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Adaptive Rectifier Driven by Power Intake Predictors
for Wind Energy Harvesting Sensor Networks

Danilo Porcarelli, Dora Spenza, Davide Brunelli, Alessandro Cammarano, Chiara Petrioli, and Luca Benini

Abstract—This paper presents a power management technique
for improving the efficiency of harvesting energy from air-flows
in wireless sensor networks (WSNs) applications. The proposed
architecture consists of a two-stage energy conversion circuit:
an AC-DC converter followed by a DC-DC buck-boost regulator
with Maximum Power Point Tracking (MPPT) capability. The
key feature of the proposed solution is the adaptive hybrid
voltage rectifier which exploits both passive and active topologies
combined with power prediction algorithms. The adaptive con-
verter significantly outperforms other solutions, increasing the
efficiency between 10% and 30% with respect to the only-passive
and the only-active topologies. To assess the performance of this
approach in a real-life scenario, air-flow data have been collected
by deploying WSN nodes interfaced with a wind micro-turbine in
an underground tunnel of the Metro B1 line in Rome. It is shown
that, by using the adaptive AC-DC converter combined with
power prediction algorithms, nodes deployed in the tunnel can
harvest up to 22% more energy with respect to previous methods.
Finally, it is shown that using power management techniques
optimized for the specific scenario, the overall system overhead,
in terms of average number of sampling performed per day by
a node, is reduced of up to 93%.

Keywords—Energy harvesting, power management technique,
prediction algorithm, voltage rectifier, wireless sensor networks.

I. INTRODUCTION

RESEARCH in power aware systems has gained increasing
interest in recent years, pushing the exploration of new ul-

tra low-power and energy autonomous hardware architectures
and the investigation of new algorithms for power generation,
estimation, profiling, prediction and management. In particular,
significant attention has been devoted to emerging energy
harvesting technologies, which allow to power embedded dis-
tributed systems, such as wireless sensor networks, indefinitely
in time by scavenging energy from the environment [1]–[3].
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Many works have explored energy scavenging opportunities
in different application scenarios, focusing, for example, on
architectures for harvesting energy from vibrations [4], electro-
magnetic fields [5] or heat [6], which can provide power
densities in the microwatt range. Solar light, however, remains
the most investigated energy source [7]–[9], thanks to the fact
that even small solar cells are able to deliver power densities in
the milliwatt range. Another very attractive source providing
energy in the milliwatt range is air-flow. For example, the small
micro-wind turbine used in [10] and [11] with a diameter of
just 6.3cm can generate power in the range 10− 100mW .

The architecture of air-flow energy harvesters typically
exhibits an initial rectifier stage to convert the AC output of the
turbine into a more suitable DC signal, and a second regulation
stage to perform MPPT, store the energy and supply the user
system [11]–[13]. Typically, the rectifier circuits used in ultra-
low power applications are divided into two categories, namely
passive and active.

Passive rectifiers, which are usually realized through a diode
full wave bridge, are the simplest and commonly used topolo-
gies. However, they are also the least efficient, due to the high
voltage drop across the diodes during the forward polarization
(about 0.6V − 0.7V using common Silicon Diffused Junction
diodes, 0.2V − 0.3V using Schottky diodes).

Fig. 1. Block diagram of the proposed air-flow energy harvester
Active rectifiers improve the conversion efficiency by re-

placing diodes with MOSFETs, which significantly reduce
the voltage drop in the ON-state. Such additional efficiency,
however, increases the complexity and the cost of the system,
due to the presence of control circuitry for the MOSFETs.
When the micro-wind turbine generates low rectified voltage
levels (e.g., VC < 1.8V ), such that the control circuit is
switched off, the conversion is performed by the parasitic
diodes of the transistors. This means that there is a transition
threshold between the passive and the active operating modes,
and therefore between a lower and a higher efficiency AC-
DC conversion. The active rectifier optimizes the efficiency
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when the wind speed generates an input power greater than
the transition threshold, but whenever the incoming power
falls below the transition threshold the conversion efficiency
is the same as a classical full-wave bridge. In this latter case,
a Schottky rectifier would perform much better.

The goal of the presented work is the design of a hardware
and software power management technique to improve the
efficiency of the rectifier stage. Power management solutions
for environmentally-powered systems have to deal with the
variable nature of ambient power sources, which results in
significant fluctuations in the amounts of energy over time.
To mitigate this shortcoming, energy prediction methods are
employed to forecast the availability of the power source and to
estimate the expected energy intake generated by air-flows in
the near future. Such predictors allow the system to take critical
decisions about the utilization of the available energy, enabling
the development of pro-active power management strategies.

The block diagram of the system discussed in this work
is shown in Fig. 1. It features a hybrid adaptive rectifier stage
that exploits both the active and Schottky-passive topologies to
achieve the maximum efficiency over the whole range of air-
flow speed. In addition, an efficient power management stage,
controlled by an ultra-low power micro-controller, converts and
stores the incoming energy. The micro-controller elaborates
periodically the prediction of the power intake from air-flow
data, delivers estimations about the energy availability in the
near future, and determines which topology of rectifier is
the most efficient under certain air-flow speed conditions. To
show the benefits of the adaptive AC-DC converter in a real-
life scenario, the practical case of a WSN deployed in an
underground tunnel is considered, where nodes are able to
harvest energy from air-flows. More in detail, real-life air-
flow data have been collected for 33 days by instrumenting
a tunnel of the Metro B1 line in Rome, Italy, with Telos
B motes equipped with wind micro-turbines [14]. Then, the
usable power obtained from passing trains is estimated for
each rectifier by considering the efficiency values previously
calculated. In such scenario, the average energy harvested per
day by using the adaptive converter is up to 18% higher than
that harvested by the passive-Schottky-only topology and up
to 22% higher than that harvested by the active-only topology.

The underground tunnel environment is almost totally pre-
dictable, as underground trains generally transit with a reg-
ular schedule and with approximately the same speed. By
exploiting such regularity, a power management technique that
is specifically tailored to the underground tunnel scenario is
devised. It allows to reduce the overall overhead of the system,
rated as the average number of sampling performed per day
by a node using a given power management policy, of up to
93%, without impairing the energy harvesting process.

The rest of the paper is organized as follow: Section II
gives an overview of the state of the art on the architecture of
air-flow harvesters, rectifiers design and power management
and prediction algorithms. Section III presents a detailed
description of the hybrid system and the energy harvester
adopted. Section IV is dedicated to the analysis of air-flow data
collected during tunnel monitoring, while Section V discusses
the power management algorithms. Finally, results are dis-

cussed in Section VI, followed by conclusions in Section VII.

II. RELATED WORKS

Deployments of WSNs in tunnels have been described and
discussed in previous works [15]–[21]. Colesanti et al. describe
in [15] their on-the-field experience with a battery-powered
Wireless Sensor Network deployed on a construction site of
the Rome B1 underground for structural health monitoring.
In [16], Ceriotti et al. report on a deployment in which a
WSN is a key component of a control system for adaptive
lighting in road tunnels. In [17], Mottola et al. present two
WSN deployments in an operational road tunnel and in a
nonoperational one. They compare the wireless topology in the
two scenarios, in terms of reliability, stability, and asymmetry
of links, providing results about the impact of such topologies
on MAC and routing layers. In [18], Stajano et al. discuss
their experience with a WSN testbed composed of 26 nodes
deployed in a London Underground tunnel on the Jubilee Line
to measure changes in displacement, inclination, temperature
and relative humidity. In [19] the development and deploy-
ment of a WSN to monitor a train tunnel during adjacent
construction activity is described. The majority of such works
focused on connectivity issues in tunnel scenarios and none
reported the deployment of WSN nodes with energy harvesting
capabilities in underground tunnels. Energy-harvesting WSNs
exhibit unique characteristics and one of the key aspects they
have to cope with, is the significant fluctuations in the energy
availability over time. To mitigate such aspect, several energy
prediction models have been proposed recently by the research
community, with the goal of providing energy forecasting
for real-time systems [22], [23] and over short and medium
timeframes [24]–[30].

One of the first prototypes of air-flow harvesters was de-
veloped with the aim of extending the lifetime of a WSN
for wind speed sensing [13]. The same anemometer used to
perform measurement is connected to a small alternator to
harvest energy, while a buck-boost converter operated in DCM
provides the regulated voltage to recharge a battery with a
maximum efficiency of 72%. Furthermore, the power transfer
is optimized by biasing the alternator, maintaining constant the
input resistance of the converter. As the AC-DC converter is
formed by a Schottky full-wave rectifier, the overall efficiency
of the architecture should be in the range 50% − 55%. The
resistance emulation approach to perform MPPT in energy
harvesting systems is well known from power electronics for
big wind turbine systems [31], [32] and discussed in depth for
low power systems by Paing et al. in [33]. They proposed a
theoretical method to estimate the power consumption of the
most common topologies of DC-DC converter as a function of
critical parameters such as switching frequency and duty cycle,
concluding their work with an example of buck-boost con-
verter suitable for wind harvesting. Such technique was later
elaborated and exploited in several recent works, such as [12],
[34], where the authors modeled and characterized a micro-
wind turbine with a sinusoidal output signal and a diameter of
6cm. The AC signal is rectified by a full-wave Schottky bridge
and the design method of a buck-boost converter optimized
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to achieve a high conversion efficiency is presented. The
converter efficiency of 81%−87% combined with the Schottky
bridge leads to an overall efficiency between 50% − 65%. A
similar wind generator is used in [11] for delivering energy
to a self-powered node. The conversion circuit consists of
an active full wave rectifier followed by a boost converter
with resistance emulation capability combined with a micro-
controller to perform MPPT. The active rectifier, realized with
off-the-shelf components, increases the efficiency up to 70%
when compared to a Silicon Diffused Junction diode-passive
rectifier with a low input voltage of 1.2V , reaching peak values
of about 80%. Thus, considering the high conversion efficiency
of the regulation stage (80% − 90%) the overall architecture
performs with an efficiency greater than 70%. Nevertheless,
this solution exploits the bulk parasitic diodes of the MOSFETs
as alternative way to perform rectification when the control
circuit cannot work, resulting in a significant loss of overall
efficiency (lower than 50%).

The design of an efficient rectifier is challenging in en-
ergy harvesting applications, especially when dealing with
microwatt sources. Several works presented in literature are
based on the principle of replacing the passive elements
(the diodes) with active ones, usually called active diodes as
they works as diodes but need control circuitry. Moreover,
to achieve higher efficiency the majority of researchers have
investigated only integrated solutions. For example, the circuit
proposed in [35] exploits linear-region operated MOSFETs to
emulate diodes and the control circuitry is directly powered
from the input signal. Such system, simulated and realized in
130nm technology can extract up to 90% of the maximum
power from an ideal piezoelectric device. In [36] an integrated
bridge fabricated in 0.35µm CMOS process is described, in
which the four diodes are replaced by two cross-coupled P-
channel MOSFET transistors and two active diodes driven by
two 4-input comparators. Such configuration matches a zero-
threshold diode and effectively eliminates the reverse current
increasing the overall efficiency up to 90%.

Another widely explored method to design rectifier is the
voltage multiplying technique. The active voltage doubler
presented in [37], realized in 5V CMOS STMicroelectronics
technology, uses two switching MOSFETs driven by opera-
tional amplifiers instead of comparators and shows an effi-
ciency between 75% and 95%. Finally, Cheng et al. propose
an active voltage doubler [38] and an 8× active voltage
multiplier [39] exploiting active diodes technique and using
off-the-shelf components. The voltage doubler can reach more
than 80% efficiency for input voltage amplitudes greater than
0.25V while the 8× multiplier can recharge a 3.7V lithium
battery with over 80% efficiency.

All the mentioned active rectifiers are optimized to work in
piezoelectric or RF harvesting applications and are designed
to maximize the efficiency with very low input voltage and
power because it is crucial to avoid power wasting in the
microwatts. Complex systems, featuring a very low start-up
voltage and high conversion efficiency are fundamental in
these conditions. The hybrid solution presented in this paper
is realized with off-the-shelf components and represents a
cost effective design suitable for environmental sources which
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Fig. 2. Relation between open circuit voltage and maximum power point
voltage of the micro-turbine. The solid line represents the empirical formula
while the dots the measured data.

produce milliwatts, as the air-flow energy harvesting. In these
conditions, the proposed solution is simpler and achieves
performance comparable to the on-chip rectifiers.

III. ARCHITECTURE OF THE ENERGY HARVESTER

The adaptive rectifier presented in this paper was originally
designed to improve the efficiency of the air-flow path of the
multi-source energy harvester discussed in [10]. This air-flow
harvester consists of a two-stage architecture, more precisely a
passive-Schottky-diode full-wave rectifier followed by a buck-
boost converter which recharges a supercapacitor used as a
local energy buffer. In this work the passive rectifier is replaced
with an adaptive one. As shown in Fig. 1 an ultra low-
power MCU performs power management, namely it selects
the optimal rectifier and performs the MPPT algorithm to
maximize the conversion efficiency. Finally, an output buck
converter provides the regulated power supply to the micro-
controller and to the supplied platform.

A. Wind Generator
The air-flow transducer used in this work is a small plastic

four-bladed horizontal axis micro-wind turbine, which pro-
duces a sinusoidal power signal, whose amplitude and fre-
quency is dependent on the air speed. The maximum power
transfer is reached when a load in the range 500 − 700Ω
is applied. Experiments show that the optimal load value is
560Ω. An exhaustive characterization of this micro-turbine
with simulations and experimental results is given in [12].
In addition, some experiments were conducted to derive the
following empirical formula:

VMPP = VOC ×KMPP − αMPP (1)

that shows the relation between the open circuit voltage (VOC)
and the maximum power point voltage (VMPP ) of the micro-
turbine. More precisely, during the characterization process
of different micro-turbines a quasi-linear relation between the
measured values of the open circuit voltage and the MPP
voltage has been noticed. Thus, the linear equation 1 is used
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Fig. 4. Efficiency comparison of the simulated passive-Schottky and active
rectifiers. The efficiency is calculated at the optimal load resistance of 560Ω.
The vertical dashed line shows the efficiency transition threshold.

to calculate the MPP voltage exploiting the measured open
circuit values. Both KMPP and αMPP depend on micro-
turbine physical parameters such as diameter or number of
turns. The adopted micro-turbine features KMPP = 0.4319
and αMPP = 0.48V . Equation 1 will be used during data
analysis discussed in Section IV. In Fig. 2, the measured data
compared with the empirical formula are proposed.

B. Hybrid Full-Wave Rectifier
The schematic, in Fig. 3, shows in detail the design of

the adaptive rectifier, as a sub-circuit of the whole harvester.
The passive stage is a full-wave bridge implemented with
four Schottky diodes (D1 −D4), while the active stage uses
P-channel MOSFETs M1 − M2 and N-channel MOSFETs
M3−M4 as rectifying elements. The control circuit exploits
two fast-switching ultra low-power comparators U1 − U2.
During the positive half-wave M1 and M3 are switched-
ON, forming a conductive path to the filter capacitor C1 and
ground, respectively, while M2−M4 are switched-OFF. Vice-
versa M2 −M4 are in conduction during the negative half-
wave and M1−M3 are OFF.
C1 is a small smooth capacitor of 220µF used to limit

the ripple of the input power and also to provide a suitable
voltage supply VC to the ultra-low power comparators U1
and U2. The control circuit, powered by the capacitor C1,
continuously monitors the AC source current by means of the
sensing resistors R1−R2. Comparators U1−U2 are used to
generate the proper gating signals for M1−M4. A thorough
discussion about the benefits of this current-sensing approach
is given by Tan et al. in [11].

The performance of both rectifiers is evaluated individually
by means of SPICE simulations which took into account the
power drawn by the control circuit of the active and adaptive
topologies. The characterization process was conducted by
using a variable resistor as a load. The results are plotted in
Fig. 4, which compares the efficiency of the active and passive-
Schottky rectifiers. The Schottky diodes, with their 0.2−0.3V

Fig. 5. Snapshot of nodes deployed in a tunnel of the Metro B1 line in
Rome.

voltage drop in conduction mode, are a very attractive solution
in case of low power intake. As shown in Fig. 4, there is a
transition threshold which delimits two operating areas: with
an input power in the range 0 − 2mW the Schottky rectifier
(dashed line marked with circles) performs conversion with
an efficiency of 60%−70%, outperforming the active rectifier
(dotted line marked with squares) by 10 − 40%. Conversely,
when the power intake exceeds the threshold of 2mW the
active rectifier is the most efficient topology to use with a
peak of 96% of efficiency.

Thus, for each operating region there is an optimal solution.
When the input power is below the transition threshold the
Schottky rectifier is preferable, while the active topology is
much better with input power above the threshold. The design
allows to dynamically select the most suitable topology by
means of the selector circuit, thus power management policies
will adjust adaptively to the optimal configuration as described
in detail in Section V.

The selector consists of a small latching-coil relay driven by
a MOSFET H-bridge, not shown in the figure for the sake of
simplification. The relay is a bistable device which features two
SPDT switches. Each stable state can be reached by energizing
the coil with a short pulse of current of 5ms. The mechanical
contacts reduce the voltage drops across the switches and a
single commutation needs only 340µJ of energy. In our case,
the wind conditions will be evaluated every 10s, and thus the
relay will be switched every 10s, at worst. The average power
calculated in this interval is therefore less than 34µW .

C. MPPT Circuit and Output Stage
To achieve maximum power transfer the conversion circuit

has been designed to emulate the equivalent input resistance
discussed in Section III-A. The present work exploits the buck-
boost converter depicted in Fig. 3 (CONVERSION STAGE),
implemented with off-the-shelf components and operated in
Fixed Frequency-Discontinuous Current Mode (FF-DCM) to
emulate the optimal input impedance value of 560Ω and
stores the converted energy in a 1F, 5.5V supercapacitor. The
PWM gating signal is generated by an ultra low-power micro-
controller according to the formula:

RIN,eq =
2L

d2T
(2)
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Fig. 3. Schematic of the complete air-flow energy harvester including the hardware implementation of the adaptive rectifier, the selector circuit, the buck-boost-
based conversion stage and the output DC-DC stage.

NODE 1
35m

NODE 2
90m

NODE 3
130m

NODE 4
170mNODE 5

217m

NODE 6
218.4m

Fig. 6. Position of the nodes deployed in the tunnel and their distances from the train station. (Site plan courtesy of Roma Metropolitane and Tre Esse
Engineering, FP7 GENESI project).

where L is the value of the inductor L1, T and d are the
period and the duty cycle of the PWM signal respectively.
In equation (2) the input equivalent resistance is the only
constraint to satisfy, thus the remaining three degrees of
freedom are used to size the inductor value, the frequency
and the duty cycle by solving a system of equations which
minimizes the converter losses [12]. This converter performs
with an overall efficiency of 85%, starting from the minimum
value of 83% and rising over 86% when the input power is
greater than 6mW .

The output stage in Fig. 3 (OUTPUT BUCK CONVERTER)
consists of the integrated buck converter TPS62737 from Texas
Instruments. It provides a regulated 3.3V supply for the relay,
the micro-controller and the powered system consuming only
380nA of quiescent current when active. The cold boot of the
system is guaranteed by the active-low TPS22910 load switch
from Texas Instruments. In worst case conditions, namely
when the supercapacitor is empty and it is not possible to

perform any MPPT algorithm, the rectification is performed
by the Schottky bridge, while the supercapacitor is recharged
exploiting the alternative path provided by the switch, which
bypasses the buck-boost converter and directly connects the
rectifier to the supercapacitor. When the voltage across the
supercap rises up to the minimum operating voltage of the
TPS62737 (i.e., the converter output reaches the value of 3.3V
suitable to supply the micro-controller and the adaptive recti-
fier) the switch is opened and the supercapacitor is efficiently
recharged exploiting the buck-boost converter performing the
MPPT algorithm. Finally, to avoid damages due over-voltage
conditions, the supercapacitor is protected by means of the
zener diode D6.

IV. REAL-LIFE AIR-FLOW DATA COLLECTION

This section is dedicated to the analysis of the air-flow
conditions of the underground tunnel used as test scenario.
The data collection was performed in a tunnel of the new
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Underground Metro B1 line in Rome and took place after
the construction phase of the tunnel was completed. More
specifically, air-flow data were recorded in the pre-testing and
testing phases of the new tunnel during which trains, as well
as other vehicles used in construction works, were operated
for testing purposes. Six Telos B motes [40] equipped with a
wind micro-turbine followed by a Schottky bridge were used to
instrument 220m of tunnel with the aim to collect air-flow data
generated by passing trains (and vehicles) for 33 days. Figure 6
shows the nodes deployment in the tunnel and their distance
from the Conca D’Oro train station. A dedicated TinyOS [41]
application has been developed to track the voltage of the filter
capacitor every 2s. Whenever the measured voltage was higher
than 3mV , the collected data was stored in the node flash
memory and marked with a time-stamp corresponding to the
local time of the node. These voltage values were converted to
the respective maximum power point voltage values in post-
processing by using Equation (1).

The nodes deployed in the tunnel of the Metro B1 line were
placed all at the same height along one side of the tunnel. The
distance between consecutive nodes was variable, to allow to
test air-flow data correlation in different conditions. Figure 5
shows a snapshot of two deployed nodes.

A. Collected Air-flow Data
Nodes were deployed in an Underground tunnel of the Metro

B1 line in Rome for 33 days, from April 16th, 2012 to May
19th, 2012.

Fig. 7 shows the three distinct phases of the Metro B1 train
test during the period in which data were collected:

(i) A pre-testing phase, in which most of the detected
events were related to the movement of vehicles used
in construction work.

(ii) A phase of no activity, during which no passage in the
tunnel was detected.

(iii) A testing phase in which passing trains were detected.
Fig. 8 shows an example of data collected over one day

by node 6, highlighting how harvesting events occurred fairly
regularly.

B. Trains Passage Detection
The detection of train passage events has been performed by

considering the changes in the measured voltage of the micro-
turbines over time. More in details, the detection algorithm
works as follows:
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Fig. 8. Data collected by node 6 on the 16th of May 2012.

1) Whenever the voltage generated by the micro-turbine
starts increasing, a potential event is detected and its
start time ts is annotated;

2) The end time of the event is the instant of time te
after which the voltage generated by the turbine starts
decreasing and keeps dropping for at least 30 seconds1;

3) The energy generated in the period [ts;te] is computed
as explained in Section IV-C. If the total energy intake
in such period is below a minimum detection threshold,
the event is discarded, as it is likely not related to a train
passage, but rather to wind blowing in the tunnel.

Fig. 9 shows an example of detection of train passage events.
The measured turbine voltage is shown in the y-axis, while in
the x-axis time is reported. Dashed lines mark the time interval
in which the event has occurred. As shows in the figure, three
train passage events were detected, with an average train inter-
arrival time of 12 − 30min. Table I reports the complete
statistics about all the train passage events detected during the
period 14 − 18 May 2012 by the six nodes deployed in the
tunnel. More in details, the table shows, for each node, the
total number of train passages detected, the mean inter-arrival
time (MIT) and the standard deviation between the passage
of two consecutive trains at daytime, and the average duration
and standard deviation of each recharging event.

Such statistics are important because they are used by the
nodes to estimate when the future energy recharging event is
going to occur and for how long it is expected to last, thus
allowing to devise pro-active strategies to plan in advance the
energy usage. As reported in the table, results are quite similar
for different nodes. Node 1 detects an average inter-arrival time
lower than the other nodes. This is due to the fact that it is
the node closest to the station, thus it is more exposed to air-
flows that are not generated by trains passing in the tunnel. The
average duration of its recharging events is also lower than that
of other nodes, because trains decelerate when approaching the
station.

C. Energy Intake Calculation

To calculate the energy intake generated by the micro-
turbine during each train passage event, the open circuit
voltage measured by the nodes has been converted to the

1Such 30 seconds interval is used as guard time, because during train
passage events the voltage of the turbine does not monotonically increase
or decrease, but it rather fluctuates depending on the train speed and on the
position of the node with respect to the passing train.
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TABLE I. STATISTICS ABOUT TRAIN PASSAGE EVENTS DETECTED
DURING THE PERIOD 14− 18 MAY: NUMBER OF TRAINS DETECTED BY

EACH NODE, MEAN INTER-ARRIVAL TIME (MIT) AND STANDARD
DEVIATION BETWEEN THE PASSAGE OF TWO CONSECUTIVE TRAINS AT
DAYTIME; AVERAGE DURATION AND STANDARD DEVIATION OF EACH

HARVESTING EVENT.

Node Detected trains MIT (m:s) σ (m:s) Duration (s) σ (s)
1 143 11:58 06:13 20 19.84
2 141 12:47 06:00 26 21.30
3 141 12:47 06:00 24 24.26
4 143 12:49 06:13 25 16.76
5 142 12:50 05:56 27 13.85
6 142 13:04 06:09 29 16.34

corresponding voltage at maximum power point (as explained
in sec. III-A). Fig. 10 shows the voltage conversion performed
for node number 6.

During train passage events, the capacitor voltage measured
by the nodes alternates between increasing and decreasing
periods (an example is shown in Fig. 9). When the voltage
increases, the harvested power is calculated according to a
look-up table which relates voltages at MPP and actual power
values. When the capacitor voltage decreases, however, the
actual power that is being harvested by the node can not
be known exactly. To estimate the actual voltage of the
micro-turbine during such decreasing periods we defined three
different heuristics:
• Best: the power harvested is computed by considering

the voltage measured at the end of the last increasing
period;

• Worst: the harvested power is assumed to be zero;
• Average: the power harvested is computed by consider-

ing a value equal to half of the voltage measured at the
end of the last increasing period.

Fig. 11 shows an example of application of such heuristics.
The Worst heuristic is the most pessimistic one, as it assumes
the voltage of the micro-turbine during voltage decreasing peri-
ods to be zero. The Best heuristic, instead, assumes that during
decreasing periods the voltage of the micro-turbine remains
constant, thus leading to the most optimistic estimation of the
harvested power. Finally, the Average heuristic is a balance
between the other two.

Another possible approach to estimate the voltage of the
micro-turbine during capacitor voltage dropping periods is to
use interpolation techniques to approximate the decreasing
trend. However, the duration of such events is usually quite
limited (4− 10 seconds or 2− 5 voltage samples), making it
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difficult to obtain good results by interpolating the empirical
data. For this reason, the heuristic-based technique is the
estimation method that best suits the data collected from the
nodes deployed in the underground tunnel.

V. POWER MANAGEMENT ALGORITHM

This section deals with the power management algorithms
to determine how to choose the proper rectifier bridge so as
to maximize the power harvested by the node with minimal
overhead.

A. Adaptive strategy
The first and simplest power management strategy consid-

ered is the one called adaptive. Such strategy constantly keeps
track of the power generated by the micro-turbine over time
and dynamically selects the rectifier to be used such as to
maximize the efficiency of the conversion to be performed.
More in details, the adaptive strategy uses the passive-Schottky
topology when the harvested power is lower than 2mW and the
active topology when the harvested power is equal to or greater
than such threshold (Fig. 4). The adaptive strategy potentially
achieves the best results in terms of harvested energy, assuming
that it can sample the incoming power with a high frequency
to detect all the relevant events. In such case, it always selects
the most efficient rectifier bridge to use. However, it also
suffers from the highest overhead among the possible power
management strategies, as it needs to constantly monitor the
power generated by the turbine.

To reduce such overhead in practical settings, the power
generated by the micro-turbine is sampled every f seconds.
Every time that a sample is collected, the rectifier topology
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to use is dynamically selected by comparing the sampled
value with the transition threshold of 2mW discussed in
Section III-B. Once selected, such topology is then used for
the successive time-slot of f seconds, i.e., until a new sample
is collected. Based on the sampling period, this reduces the
overhead of the system, at the cost of potentially not selecting
the most efficient rectifier bridge at any given time t. For
brevity, we indicate with adaptive-f the adaptive strategy
performing a power sample every f seconds.

B. Smart strategy
In this section, a third strategy, called smart, is proposed,

which aims at improving the selection of the best rectifier
topology based on the current harvesting conditions.

The smart strategy is similar to the adaptive-f approach, as
it samples the power generated by the micro-turbine every f
seconds. However, differently from the adaptive-f strategy, the
smart strategy does not select the most efficient rectifier bridge
solely comparing the current power sample with the threshold
of 2mW . Rather, it tries to estimate the potential power intake
during the next f seconds and selects the rectifier topology that
maximizes the conversion efficiency of such expected power.

The predicted power intake during the current time-slot
is estimated by means of regression analysis, a statistical
technique widely employed for prediction. In particular, a
simple linear regression is implemented, in which the pre-
diction variable is the time, denoted by variable t, and the
response variable is the estimated power at time t, denoted
by pt. Given the set of the last n power observations,
{(ti−n, pti−n), . . . (ti, p

t
i)}, the goal of simple linear regression

is to find the equation of the straight line which would provide
the best fit for the observed data points. Such equation can
be found by minimizing the sum of squared residuals of the
linear regression [42]. The smart strategy performs a simple
linear regression over a sliding window whose size is set so
as to match the average duration of the wind harvesting events
detected by the nodes in the tunnel (Table I). The number n
of observations over which the regression is performed thus
depends on the sampling period f .

Figure 12 shows an example of application of the adaptive-
f and of the smart strategies during a wind energy harvesting
event detected by node 2. The dashed line with white circle

dots represent the amount of incoming power at the ideal
conversion efficiency of 100%. In such example, the linear
regression is performed over a sliding window of 30 seconds
and the sampling period is set to 10 seconds. At time t = 30
seconds, the incoming power sampled by node 2 is below the
transition threshold of 2mW . Thus, the adaptive-f strategy
selects the passive rectifier as the topology to be used for the
current time-slot. However, since a train is approaching and
the incoming power is rapidly rising, this leads to a reduced
conversion efficiency during the successive 10 seconds. The
smart strategy, instead, by performing linear regression over
the last 3 power samples, predicts that the expected power
during the current time-slot is going to exceed the transition
threshold. It thus successfully selects the active rectification
topology, resulting in an higher amount of energy being
harvested during the successive 10 seconds. At time t = 40
seconds, the incoming power sampled by node 2 is above
the transition threshold of 2mW , so both strategies select the
active rectifier as the topology to be used for that time-slot.

In addition to power forecasting, the smart strategy also
implements two specific optimizations for the tunnel sce-
nario. In fact, being such scenario almost totally predictable,
knowledge of the environment may be exploited to further
reduce the overhead of the system and avoid unnecessary
sampling. The smart strategy leverages the train detection
algorithm detailed in Section IV-B to determine when sampling
should be performed. In particular, whenever a train passage
is detected, no sampling is performed for the successive six
minutes, which is the minimum expected inter-arrival time
between two consecutive train passages (Table I). Moreover,
the smart strategy does not perform sampling at night time,
as no trains passed in the tunnel during the train test phase
between 8 : 10 PM and 8 : 15 AM .

VI. EXPERIMENTAL COMPARISON OF POWER
MANAGEMENT POLICIES

This section discusses the results of the performance evalu-
ation of the power management techniques described in Sec-
tion V, as well as the passive-Schottky and active topologies
detailed in Section III-B. For each rectification strategy, the
metrics considered in each evaluation are: 1) average energy
harvested per day by each node, and 2) overhead of the system,
in terms of the average number of sampling performed per day
by a node using a given strategy.

Fig. 13 shows the average energy gathered per day by
each node in the tunnel scenario, based on the rectification
technique used by the nodes. Energy is computed as follows:
the voltage measurement recorded by the node is converted
to the voltage at maximum power point according to equa-
tion (1). To estimate the actual voltage of the micro-turbine
during capacitor voltage dropping periods, the Best, Worst
and Average heuristics described in Section IV-C are used.
Once the micro-turbine voltage has been estimated the power
harvested by the node is computed according to a look-up table
which relates voltages at MPP and actual power values. The
final value of the harvested power is then computed by taking
into account the efficiency of the rectification strategy used
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(Fig. 4). In this estimation process the power consumption of
the control circuitry of the only-active and adaptive rectifiers
is implicitly considered as it has been involved in the SPICE
characterization of each topology performed in section III-B.
Moreover, the efficiency of the regulation stage discussed
in section III-C is considered. In other words, the overall
efficiency of the adopted architecture starts from 50% when
the input power is lower than the transition threshold and rises
up over 72% when the incoming power exceeds the threshold.

Results are plotted for the adaptive rectification techniques
and for the passive-Schottky and active topologies. As can
be seen from Fig. 13, the energy harvested per day varies
significantly for different nodes, depending on their position
in the tunnel. In particular, node 1, being deployed very close
to the train station, harvests significantly less energy than the
other nodes. For all the nodes, the adaptive technique consis-
tently outperforms the passive-Schottky-only and active-only
topologies, resulting in significant increment of the total energy
harvested per day. More in detail, the average energy harvested
per day by using the adaptive strategy is, depending on the
considered node, up to 18% higher than that harvested by the
passive-Schottky-only topology, and up to 22% higher than that
harvested by the active-only topology. Such improvements are

achieved when the wind flow intensity is frequently varying
and the average output power from the turbine is very close to
the transition threshold depicted in Fig. 4. In such conditions,
the adaptive rectification technique significantly outperforms
the others, achieving the highest rectification efficiency for any
wind speed. If the wind flow intensity is predominantly either
high or low, instead, the performance of adaptive rectification
is much closer to that of the active-only or passive-Schottky-
only topology, as the hybrid rectifier consistently operates
in only one of the two configurations. For example, since
node 6 mostly operates under high wind speed conditions,
the improvement of the hybrid solution with respect to the
active-only rectifier is less than 3.4% (Fig. 13). Overall, when
considering all the nodes operating under different wind speed
conditions, the average increase in harvested energy obtained
by the adaptive strategy is of 15% with respect to the passive-
Schottky-only topology, and of 7% with respect to the active-
only topology.

As mentioned before, the adaptive strategy always achieves
the best results in terms of harvested energy, but it suffers
from the highest overhead. Our second set of experiments
shows the trade-off between the energy harvested by the
nodes and the overhead introduced by managing the adaptive
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rectifier. The performance of the adaptive-f and of the smart
strategies are thoroughly studied in terms of harvested energy
and system overhead, for varying sampling periods. In this
set of experiments, the window size of the linear regression
performed by the smart strategy is set to 30 seconds.

Fig. 14(a) shows the average energy harvested per day by
both the adaptive-f and the smart strategies, as a percentage of
the energy harvested by the adaptive strategy, which represents
indeed an upper bound on the energy harvestable by using
the topologies described in Section III. Fig. 14(b) shows the
overhead introduced by the adaptive-f and smart strategies, in
terms of the average number of sampling performed per day,
as a percentage of the overhead introduced by the adaptive
strategy. Due to space constraints, results are reported only for
node 2, but they show similar trends for different nodes.

As it can be seen in Fig. 14(b), the smart strategy signif-
icantly reduces the overhead with respect to the adaptive-f
approach, without impairing the capability of the nodes to
harvest energy from air-flows. In fact, the number of sampling
performed by the smart strategy is almost one third of that
performed by adaptive-f . At the same time, the average energy
per day collected by the smart strategy is always greater or
equal to that of the adaptive-f strategy (Fig. 14(a)). For in-
stance, by performing a sampling every 10s the smart strategy
is able to harvest an amount of energy per day that is more than
99% of that harvested by the adaptive strategy, introducing
an overhead that is only ≈ 7% of that of the adaptive
strategy. When using the same setting for the sampling period
(i.e., one sample every 10 seconds), the adaptive-f strategy
harvests slightly less energy than the smart strategy, but its
overhead is almost three times greater than that introduced
by the smart strategy. The greatest improvement in terms of
average energy harvested per day is obtained by the smart
strategy for sampling periods of 8 − 10 seconds. Being the
window size set to 30 seconds, this corresponds to performing
the linear regression over the last 3 power observations. Finally,
the passive-Schottky-only and active-only topologies do not
introduce any additional overhead, but they harvest only 93%
and 85% of the energy obtained by the adaptive strategy.

The additional amount of energy delivered by the adaptive
rectifier leads to a significant extension of the nodes’ lifetime.
In fact, considering negligible the power consumption during
the sleep time, each node consumes about 12mJ during its
activity time, namely data sensing and wireless transmission.
Therefore, an increment of 400mJ as shown in Fig. 13 means
about 33 more sample and transmission activities.

VII. CONCLUSIONS

In this paper a power management technique for improving
the efficiency of harvesting energy from air-flows generated
by trains passing in an underground tunnel is presented. The
key feature of the proposed solution is the adaptive AC-DC
converter, a hybrid voltage rectifier which exploits both passive
and active topologies combined with power prediction algo-
rithms. In fact, the rectifiers reported in literature are designed
to maximize the efficiency with very low input voltage and
power, where it is crucial to avoid power wasting in the mi-
crowatts. We have demonstrated, when the input power varies

in a wider range (i.e. from microwatts to tens of milliwats), that
a hybrid solution can achieve performance comparable to the
on-chip rectifiers. In particular, our combined approach signif-
icantly outperforms other rectification topologies, resulting in
an increase of efficiency between 10% and 30% with respect to
the only-passive and the only-active rectifiers. Furthermore it is
a cost effective and simple design, suitable for environmental
sources which produce up to milliwatts, as the air-flow energy
harvesting. To evaluate the effectiveness of the presented
approach, a data collection campaign has been conducted in a
tunnel of the new Underground Metro B1 line in Rome. Six
Telos B motes equipped with wind micro-turbines are used
to instruments 220m of tunnel with the aim to collect air-flow
data for 33 days. It is found that by using the adaptive AC-DC
converter nodes deployed in the tunnel can harvest up to 22%
more energy than that harvested by using the active-only or
the passive-only topology. Finally, a smart power-management
strategy which exploits the predictable tunnel scenario has been
proposed to significantly reduce the overhead of the system.
Such strategy performs an average number of sampling per
day that is only 7% of that of the adaptive strategy and almost
one third of that of the adaptive-f strategy. At the same time,
the average energy per day collected by the smart strategy is
always greater or equal of that of the adaptive-f strategy.
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