey neighboring node of

one of its end points. If all nodes have at least two grey

edges in the graph, i.e. there exists a cycle in the grey

area, and our algorithm picks a node within a cycle with

the minimum number of adjacent grey edges and makes

a decision tree. The algorithm tries to solve the unknown

status of the grey edges by assuming one edge at each

cycle to be working or not working, and solving the rest

of DC power flow to see if the assumption is correct. If

the assumption is not correct, the algorithm chooses another

branch of the decision tree until it finds a consistent failure

set. In cases where there exists multiple consistent failure

sets, the algorithm performs a local inspection of an edge

whose status is different from the possible solutions and

picks the solution, which is consistent with the result of

the local inspection. Algorithm 1 shows different steps of CFS.

Theorem 3. Complexity Analysis: Assuming the grey area
becomes a tree by removing C edges, CFS algorithm runs in
O(2C |EU,t

p |).
Figure 3 shows an example of a network with 6 grey edges

and shows different steps of the CFS algorithm. In the first

step, the status of all edges with a single grey adjacent edge

are designated. In the second step, the decision tree makes

two branches to remove the cycle, and solves the DC flow

TABLE II: Average number of local inspections needed as

the size of the grey area increases in the Italian power grid

network.

Percentage of disrupted
monitors

Average number of grey
edges in the italian power
grid

Average # of grey edges
within a cycle

10 25.25 3.74
20 62.49 7.15
30 92.06 10.04
40 124.16 13.35
50 157.6 16.84
60 193.29 21.52
70 227.59 26.95
80 265.49 32.71
90 303.5 40.06

Algorithm 1: Consistent Failure Set (CFS) algorithm.

Data: A set of grey lines (ij) ∈ EU,t
p whose failure

status is unknown, the graph of the network

Gp = (V t
p , E

t
p), the power generated at each

generator PGi ∀Gi ∈ V t
p , the power consumed at

each load PLi ∀Li ∈ V t
p

Result: The status of edges in the grey area (ij) ∈ EU,t
p ,

which can be failure or working.

1: C = Number of edges in EU,t
p that need to

be removed to make the grey area
cycle-free

2: if C > 0 then
3: pick an edge at each cycle to generate a cycle-free

grey area

4: for all 2C combination of the chosen edges at each

cycle, run CFS-Cycle-Free(EU,t
p , Gp, PGi

, PLi
) to find

a consistent failure set

5: else if C = 0 then
6: run CFS-Cycle-Free(EU,t

p , Gp, PGi , PLi ).

7: end if
8: return EB,t

p , EW,t
p

optimization for each branch to find a consistent failure set.

Assuming edge (23) ∈ EB,t
p was broken, we do not find a

consistent feasible solution and therefore we assume (23) ∈
EW,t

p is working. The last graph shows a consistent failure set

of broken and working edges.

In cases where we have multiple consistent failure sets, we

perform a local inspection of the edges whose failure status is

different from the possible consistent solutions, and pick the

solution consistent with the local inspection.

Table II shows the average number of grey edges within a

cycle, in the Italian power grid network [3, 4, 5] when the size

of the disrupted communication network (garr) increases from

10% to 90% for 100 different random selection of disrupted

communication nodes. Assuming all possible failures within a

cycle are consistent with known information, we only need a

maximum of 10% local inspection of the grey edges.
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Fig. 3: An example of a 6-bus network with 6 grey edges and different steps of CFS algorithm.

Algorithm 2: CFS-Cycle-Free

1 Function CFS-Cycle-Free (EU,t
p , Gp, PGi

, PLi
)

2 greys = argmin|(nij) ∈ EU,t
p |;

3 while greys = 1 do
4 Select a node i ∈ V t

p with one grey neighbor

greys = argmin|(ij) ∈ EU,t
p | ;

5 detect whether (ij) ∈ EU,t
p is working or not

using equation 2.;

6 if there exists no solution from equation 2 then
7 return inconsistent;

8 break ;

9 if (ij) ∈ EU,t
p is working then

10 EW,t
p = EW,t

p ∪ (ij) and EU,t
p = EU,t

p \ (ij) ;

11 else
12 EB,t

p = EB,t
p ∪ (ij) and EU,t

p = EU,t
p \ (ij);

13 return consistent, EB,t
p , EW,t

p ;

B. Identifiability of voltage phasors

When the network is divided into a known and unknown

part we can re-write the DC power flow equations as follows:

(
Bknown

Bunknown

)
×
(

θknown

θunknown

)
=

(
Pknown

Punknown

)
(10)

Therefore, the unknown voltage phasors can be found as

follows:

Bknown ×
(

θknown

θunknown

)
= Pknown (11)

Let N = Null(Bknown) denote the null space of Bknown,

i.e., for any vector n ∈ Null(Bknown), Bknown.n = 0.

Theorem 4. Voltage phasor θi is identifiable, if and only if
∀n ∈ N we have ni = 0.

Therefore, in order to find a set of identifiable voltage

phasors θi ∈ θ, we can first compute the null space of

Bknown and find all indices with zero values in the null space.

The null space of Bknown gives the number of identifiable

voltage angles. If the value of the voltage phasor of θi is not

identifiable, we have to perform a local inspection to find the

value of voltage angles for non-identifiable nodes.

C. Identifying the failures

After identifying all voltage phasors, one can identify the

unknown admittance matrix if the grey area does not contain

any cycles.

Bunknown ×
(

θknown

θunknown

)
= Punknown (12)

Note that the value of the Punknown is determined from

the previous state of the disruption. We assume the powers

at the generators and loads are only controlled through the

central controller unit and therefore since the controller has

not increased or reduced the power P t
unknonw = P t−1

known.

Therefore, we can find the state of the network for all grey

edges, which are not inside a cycle. In case of having a grey

cycle we use the consistent failure set algorithm to remove the

cycles and find a consistent set. If the consistent failure set

algorithm finds multiple solutions, we pick one by performing

a local inspection.

D. Max-R-shadow-pricing

Since the total value of the flow that each repaired line

can add to the solution is not known in advance, we use

a shadow pricing technique, which is used to assign values

to the unknown value of repaired edges in the power grid

graph. At each stage k, the shadow-pricing algorithm, repairs

the transmission lines (ij) ∈ EB,t
p , which add the maximum

to the total delivered power over the required resource, i.e.

argmax(ij)(Fij/rij), until the total available resources for

stage k are used. Algorithm 3 shows different steps of the

Max-R-shadow-pricing algorithm. The algorithm starts with

the disrupted network and computes the value of the flow

added to the current state of the network divided by the total

number of resources it needs, and repairs the power line that

maximizes this value. This procedure repeats until there are

no more resources left to repair additional lines for the current

stage.

E. Max-R-Backward

As an alternative to compute a more accurate solution of

the Max-R problem, we use Max-R-Backward. The algorithm

starts by solving a single stage of the problem assuming R =
R1 + ... + RK resources are available. The solution of this
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Algorithm 3: Max-R-shadow-pricing recovery algorithm.

Data: A set of failed lines (ij) ∈ EB,t
p , A set of demand

loads Lj ∈ Vp and generators Gi ∈ Vp, limit on

the tolerable power of each transmission line

Fmax
ij , the nodal admittance matrix B, the

required resources to repair each line rij
Result: The recovery schedule of the failed transmission

lines δ(ij),k
1: R = 0
2: for k ∈ {1, ...,K} do
3: R = R+Rk

4: while ∃(ij) ∈ EB,t
p that rij � R do

5: Select an un-repaired line (ij)∗ = argmaxij
F(ij)

r(ij)
6: δ(ij),k = 1
7: R = R− r(ij)∗

8: end while
9: end for

10: return δ(ij)∗,k

(a) HVIET. (b) GARR.

Fig. 4: a) The Italian high-voltage (380 kV) transmission grid

(HVIET), and b) its communication network (GARR).

single stage algorithm is added to the set RepK , showing the

set of edges, which should be repaired up to stage k. Then,

the single stage is solved assuming R = R1 + ... + RK−1

resources are available, which gives the solution set RepK−1.

The repaired lines, which are in the solution set of RepK
and not in RepK−1 will be added to the repair schedule of

stage K. This procedure repeats until the repair schedule of

all stages is found.

V. EVALUATION

In this section, we compare our Min-CFA cascade pre-

vention approach presented in section III, with a baseline

algorithm, which does not include cascade prevention. We

also compare the recovery performance of Max-R-shadow-
pricing and Max-R-backward recovery approaches. We use

the Italian power grid network shown in Figure 4a consisting

of 310 nodes, 113 generators and 97 demand loads. The

network has 361 power. For the communication network we

use the GARR network, shown in Figure 4b consisting of

39 nodes and 50 edges [4, 5]. We implement our cascade

prevention and recovery algorithms in python and used the

Algorithm 4: Max-R-Backward recovery algorithm.

Data: A set of failed lines (ij) ∈ EB,t
p , A set of demand

loads Lj ∈ Vp and generators Gi ∈ Vp, limit on

the tolerable power of each transmission line

Fmax
ij , the nodal admittance matrix B, the

required resources to repair each line rij
Result: The recovery schedule of the failed transmission

lines δ(ij),k
1: solve DC power flow model to find Fij , assuming all

lines are working

2: RepK = EB,t
p

3: for k = K − 1 downto k = 1 do
4: R =

k∑
m=1

Rm

5: Repk = Repk+1

6: while
∑

(ij)∈Repk+1

rij > R do

7: Select a line with minimum flow per cost

(ij)∗ = argminij
F(ij)

r(ij)
8: δ(ij),k+1 = 1
9: Repk = Repk \ (ij)∗

10: end while
11: solve DC power flow model to find Fij , assuming

(ij) ∈ Repk are working.

12: end for
13: return δ(ij)∗,k

Gurobi optimization toolkit, on a 120-core, 2.5 GHz, 4TB

RAM cluster [32].

In the following experiments, we compare the total cost

of failure and delivered power in cases where 1) there is

no cascade prevention, 2) the cascade prevention can only

turn a load on/off and 3) where we can reduce the load’s

demand continuously. For each scenario, we randomize the

results running 10 different trials, where we vary the random

selection of failed transmission lines.

A. Preventing the cascade (Min-CFA)

In the first set of simulations, we compare the performance

of the Min-CFA cascade prevention algorithm with respect to

the total cost and total delivered demand power. Similar to

[24], we assume all loads have the same priority and give a

high penalty for not being able to satisfy the demand. We

assume the weighted cost of decreasing power of load Lj

is 100, i.e. wLj
= 100 ∀Lj ∈ L, while the normalized

weighted cost of generators is 1, i.e. wGi
= 1 ∀Gi ∈ G.

In the first set of simulations we disrupt 60% of the

transmission lines and run Min-CFA to find the optimal

flow assignment. The Min-CFA algorithm finds the optimal

solution with 54.39% of the demand satisfied. On the other

hand, if we do not run a cascade prevention algorithm, the

failed transmission lines lead to more lines failing and this

process continues until the whole system fails. Figure 5a shows

the total delivered power during different time steps of the
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Fig. 5: a) Total delivered power (pu) during time when we use Min-CFA cascade prevention algorithm and without any cascade
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nodes, c) Total delivered power (pu) flow over time for Max-R-Backward and Max-R-shadow-pricing in the Italian power gird.
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Fig. 6: a) Total delivered power (pu), and b) total cost versus

the percentage of disruption in the Italian power gird.

algorithms with Min-CFA cascade prevention and without it.

As shown Min-CFA can save 45% of total power that could

be delivered if the network was not disrupted.

In the next set of simulations, we use a continuous cascade

prevention, meaning that P t
Lj

in equation 4 can be decreased

continuously. Then, we consider a discrete cascade prevention

scenario, where each load’s demand power should be satisfied

or turned off; and finally, we consider a scenario, where there

is no monitoring technique to reschedule the power flow or

avoid the cascade and the failed transmission lines can trigger

multiple cascade. Figures 6b and 6a show the simulation

results for the 3 cases versus the percentage of disrupted net-

work. As shown, the continuous cascade prevention approach

saves more power compared to the discrete power optimization

and when there is no information from the monitoring network

no power can be delivered when 60% of the power lines are

disrupted.

B. Sensitivity Analysis

In this section, we investigate the impact of incomplete

knowledge about the exact location of failures. We consider a

destroyed graph and make x% of the network uncontrollable

(where we lose monitoring information). We then run the

detection algorithm to remove the grey cycle-free edges.

Next, we assume that the total grey area within the cycle is

working (controller’s belief about the grey area within the

cycle which might not be correct), and then we run Min-

CFA algorithm (to adjust the powers). Figure 5b shows the

simulation results of this experiments. It is shown that when

20% of the network get disrupted, the total delivered power can

drop by 44.20% when all the monitors get disrupted. Assuming

the maximum unitary profit of 26.6 e/MW according to

[33], the total profit loss, due to uncertainty can be as high as

209076 e = 10.48pu × 750MW/pu × 26.6 e/MW which

could be avoided using a detection algorithm and a cascade

prevention approach.

C. Recovery phase (Max-R)

In the next set of experiments, we compare the recovery per-

formance of the proposed heuristics (Max-R-shadow-pricing

and Max-R-Backward). Figure 5c shows the total delivered

power flow over different steps of the algorithm when using

the two algorithms. As shown, the shadow-pricing algorithm

does not consider the correlation between different steps of

the recovery approach and tries to maximize the added flow at

each iteration step. On the other hand, the backward algorithm

solves the problem using all repair resources in the beginning

and removes the repair edges with less profit (Fij/r(ij)) from

the schedule of previous stage until all repair schedules are

determined. Therefore, Max-R-Backward performs better than

the Max-R-shadow-pricing approach with larger total area

behind the curve in Figure 5c.

VI. CONCLUSION

This paper studies the combined impact of large-scale

failures on a power gird and its monitoring network. We

propose a 2-phase mitigation strategy that 1) avoids further

cascade while the system is in the transient state and 2) provide

a maximum power flow recovery approach. We show that the

maximum flow recovery problem (Max-R) is NP-Hard and

intractable. Due to high complexity of the recovery problem,

we propose two heuristic approaches (i) a shadow-pricing

heuristic and (ii) a backward algorithm. It is shown that since
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the shadow-pricing heuristic does not consider the combined

impact of repaired component, it performs poorly compared

to the backward algorithm.

We also propose a consistent failure set (CFS) algorithm to

cope with the uncertainty due to the failure of the dependent

communication network that provides the information about

the status of power lines being overloaded. We show that CFS
can find all failure sets given the information from the previous

state of the network before the disruption and the incomplete

information about the status of the lines. Our recovery ap-

proach and detection mechanism with incomplete information

due to failure of the monitoring network is one of the first steps

towards understanding the cascaded failures under uncertainty

and opens up the area of power grid reliability approaches

under incomplete or noisy information.
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