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In October of 1999, the Infosec Research Council created a Science and 
Technology Study Group (ISTSG) focused on malicious code.  The purpose of the 
Malicious Code ISTSG is to develop a national research agenda to address the 
accelerating threat from malicious code. The study is intended to identify promising 
new approaches to dealing with the problems posed by malicious code.  In this 
report, we discuss the key trends that are making malicious code a critical national 
problem.  We then survey existing techniques for preventing attacks, pointing out 
their limitations, and discuss some promising new approaches that may address 
these limitations. 
 
This report is a byproduct of two meetings of Study Group members and their invited 
guests. Though this report was written by two of study group members, we believe it 
represents an accurate distillation of the ideas and insights of all the participants.   
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What is Malicious Code? 
Malicious code is any code added, changed, or removed from a software system in order to 
intentionally cause harm or subvert the intended function of the system. Though the problem of 
malicious code has a long history, a number of recent, widely publicized attacks and certain 
economic trends suggest that malicious code is rapidly becoming a critical problem for industry, 
government, and individuals.   
 
Traditional examples of malicious code include viruses, worms, Trojan Horses, and attack scripts, 
while more modern examples include Java attack applets and dangerous ActiveX controls.   

?? Viruses are pieces of malicious code that attach to host programs and propagate when 
an infected program is executed.   

?? Worms are particular to networked computers.  Instead of attaching themselves to a host 
program, worms carry out programmed attacks to jump from machine to machine across 
the network.  

                                                                 
* The workshops on which this report is based were convened under the auspices of the Infosec Research Council (IRC), 
with members from U.S. Government organizations that sponsor and conduct information security research.  Views 
expressed in the report are those of the authors and may not reflect those of the IRC, its members, or the organizations 
they represent. 
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?? Trojan Horses, like viruses, hide malicious intent inside a host program that appears to 
do something useful (e.g., a program that captures passwords by masquerading as the 
login daemon.) 

?? Attack scripts are programs written by experts that exploit security weaknesses, usually 
across the network, to carry out an attack.  Attack scripts exploiting buffer overfl ows by 
“smashing the stack” are the most commonly encountered variety.   

?? Java attack applets are programs embedded in Web pages that achieve foothold through 
a Web browser.   

?? Dangerous ActiveX controls are program components that allow a malicious code 
fragment to control applications or the operating system.  

 
Recently, the distinctions between malicious code categories have been bleeding together, and 
so classification has become difficult.  Some concrete examples of malicious code are provided in 
Table 1.  Note that recent versions of malicious code are really amalgamations of different 
categories.  
 
Malicious Code  Date  Category   Explanation 
Love Bug 2000 Mobile code 

virus 
The fastest spreading virus of all time used VB script 
and Microsoft Outlook mail to propagate.  Caused an 
estimated $10 billion in damage. 

Trinoo (and other dDoS 
scripts) 

2000 Remote-
control 
attack script  

The highly-publicized denial of service attacks of 
February 2000 were carried out by remotely-planted 
agent programs. 

Melissa 1999 Mobile code 
virus 

The second fastest spreading virus of all time used e-
mail to propagate.  Infected over 1.2 million machines 
in a few hours. 

Explore.Zip 1999 Mobile code 
worm 

An e-mail borne worm that exploited problems in 
Microsoft Windows to propagate. 

Happy99 1999 Virus A widespread virus infecting Microsoft PCs. 
CIH 1998 Virus A particularly dangerous virus that attacks BIOS in 

PCs.  Ran rampant in Asia before being contained. 
Back Orifice 1998 Offensive 

code 
Remote control program installed on Windows 
machines by crackers.  Pervasive. 

Attack scripts  Offensive 
code 

Crackers called “script kiddies” download malicious 
code from the Internet and run it against any number of 
targets.  Some expert must create and release the 
script to begin with.  Widespread.  Most common 
attack: buffer overflow. 

ActiveX (scripting) 1997 Mobile code Decried by security professionals, Microsoft’s ActiveX 
system introduces grave security risks by relying on 
user’s discretion and judgment. 

Java Attack Applets 1996-
1999 

Mobile code Attack applets placed on Web sites take advantage of 
flaws in the Java security model to carry out attacks. 17 
known attacks. 

Morris worm 1988 Worm Released in 1988 by Robert Morris, Jr, this program 
affected around 6000 computers (around 10% of the 
Internet at the time). 

Thompson’s compiler 
trick 

1984 Trojan 
Horse 

Ken Thompson introduced a Trojan Horse in a C 
compiler that compiled itself into future programs 
[Tho84].   
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A Growing Problem 
Complex devices, by their very nature, introduce the risk that malicious functionality may be 
added (either during creation or afterwards) that extends the original device past its primary 
intended design.  An unfortunate side effect of inherent complexity is that it allows malicious 
subsystems to remain invisible to unsuspecting users until it is too late. Some of the earliest 
malicious functionality, for example, was associated with complicated copy machines.  Extensible 
systems, including computers, are particularly susceptible to the malicious functionality problem.  
When extending a system is as easy as writing and installing a program, the risk of intentional 
introduction of malicious behavior increases drastically. 
 
Any computing system is susceptible to malicious code.  Rogue programmers may modify 
systems software that is initially installed on the machine.  Users may unwittingly propagate a 
virus by installing new programs or software updates from a CDROM.   In a multi-user system, a 
hostile user may install a Trojan Horse to collect other users’ passwords.  These attack vectors 
have been well known since the dawn of computing, so why is malicious code a bigger problem 
now than in the past?   We argue that a small number of trends have a large influence on the 
recent wide spread propagation of malicious code.   
 
Networks are Everywhere:  The growing connectivity of computers through the Internet has 
increased both the number of attack vectors, and the ease with which an attack can be made.  
More and more computers, ranging from home PCs to systems that control critical infrastructures 
(e.g. , the power grid), are being connected to the Internet.  Furthermore, people, businesses, and 
governments are increasingly dependent upon network-enabled communication such as e-mail or 
Web pages provided by information systems. Unfortunately, as these systems are connected to 
the Internet, they become vulnerable to attacks from distant sources.  Put simply, it is no longer 
the case that an attacker needs physical access to a system to install or propagate malicious 
code.   
 
Because access through a network does not require human intervention, launching automated 
attacks from the comfort of your living room is relatively easy.  Indeed, the recent denial-of-
service attacks in February of 2000 took advantage of a num ber of (previously compromised) 
hosts to flood popular e-commerce Web sites with bogus requests automatically.  The ubiquity of 
networking means that there are more systems to attack, more attacks, and greater risks from 
malicious code than in the past.  
 
System Complexity is Rising: A second trend that has enabled widespread propagation of 
malicious code is the size and complexity of modern information systems.  A desktop system 
running Windows/NT and associated applications depends upon the proper functioning of the 
kernel as well as the applications to ensure that malicious code cannot corrupt the system.  
However, NT itself consists of tens of millions of lines of code, and applications are becoming 
equally, if not more, complex. When systems become this large, bugs cannot be avoided.  This 
problem is exacerbated by the use of unsafe programming languages (e.g. , C or C++) that do not 
protect against simple kinds of attacks, such as buffer overflows.  However, even if the systems 
and applications code were bug free, improper configuration by retailers, administrators, or users 
can open the door to malicious code. In addition to providing more avenues for attack, complex 
systems make it easier to hide or mask malicious code.  In theory, we could analyze and prove 
that a small program was free of malicious code, but this task is impossible for even the simplest 
desktop systems today, much less the enterprise-wide systems used by businesses or 
governments.     
 
Systems are Easily Extensible:  A third trend enabling malicious code is the degree to which 
systems have become extensible.  An extensible host accepts updates or extensions, sometimes 
referred to as mobile code, so that the functionality of the system can be evolved in an 
incremental fashion. For example, the plug-in architecture of Web browsers makes it easy to 
install viewer extensions for new document types as needed.  Today’s operating systems support 
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extensibility through dynamically-loadable device drivers and modules. Today’s applications, such 
as word-processors, e-mail clients, spreadsheets, and Web-browsers support extensibility 
through scripting, controls, components, and applets.  From an economic standpoint, extensible 
systems are attractive because they provide flexible interfaces that can be adapted through new 
components.  In today’s marketplace, it is crucial that software be deployed as rapidly as possible 
in order to gain market share.  Yet the marketplace also demands that applications provide new 
features with each release.  An extensible architecture makes it easy to satisfy both demands by 
allowing the base application code to be shipped early, and by later shipping feature extensions 
as needed.  
 
Unfortunately, the very nature of extensible systems makes it hard to prevent malicious code from 
slipping in as an unwanted extension.  For example, the Melissa virus took advantage of the 
scripting extensions of Microsoft’s Outlook e-mail client to propagate itself.  The virus was coded 
as a script contained in what appeared to users as an innocuous mail message.  When the 
message was opened, the script was executed, and proceeded to obtain email addresses from 
the user’s contacts database, and then sent copies of itself to those addresses.  The infamous 
Love Bug worked very similarly, also taking advantage of Outlook’s scripting capabilities.     
   

Defense against Malicious Code 
Creating malicious code is not hard.  In fact, it is as simple as writing a program or downloading 
and configuring a set of easily customized components.  It is becoming increasingly easy to hide 
ill-intentioned code inside otherwise innocuous objects, including Web pages and e-mail 
messages.  This makes detecting and stopping malicious code before it can do any damage 
extremely hard.   
 
To make matters worse, our traditional tools for ensuring the security and integrity of hosts have 
not kept pace with the ever-changing suite of applications.  For example, traditional security 
mechanisms for access control reside within an operating system kernel and protect relatively 
primitive objects (e.g., files); but increasingly, attacks such as the Melissa virus happen at the 
application level where the kernel has no opportunity to intervene.   
 
A useful analogy is to think of the computer and network security mechanisms of today like the 
walls, moats, and drawbridges of medieval times. At one point, these mechanisms were effective 
for defending our computing castles against isolated attacks, mounted on horseback.  But the 
defenses have not kept pace with the attacks.  Today, attackers have access to airplanes and 
laser-guided bombs that can easily bypass our antiquated defenses. In fact, attackers rarely need 
sophisticated equipment: because our kingdoms are really composed of hundreds of 
interconnected castles, attackers can easily move from site to site, finding places where we have 
left the drawbridge down. It is time to develop some new defenses. 
 
In general, when a computational agent arrives at a host, there are four approaches that the host 
can take to protect itself:   
 
1. Analyze the code and reject it if there is the potential that executing it will cause harm.  
2. Rewrite the code before executing it so that it can do no harm .  
3. Monitor the code while its executing and stop it before it does harm, or 
4. Audit the code during executing and take policing action if it did some harm.  
 
Analysis includes simple techniques, such as scanning a file and rejecting it if contains any 
known virus, as well as more sophisticated techniques from compilers, such as dataflow analysis,  
that can determine previously unseen malicious code. Analysis can also be used to find bugs 
(e.g., potential buffer overruns) that malicious code can use to gain a foothold in a system.  
However, static analysis is necessarily limited, because determining if code will misbehave is as 
hard as the halting problem.  Consequently, any analysis will either be too conservative (and 
reject some perfectly good code) or too permissive (and let some bad code in) or more likely, 
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both.  Furthermore, software engineers working on their own systems often neglect to apply any 
bug-finding analyses.  Nevertheless, automated tools such as the open source security scanner 
ITS4 (see http://www.rstcorp.com/its4) can be effective for finding bugs.  In addition, primitive 
dataflow analysis, such as looking for particular patterns of system calls in an executable, has 
been incorporated into some commercially available security products.  
 
Code rewriting is a less pervasive approach to the problem, but may become more important (see 
the next section).  With this approach, a rewriting tool inserts extra code to perform dynamic 
checks that ensure bad things cannot happen.  For example, a Java compiler inserts code to 
check that each array index is in bounds—if not, the code throws an exception, thereby avoiding 
the common class of buffer overrun attacks. Rewriting can be carried out either at the application 
code level, or below that in subsystem functionality made available through APIs, or even at the 
binary level. 
 
Monitoring programs, using a reference monitor, is the traditional approach used to ensure 
programs do not do anything bad.  For instance, an operating system uses the page-translation 
hardware to monitor the set of addresses that an application attempts to read, write, or execute.  
If the application attempts to access memory outside of its address space, then the kernel takes 
action (e.g., by signaling a segmentation fault.)   A more recent example of an on-line reference 
monitor is the Java Virtual Machine interpreter. The interpreter monitors execution of applets and 
mediates access to system calls by examining the execution stack to determine who is issuing 
the system calls request. In this case, stack inspection is used as a policy enforcement 
mechanism.  
 
If malicious code does damage, recovery is only possible if the damage can be properly 
assessed and addressed.  Creating an audit trail that captures program behavior is an essential 
step.  Several program auditing tools are commercially available. 
 
Each of the basic approaches, analysis, rewriting, monitoring, and auditing, has its strengths and 
weaknesses, but fortunately, these approaches are not mutually exclusive and may be used in 
concert.  Of course, to employ any of them, we must first identify what could be “harmful” to a 
host.   Like any other computing task, we must turn the vague idea of “harm” into a concrete, 
detailed specification—a security policy—so that it can be enforced by some automated security 
architecture.  Therein lies our greatest danger, for as we create the policy, we are likely to 
abstract or forget relevant details of the system.   An attacker will turn to these details first, 
stepping outside our policy model to circumvent the safeguards. 
 
Stick to Your Principles 
To protect against this common failing, it is important to follow well-established security principles 
when designing security policies.  One of the most important principles, first stated by Saltzer and 
Shroeder in 1975 [SS75], is the Principle of Least Privilege:  a component should be given the 
minimum access necessary to accomplish its intended task.  For example, we shouldn’t give a 
program access to all files in a system but rather, only those files that the program needs to get 
its job done.  This prevents the program from either accidentally or maliciously deleting or 
corrupting most files.  Obviously, the fewer files that the program can access, the less the 
potential damage.  Stated simply, tighter constraints on a program lead to better security.   
 
Another important security principle is the Principle of Minimum Trusted Computing Base.  The 
trusted computing base (TCB) is the set of hardware and software components that make up our 
security enforcement mechanisms.  The Principle of Minimum TCB states that, in general, the 
best way to assure that your system is secure is to keep your TCB small and simple.  Even in the 
mid 70's, operating system kernels were thought to be too large to be trusted.  Those systems 
now seem small and tightly structured compared to today's widely used kernels composed of 
millions of lines of code. 
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In the next section, we give examples of currently deployed defenses for malicious code, focusing 
on their relative pros and cons.  Unfortunately, the comparison shows that the pros are 
outweighed by the cons, largely because of a violation of the Least Privilege and Minimal TCB 
principles.  We then discuss some promising technologies, identified by the research group, that 
are emerging from research labs.   
 

Current Defenses 
 

OS-Based Reference Monitors 
Historically, mechanisms for security policy enforcement have been provided by the computer 
hardware and operating system.  Address translation hardware, distinct supervisor- and user-
modes, timer interrupts, and system calls for invoking a trusted software base are used in 
combination to enforce limited forms of availability, fault containment, and authorization 
properties.   
 
To a large degree, these mechanisms have proven effective for protecting operating system 
resources (e.g. , files or devices) from unauthorized access by humans or malicious code.  But the 
mechanisms work with a fixed system-call interface and a fixed vocabulary of principals, objects, 
and operations for policies.  Only by incurring significant cost and usability penalties can that 
vocabulary be expanded.  It rarely is.  Currently, most desktop machines are configured as 
single-user so applications have complete access to the machine resources.  
 
Scanning for Known Malicious Code 
In the days before networking was rampant, malicious code mostly used the “sneaker net” as its 
vector.  Viruses were spread from machine to machine by humans carrying floppy disks with 
infected programs on them.  Perhaps the built-in limitations in the vector kept the number of 
viruses small.  In any case, the limited number of viruses combined with the inefficiencies in the 
communication vector made possible the strategy of black listing.   
 
Most commercial anti-virus products make use of a black listing strategy to this day.  They rely on 
databases of virus “signatures” that are consulted when a new program arrives.  Anti-virus tools 
scan disks and sometimes e-mail looking for known viruses. 
 
The limitations of this approach are obvious.  Unknown malicious code will easily get by the 
simple defenses to carry out its dirty work.  Until a new virus is contained by researchers and a 
signature entry is added to the database, it can run rampant.  Recall both the Melissa virus and 
the Love Bug. 
 
It should be clear that black listing by itself does not provide adequate security. It is too easy to 
make trivial changes to malicious code (a process that can be automated in the code itself) to 
thwart almost every black listing scheme.  Nevertheless, black listing is cheap to implement and 
is thus worthwhile even if it only stops the occasional naïve attack. 
 
Code Signing 
Code signing as it is commonly used and (mis)understood today needs work.  The idea itself is 
elegant and simple: a private key is used to sign code, both ensuring transmission integrity and 
enabling policy defined by trust in the signer.  Unfortunately, a pervasive and common myth is 
that code signing signifies authorship or goodness.  It does not.  Encountering a piece of code 
that is cryptographically signed simply means that some private key was used to sign the code!  
From this we can reason about endorsement of the code by the person or organization who 
controls the private key in question.   
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In talking about code signing, many people make bad assumptions.  These include: assuming 
that signed code is safe, treating signing as a binary indicator of goodness, assuming that 
goodness is compositional, and thinking that code that has been shown to be good in one 
environment will be good in all environments.  Code signing is a useful technology, but these 
limitations are real. 
 
The adoption of code signing has also been hampered by the lack of a Public Key Infrastructure 
(PKI).  Very few PKI installations have been deployed, and those that have do not begin to 
approach Internet scale.  Without a solid PKI, code signing will not become common. 
 

Promising New Defenses 
 

Software-Based Reference Monitors 
Wahbe et al. suggested software-based fault isolation (SFI) as an alternative to the traditional 
hardware-based mechanisms used to ensure memory safety [WLAG93].  Their goal was to 
reduce the overhead of cross-domain procedure calls and providing a more-flexible memory -
safety mode.  Their basic idea is to rewrite binary code by inserting checks on each memory 
access and each control transfer to ensure that those accesses are valid. Schneider generalized 
the SFI idea to in-lined reference monitors (IRM) [Sch00].  With the IRM approach, a security 
policy is specified in a declarative language, and a general-purpose tool rewrites code, ins erting 
extra checks and state that are used to enforce the policy.  In principle, any security policy that is 
a safety property can be enforced, so the approach is quite powerful.  For example, it can enforce 
any discretionary access control policy.   The approach is also practical: Prototypes have been 
built at both Cornell and MIT [ES99,ET99,ES00].  One of the Cornell prototypes, PSLang/PoET, 
works for the Java Virtual Machine language and gives competitive performance for the 
implementation of Java's stack inspection security policy. 

 
Type-Safe Languages 
Type-safe programming languages, such as Java, Scheme, or ML, ensure that operations are 
only applied to values of the appropriate type.  Type systems that support type abstraction allow 
programmers to specify new, abstract types and signatures for operations that prevent 
unauthorized code from applying the wrong operations to the wrong values.  In this respect, type 
systems, like software-based reference monitors, go beyond operating systems in that they may 
be used to enforce a wider class of application-specific access policies. Static type systems have 
an additional attractive property: enforcement can be done offline through static type checking 
instead of each time a particular operation is performed.  This allows the type checker to enforce 
certain policies that are difficult with on-line techniques.  For example, Myers’ JFlow [Mye99] 
extends the Java type system to enforce the policy that high-security data should never be 
leaked.  Current research in type systems is aimed at eliminating more run-time checks (e.g., 
array bounds checks [XP99]) or type-checking machine code (see for example [MWCG98]).   
 
Proof-Carrying Code 
Proof-carrying code (PCC), a concept introduced by Necula and Lee [NL96], is a promising 
approach for gaining high assurance ofsecurity in systems.  The basic idea is to require any 
untrusted code to come equipped with an explicit, machine-checkable proof that the code 
respects a given security policy.  Before executing the code, we simply verify that the proof is 
valid with respect to both the code and the policy. Because proof checkers can be quite simple 
(Necula’s is about 6 pages of C code), it is easier to ensure that they are correct.  And in 
principle, PCC can enforce any security policy—not just type safety—as long as the code 
producer can construct a proof.  Necula and Lee have shown that such proofs can be constructed 
automatically for standard type-safety policies, if the code is generated by a compiler for a type-
safe programming language.  Unfortunately, going beyond standard notions of type safety cannot 
be performed automatically without either restricting the code or requiring human intervention.  It 
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is unlikely that programmers will construct explicit proofs. Thus an active area of research is how 
to integrate compilers and modern theorem provers to  produce PCC.   
 

Policy as Achilles’ Heel 
Thus far we have focused on technology solutions to the malicious code problem.  To be sure, 
technology can be of service; but there is another critical aspect of the problem that remains to be 
addressed? the problem of policy. 
 
In current forms, extensible systems do little to determine how a system will behave when 
extended in certain ways or, put another way, what a particular piece of code can and cannot do.  
In fact, today’s computers are hyper-malleable and overly complicated.  This greatly increases 
the malicious code risk.  In the end, determining whether something malicious is happening 
requires first defining some policy to enforce.   
 

When Policy Breaks Down 
Clearly, the notion of policy is deeply intertwined with the concept of malicious code.  Understood 
in terms of policy, the root causes of malicious code can be separated into two basic categories: 
1) bad policy, and 2) incorrectly enforced policy.   
 
Bad policy allows malicious code to do something malicious since policy does not forbid it.  Even 
if policy is perfectly enforced by technology, the policy itself has to be well formed.  Subcategories 
of bad policy include:  

?? misunderstandings of context, whereby policy makes no sense in the context where it 
was applied;  

?? inconsistency, whereby the policy is self-contradictory; or  
?? non-comprehensiveness, whereby policy fails to cover some situation or exists at the 

wrong level of abstraction. 
 
Incorrect policy enforcement allows code to do something malicious even if it is correctly 
forbidden by policy.  In this case, correct technology-driven enforcement falls prey to poor policy 
creation and management.  Subcategories of incorrect policy enforcement include:  

?? incorrect enforcement of safety policies; 
?? incorrect enforcement of liveness properties; 
?? incorrect enforcement of information flow.  

Other subcategories may exist under incorrect enforcement as well. 
 
Table 2 provides examples of malicious code understood in our policy-based framework. 
 

BAD POLICY Examples INCORRECT POLICY 
ENFORCEMENT 

Examples 

Context 
misunderstood 

?? Melissa (e-mail worms) 
?? Morris worm (sendmail debug 

mode) 

Safety properties ?? Thompson compiler 
trick 

?? buffer overflows 
?? guessable passwords 

Inconsistent  ?? overly restrictive policy Liveness properties ?? denial of service 
Non-
comprehensive  

?? Melissa (e-mail worms) 
?? guessable passwords  

Information flow ?? Javascript privacy 
hacks 

 
E-mail worms like Melissa fit unto the context misunderstood box above because they are caused 
by the interaction between individual policy decisions made about separate parts of the system.  
Useful subsystems such as Javascript interpreters can cause problems if invoked in the incorrect 
context.  For ex ample, modern e-mail systems often include the ability to execute potentially-
dangerous untrusted mobile code by default.  This opens the door to malicious code. 
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E-mail worms like Melissa and the Love Bug also fit in the non-comprehensive box since policy 
often fails to cover systems like e-mail based Visual Basic code, which can be used maliciously.   
 
The sendmail debug mode problem exploited in the Morris worm provides a good example of a 
context misunderstanding since something that made sense during development and installation 
(a debug capability) makes little sense in a fielded system.  The added functionality came at the 
price of unnecessary risk. 
 
Guessable passwords are a good example of non-comprehensive policy if they come about due 
to a lack of restrictions on user password choice.  Without guidance, users tend not to behave in 
a secure fashion.  Guessable passwords are a notorious security risk that is widely exploited by 
malicious code.  
 
Thompson’s compiler trick (a famous Trojan Horse to be built into the C compiler that made use 
of the login program [Tho84]) is an example of incorrect enforcement of safety policy.  In this 
case, implicit policy assumes both that the compiler properly produces object code from source 
code and that the login program requires a correct password to be entered.  In fact, the developer 
of the compiler can circumvent this implicit policy (which is not enforced technologically). 
 
Distributed denial of service (dDoS) attacks are a clear example of liveness policies  being 
incorrectly enforced.  In this case, massive amounts of traffic are used to overwhelm the 
processing capabilities of a commerce server.   
 
Addressing the malicious code problem requires the creation of sound policy and its enforcement 
through technology.   
 

The Many Levels of Policy 
System administrators and MIS security people think about policy in terms of user groups, firewall 
rules, and computer use.  Security researchers steeped in programming languages think about 
policy in terms of memory safety and liveness properties.  Government policy wonks think about 
policy in terms of rules and regulations imposed on users and systems.  The problem is, all of 
these ways of thinking about policy are equally valid! 
 
So how are we to set policy to combat malicious code?  We believe the key is to focus on 
defining meta-level policies that system administrators work with naturally in terms of collections 
of lower-level enforcement mechanisms.  This is no trivial undertaking. 
 
Most of the technologies explored earlier in this article can be used to enforce particular aspects 
of software behavior.  Many languages researchers, for example, consider the code safety 
problem “solved”.  Liveness and information flow properties are harder, but fairly clear research 
agendas exist to address the open issues.  Of course, the terms safety, liveness, and information 
flow have technical meanings.  Intuitively, a safety property states that a program will never 
perform a bad action, for some precisely defined notion of "bad".  An example of a bad action is 
overflowing a buffer.  A liveness property, on the other hand, states that a program will eventually 
perform some desired action or set of actions.  For example, the property that a program will 
eventually release all of the memory that it allocates is a liveness property. Finally, information 
flow properties state that certain values or types of values will not be discernable to certain 
observers. 
 
The problem is that low-level properties such as safety and liveness do not align nicely with what 
most security administrators think of as policy building blocks.  Thus an open question is how to 
express reasonable security policy that can be directly transformed into technology enforcement 
solutions. 
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The answer is to understand policy as a layered set of abstractions.  Some preliminary work 
exists (for example Netscape Navigator’s approach to policy sets based on expected code 
behavior), but much work remains to be done. 
 

Final Word 
The malicious code problem will continue to grow as the Internet grows.  The constantly-
accelerating trends of interconnectedness, complexity, and extensibility make addressing the 
problem more urgent than ever.  As extensible information systems become more ubiquitous, 
moving into everyday devices and playing key roles in life-critical systems, the level of the threat 
moves out of the technical world and into the real world.  We must work on this problem. 
 
Our best hope in combating malicious code is creating sound policy about software behavior and 
enforcing that policy through the use of technology.  An emphasis on one or the other alone will 
do little to help.  Any answer will require a set of enforcement technologies that can be directly 
tied to policy set and understood by non-technical users. 
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