Applications of the Lambda Calculus

Representing computable functions and proofs

Henk Barendregt
Nijmegen University
The Netherlands

1 Computability 3
2 Functional programming 14
$3 \quad$ Interactive programs 24
$4 \quad$ The quest for correctness 34
5 Computations and proofs 51

1 Computability

Abstract syntax for lambda terms

```
atom = a | atom '
term = atom | term term | \lambda atom term
```


Axiom

$$
(\lambda x \cdot M) N=M[x:=N]
$$

taken for granted identifications like

$$
\lambda x . x=\lambda y \cdot y
$$

atoms $a, a^{\prime}, a^{\prime \prime}, \ldots$
we write $\quad x, y, z, \ldots$
terms $\quad x, \lambda x . x,(\lambda x . x) y, \ldots$
we write $\quad M, N, L, \ldots$

Intended interpretation

$\lambda x . M(x) \quad$ function F such that $F: x \rightarrow M(x)$
Fx
F applied to x
hence for $F=\lambda x . M(x)$

$$
\begin{aligned}
& F x=M(x) \\
& F N=M(N)=M[x:=N]
\end{aligned}
$$

Notational convention

$$
\begin{aligned}
& M N_{1} \ldots N_{k}=\left(. .\left(\left(M N_{1}\right) N_{2}\right) \ldots N_{k}\right) \\
& \lambda x_{1} \ldots x_{k} . M=\left(\lambda x_{1}\left(\lambda x_{2} \ldots\left(\lambda x_{k} M\right) . .\right)\right)
\end{aligned}
$$

Then using k times (β) one can deduce

$$
\left(\lambda x_{1} \ldots x_{k} \cdot M\left(x_{1}, \ldots, x_{k}\right)\right) X_{1} \ldots x_{k}=M\left(X_{1}, \ldots, x_{k}\right)
$$

Representing numbers (Church's numerals)

$$
\begin{gathered}
\mathrm{c}_{\mathrm{n}}=\lambda \mathrm{fx} . \mathrm{fn}_{\mathrm{x}} \\
\text { where } \mathrm{f}^{0} \mathrm{x}=\mathrm{x} \text { and } \mathrm{f}^{\mathrm{n}+1} \mathrm{x}=\mathrm{f}\left(\mathrm{f}^{\mathrm{n}} \mathrm{x}\right)
\end{gathered}
$$

Representing computable functions
Simple functions (Rosser 1935)

$$
\begin{aligned}
\mathrm{S}^{+} \mathrm{C}_{n} & =\mathrm{C}_{n+1} \\
\mathrm{~A}_{+} \mathrm{C}_{n} \mathrm{C}_{\mathrm{m}} & =\mathrm{C}_{n+m} \\
\mathrm{~A}_{*} \mathrm{C}_{\mathrm{n}} \mathrm{C}_{\mathrm{m}} & =\mathrm{C}_{n \cdot m}
\end{aligned}
$$

$$
A_{\exp } C_{n} C_{m}=C_{n^{\wedge} m}
$$

for

$$
\begin{aligned}
S^{+} & =\lambda n \cdot(\lambda f x . f(n f x)) \\
A_{+} & =\lambda n m \cdot(\lambda f x . n f(m f x)) \\
A_{*} & =\lambda n m \cdot(\lambda f x . n(m f) x) \\
A_{\exp } & =\lambda n m \cdot(\lambda f x . m n f x)
\end{aligned}
$$

We say that the function f:INk $\rightarrow \mathrm{IN}$ is represented by the lambda term F iff

$$
F C_{n_{1}} \ldots C_{n_{k}}=C_{f}\left(n_{1}, \ldots, n_{k}\right)
$$

Standard terms

$$
\begin{array}{ll}
\text { true }=\lambda \text { pq.p } & \text { (boolean) } \\
\text { false }=\lambda \text { pq.q } & \text { (boolean) } \\
\text { if } B \text { then P else Q = B P Q } & \text { (conditional) } \\
{[\mathrm{M}, \mathrm{~N}]=\lambda z . z \mathrm{M} \mathrm{~N}} & \text { (pairing) } \\
<\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}>=\lambda z . z \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{n}} & \text { (n-tuple) } \\
\text { zero? }=\lambda \mathrm{n} .(\mathrm{n}(\lambda x . \text { false)) true } & \text { (test for zero) }
\end{array}
$$

Note that

$$
\begin{aligned}
& \text { if true then } P \text { else } Q=P \\
& \text { if false then } P \text { else } Q=Q \\
& {[M, N] \text { true }=M \text { and }[M, N] \text { false }=N} \\
& \text { zero? } C_{0}=\text { true } \\
& \text { zero? } C_{k+1}=\text { false }
\end{aligned}
$$

Write X .1 = X true and $\mathrm{X} .2=\mathrm{X}$ false then

$$
\left[M_{1}, M_{2}\right] \cdot i=M_{i} \quad \text { for } i=1,2 .
$$

More generally write $P_{n, i}=\lambda x_{1} \ldots x_{n} \cdot x_{i}$. Then

$$
<M_{1}, \ldots, M_{n}>P_{n, i}=M_{i},
$$

Fixed-point theorem

For all F there exists an X such that $F X=X$
Proof Take $W=\lambda x . F(x x)$ and $X=W$ W. Then

$$
X=W W=(\lambda x . F(x x)) W=F(W W)=F X \square
$$

Corollary Given a term $\mathrm{G}=\mathrm{G}\left(\mathrm{h}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$. Then there is a term H such that

$$
H x_{1} \ldots x_{n}=G\left(H, x_{1}, \ldots, x_{n}\right)
$$

Proof Apply the fixedpoint theorem to

$$
F=\lambda h x_{1} \ldots x_{n} G\left(h, x_{1}, \ldots, x_{n}\right) \square
$$

Theorem (Kleene 1936) All computable functions on
IN can be represented this way

Proof The initial functions

$$
\begin{aligned}
& \operatorname{zero}(x)=x+1 \\
& \operatorname{succ}(x)=x+1 \\
& U_{n, i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}
\end{aligned}
$$

can be represented respectively by

$$
\lambda n . c_{0}, S^{+} \text {and } P_{n, i}=\lambda x_{1} \ldots x_{n} \cdot x_{i}
$$

Functions obtained by primitive recursion can be represented as follows. Let

$$
\begin{aligned}
& f(0)=13 \\
& f(k+1)=h(f(k), k)
\end{aligned}
$$

and suppose that h is represented by H .

We want to represent pairs (k,f(k))
Note that

$$
\mathrm{T}\left[\mathrm{c}_{\left.\mathrm{k}, \mathrm{C}_{f(\mathrm{k}}\right)}\right]=\left[\mathrm{c}_{\mathrm{k}+1}, \mathrm{C}_{f(\mathrm{k}+1)}\right]
$$

where

$$
\mathrm{T}=\lambda \mathrm{p} .\left[\mathrm{S}^{+} \text {p.1, H p. } 2\right. \text { p.1] }
$$

Then

$$
T^{\mathrm{k}}\left[\mathrm{c}_{0}, \mathrm{c}_{13}\right]=\left[\mathrm{c}_{\mathrm{k}}, \mathrm{c}_{\mathrm{f}(\mathrm{k})}\right]
$$

so $F=\lambda k .\left(k T\left[c_{0}, c_{13}\right]\right) .2$ does the job.

Functions defined by minimalization can be represented as follows. Let

$$
g(n)=\mu x[h(x, n)=0]
$$

and suppose h is represented by H . Let

$$
\begin{aligned}
\mathrm{Fnx} & =x & & \text { if } \mathrm{Hnx}=\mathrm{c}_{0} \\
& =\mathrm{Fn}\left(\mathrm{~S}^{+} \mathrm{x}\right) & & \text { else }
\end{aligned}
$$

[Use corollary:
$\mathrm{Fn} x=$ if (zero? $(\mathrm{H} \mathrm{n} x)$) then x else $\left(\mathrm{F} \mathrm{n}\left(\mathrm{S}^{+} \mathrm{x}\right)\right)$]

Then we can take as representation for g

$$
\mathrm{G}=\lambda \mathrm{n} . \mathrm{F} \mathrm{nco}
$$

Indeed

$$
\begin{aligned}
\mathrm{Gn} & =\mathrm{Fnc} \\
& =\mathrm{Fnc} \\
& \ldots . . \\
& =\mathrm{Fnc} \\
& =\mathrm{c}_{\mathrm{k}}
\end{aligned}
$$

as soon as $\mathrm{H} \mathrm{n}_{\mathrm{k}}$ equals zero. \quad.

Algebraic data types

$$
\begin{aligned}
& \text { nat }=\text { zero } \mid \text { succ nat } \\
& \text { tree }=\text { bud } \mid \text { leaf nat } \mid \text { tree }+ \text { tree } \\
& \text { (binary labelled trees) }
\end{aligned}
$$

Representation of computable functions over data types

(Böhm-Piperno-Guerini 1993)
Define ψ : tree \rightarrow term as follows

$$
\begin{aligned}
& \psi(\cdot)=\lambda \mathrm{e} . \mathrm{e} \mathrm{P}_{3,1} \mathrm{e} \\
& \psi(\mathrm{leaf} \mathrm{n})=\lambda \mathrm{e} . \mathrm{e} \mathrm{P}_{3,2} \mathrm{ne} \\
& \psi\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=\lambda \mathrm{e} . \mathrm{e} \mathrm{P}_{3,3} \psi\left(\mathrm{t}_{1}\right) \psi\left(\mathrm{t}_{2}\right) \mathrm{e}
\end{aligned}
$$

This can best be remembered by taking as representation of the constructors

$$
\begin{aligned}
\mathrm{B} & =\lambda \mathrm{e} . \mathrm{e} \mathrm{P}_{3,1} \mathrm{e} \\
\mathrm{~L} & =\lambda n \lambda \mathrm{e} . \mathrm{e} \mathrm{P}_{3,2} \mathrm{ne} \\
\mathrm{P} & =\lambda \mathrm{t}_{1} \mathrm{t}_{2} \lambda \mathrm{e} . \mathrm{e} \mathrm{P}_{3,3} \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{e}
\end{aligned}
$$

Theorem Given terms $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ there exists a term F such that

$F B$	$=A_{0} F$
$F(L n)$	$=A_{1} n F$
$F\left(P t_{1} t_{2}\right)$	$=A_{2} t_{1} t_{2} F$

Proof Try $F=\ll X_{0}, X_{1}, X_{2} \gg$. Then we want

$$
\begin{aligned}
\mathrm{FB} & =\mathrm{B}<\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}> \\
& =\mathrm{P}_{3,1} \mathrm{X}_{0} \mathrm{X}_{1} \mathrm{X}_{2}<\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}> \\
& =\mathrm{X}_{0}<\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}> \\
& =\mathrm{A}_{0} \ll \mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2} \gg \\
& =A_{0} F,
\end{aligned}
$$

which holds if we take $X_{0}=\lambda x . A_{0}<x>$.
Similarly we can find X_{1} and X_{2}.

Self-interpretation

Consider the data type with constructors const (unary)
app (binary)
abs (unary)

Proposition (Mogensen 1992)

Define \#: term \rightarrow term

$$
\begin{array}{ll}
\#(x) & =\text { const } x \\
\#(P Q) & =\text { app \#(P) \#(Q) } \\
\#(\lambda x . P) & =\text { abs }(\lambda x . \#(P))
\end{array}
$$

Then there exists a self-interpreter E such that for all terms M

$$
E \#(M)=M
$$

Proof By the construction of Böhm et al there is an E satisfying

$$
\begin{aligned}
& E(\text { const } x)=x \\
& E(\text { app p q })=(E p)(E q) \\
& E(\text { abs } z)=\lambda x \cdot E(z x)
\end{aligned}
$$

The statement follows by induction on M.■
We can take $\mathrm{E}=\ll \mathrm{K}, \mathrm{S}, \mathrm{C} \gg$.

Exercises

1.1 The reduction graph of a term is

$$
G_{\beta}(M)=(\{N \mid M \rightarrow \beta N\}, \rightarrow \beta) .
$$

Draw $G_{\beta}(W W W)$ with $W=\lambda x y . x y y$.
1.2 Prove that $\mathrm{A}_{\exp }$ represents exponentiation.
1.3 Represent $\mathrm{f}(\mathrm{x})=\mathrm{x}$!, the factorial.
1.4 Represent on trees $g_{\text {mir }}$ (mirroring) such that e.g.

$$
g_{\operatorname{mir}}(\operatorname{leaf}(3)+((\operatorname{leaf}(5)+\cdot))=(\cdot+\operatorname{leaf}(5))+\operatorname{leaf}(3)
$$

1.5 Represent a function on trees that squares the numbers at the nodes and adds them.
1.6 (i) Define a term fst such that

$$
\begin{aligned}
\text { fst \#(M) } & =P & & \text { if } M \text { is (P Q) } \\
& =\text { false } & & \text { else }
\end{aligned}
$$

(ii) Show that there is no term F such that

$$
F M \quad=P \quad \text { if } M \text { is }(P Q)
$$

2 Functional programming

Types are like dimensions in physics
They provide partial correctness

$$
\begin{aligned}
& \text { typevar = p | typevar } \\
& \text { type = typevar | type } \rightarrow \text { type }
\end{aligned}
$$

(Typing) statement

$$
\mathrm{M}: \sigma \quad \text { "M is of type } \tau, \mathrm{M} \text { in } \tau "
$$

Context

$$
\Gamma=\left\{x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n}\right\}
$$

Intuitive type assignment

$$
f: \sigma \rightarrow \tau, x: \sigma \vdash f x: \tau
$$

Type vars: $\mathrm{p}, \mathrm{p}^{\prime}, \mathrm{p}^{\prime \prime}, \ldots$
in general: q, r, \ldots
Types: $p \rightarrow p, p \rightarrow(q \rightarrow p), p \rightarrow q, \ldots$
in general: σ, τ, \ldots

Notations
$\sigma_{1} \rightarrow \sigma_{2} \rightarrow \ldots \rightarrow \sigma_{\mathrm{n}}$ stands for
$\left(\sigma_{1} \rightarrow\left(\sigma_{2} \rightarrow\left(\ldots \rightarrow \sigma_{n}\right) ..\right)\right)$
$\vdash \mathrm{M}: \sigma$ stands for $\quad \varnothing \vdash \mathrm{M}: \sigma$
$\Gamma, \mathrm{x}: \tau \vdash \mathrm{M}: \sigma$ stands for $\quad \Gamma \cup\{\mathrm{x}: \tau\} \vdash \mathrm{M}: \sigma$

Formal system $\lambda \rightarrow$ of type assignment
$\lambda \rightarrow$ implicit (Curry) version

$$
\begin{aligned}
& (x: \sigma) \in \Gamma \Rightarrow \Gamma \vdash x: \sigma \\
& \Gamma \vdash F:(\sigma \rightarrow \tau), \Gamma \vdash \mathrm{a}: \sigma \Rightarrow \Gamma \vdash(\mathrm{Fa}): \tau \\
& \Gamma, \mathrm{x}: \sigma \vdash \mathrm{M}: \tau \Rightarrow \Gamma \vdash(\lambda \mathrm{x} . \mathrm{M}):(\sigma \rightarrow \tau)
\end{aligned}
$$

$\lambda \rightarrow$ explicit (Church) version

$$
\begin{aligned}
& (\mathrm{x}: \sigma) \in \Gamma \Rightarrow \Gamma \vdash \mathrm{x}: \sigma \\
& \Gamma \vdash \mathrm{F}:(\sigma \rightarrow \tau), \Gamma \vdash \mathrm{a}: \sigma \Rightarrow \Gamma \vdash(\mathrm{F} \mathrm{a}): \tau \\
& \Gamma, \mathrm{x}: \sigma \vdash \mathrm{M}: \tau \Rightarrow \Gamma \vdash(\lambda \mathrm{x}: \sigma \cdot \mathrm{M}):(\sigma \rightarrow \tau)
\end{aligned}
$$

Examples Define

$I_{\sigma}=\lambda x: \sigma \cdot x$
$\mathrm{K}_{\sigma \tau}=\lambda \mathrm{x}: \sigma \lambda \mathrm{y}: \tau . \mathrm{x}$
$S_{\sigma \tau \rho}=\lambda x: \sigma \rightarrow \tau \rightarrow \rho \lambda y: \sigma \rightarrow \tau \lambda z: \sigma \cdot x z(y z)$

Then

$$
\begin{aligned}
& \vdash \mathrm{I}_{\sigma}: \sigma \rightarrow \sigma \\
& \vdash \mathrm{K}_{\sigma \tau}: \sigma \rightarrow \tau \rightarrow \sigma \\
& \vdash \mathrm{S}_{\sigma \tau \rho}:(\sigma \rightarrow \tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho
\end{aligned}
$$

Non-empty context

$$
x: \sigma \vdash I_{\sigma} x: \sigma
$$

Substitution theorem

$\Gamma \vdash \mathrm{M}: \sigma \Rightarrow \Gamma^{*} \vdash \mathrm{M}: \sigma^{*}$ * is a substitution
$\Gamma, x: \sigma \vdash \mathrm{M}: \tau \& \Gamma \vdash \mathrm{~N}: \sigma \Rightarrow \Gamma \vdash \mathrm{M}[\mathrm{x}:=\mathrm{N}]: \tau$

Subject reduction theorem
$\Gamma \vdash \mathrm{M}: \sigma \& \mathrm{M} \rightarrow \beta \mathrm{M}^{\prime} \Rightarrow \Gamma \vdash \mathrm{M}^{\prime}: \sigma$

Strong normalization theorem

$\Gamma \vdash \mathrm{M}: \sigma \Rightarrow \mathrm{M}$ is strongly normalizing

Principal type theorem (Curry version)
[Curry, Hindley 1969]
If M is typable, then M has a principle pair (Γ_{0}, σ_{0}):
$\Gamma_{0} \vdash \mathrm{M}: \sigma_{0}$
$\Gamma \vdash \mathrm{M}: \sigma \Rightarrow(\Gamma, \sigma)=\left(\Gamma_{0}, \sigma_{0}\right) * \quad *$ is a substitution
Moreover, (Γ_{0}, σ_{0}) can be found effectively from M.

Uniqueness of types theorem (Church version)
$\Gamma \vdash \mathrm{M}: \sigma \& \Gamma \vdash \mathrm{M}: \sigma^{\prime} \Rightarrow \sigma=\sigma^{\prime}$

Functional Programming language

ML is essentially $\lambda \rightarrow$ Curry extended with

1. $\vdash \mathrm{Y}:(\sigma \rightarrow \sigma) \rightarrow \sigma$
with reduction rule

$$
Y \rightarrow \delta \lambda f . f(Y f)
$$

2. Types Nat, bool for the natural numbers and booleans with
\vdash zero : Nat, \vdash succ : Nat \rightarrow Nat, \vdash pred : Nat \rightarrow Nat, \vdash zero? : Nat \rightarrow bool
\vdash conditional : bool $\rightarrow \sigma \rightarrow \sigma \rightarrow \sigma \quad$ "if B then p else q "
pred (succ $x) \rightarrow \delta x$
zero? zero $\rightarrow \delta$ true
zero? (succ x) $\rightarrow \delta$ false
conditional true $\mathrm{pq} \rightarrow \delta \mathrm{p}$
conditional false $\mathrm{pq} \rightarrow \delta \mathrm{p}$
3. The let construction:
let id be $\lambda z . z$ in $\quad \lambda f x$.(id f)(id x)
Intended meaning

$$
\begin{aligned}
& \lambda f x .((\lambda z . z) f)((\lambda z . z) x) \\
& (\lambda i d \lambda f x .(i d f)(i d x))(\lambda z . z)
\end{aligned}
$$

Theorem All computable functions can be represented in ML

Proof We only do primitive recursion. Let

$$
\begin{aligned}
& f(0)=13 \\
& f(k+1)=h(f(k), k)
\end{aligned}
$$

and suppose that h is represented by H .
Then f can be represented by F such that
$\mathrm{Fk} \rightarrow \beta$ if zero? k then 13 else ($\mathrm{H}(\mathrm{F}(\mathrm{pred} \mathrm{k})$) (pred k))
Such an F can be found using Y. ■

There are two variants of functional languages, the eager and the lazy ones.

In an eager language evaluation of $F A$ first A is reduced and then F acting on some normal form of M. In a lazy language $F A$ is evaluated directly and A is reduced later.

ML is usually eager. Clean and Haskell are lazy. In lazy languages one can deal with "infinite" objects, like the list of all primes

$$
[2,3,5, \ldots]
$$

and evaluate

$$
\text { take } 3[2,3,5, \ldots]=[2,3,5]
$$

Excerpts from a clean program

Projective view on a cube

```
implementation module matrix
```

import StdEnv
cons :: a [a] -> [a]
cons x xs $=[\mathrm{x}: \mathrm{xs}]$
zipWith :: (a->b->c) [a] [b] -> [c]
zipWith f xs ys $=$ map (uncurry f) (zip2 xs ys)
repeat :: a -> [a]
repeat $\mathrm{x}=\mathrm{xs}$
where $\mathrm{xs}=[\mathrm{x}: \mathrm{xs}]$
:: Matrix :== [[Real]]
matmult :: Matrix Matrix -> Matrix
matmult xss yss $=$ map f xss
where
fa $\quad=\operatorname{map}$ (inprod a) (transpose yss)
inprod xs ys $=$ sum (zipWith (*) xs ys)
transpose $=$ foldr (zipWith cons) (repeat [])

```
implementation module transformations
import StdEnv, matrix
// Points and linear maps
:: TwoDPoint := (Real,Real)
::ThreeDPoint := (Real,Real,Real)
:: FourDPoint }:=\mathrm{ (Real,Real,Real,Real)
:: LinMap := Matrix
// 4-D matrix application
toMatrix :: FourDPoint -> Matrix
toMatrix (x,y,z,w)= [[x],[y],[z],[w]]
toPoint :: Matrix -> FourDPoint
toPoint [[x],[y],[z],[w]] = (x,y,z,w)
apply4 :: LinMap FourDPoint -> FourDPoint
apply4 m v = toPoint (matmult m (toMatrix v))
// projection of 4-D linear maps to 3-D maps via
//homogeneous coordinates
pointtohom :: ThreeDPoint -> FourDPoint
pointtohom (x,y,z) = (x,y,z,one)
homtopoint :: FourDPoint -> ThreeDPoint
homtopoint (x,y,z,w) = (x,y,z)
apply :: LinMap -> (ThreeDPoint -> ThreeDPoint)
apply f = homtopoint o (apply4 f) o pointtohom
// standard matrices
:: ThreeDVector :== (Real,Real,Real)
:: Angle :== Real
rotationxmap :: Angle -> LinMap
rotationxmap t = [[one, zero, zero, zero
    [zero, cost, ~(\operatorname{sin}t), zero
    [zero, sint, cost, zero
    [zero, zero, zero, one ]]
```


Exercises

2.1 Solve
(i) $\quad-\mathrm{W}: ? \mathrm{~W}=\lambda \mathrm{xy} . \mathrm{xyy}$
(ii) $\quad \vdash ?:(\sigma \rightarrow \tau) \rightarrow(\tau \rightarrow \rho) \rightarrow(\sigma \rightarrow \rho)$
(iii) ? $f[x, y]: p$
2.2 Prove that of the following two terms one is typable in $\lambda \rightarrow$ and the other not.

$$
\lambda x y . x(x \mid) y \quad \lambda x y . x(\mid x) y
$$

2.3 Write a functional program for the factorial.
2.4 Prove that the normalization theorem implies that not all computable functions are representable in $\lambda \rightarrow$.
2.5 A type σ is called inhabited if $\vdash \mathrm{M}: \sigma$ for some term M. Prove the following result by Statman. Let

$$
\sigma=\sigma_{1} \rightarrow \sigma_{2} \rightarrow \ldots \rightarrow \sigma_{n} \rightarrow p
$$

be a type containing only p as type variable. Then σ is inhabited $\Leftrightarrow \exists i \in\{1, \ldots, n\} \sigma_{i}$ is not inhabited.

This gives a decision method for inhabitation for types built from only one type variable.

3 Interactive functional programs

Autistic programming

Compute π in 100 decimals

Pi $100 \rightarrow \beta$ 3.141592653589....

Interactive programming
Most contemporary applications
Control of traffic, factory, system

Simple example:
read two numbers and print their difference

ML

$$
P=\text { write (read }- \text { read })
$$

Continuations

$$
\lambda+\text { read }+ \text { write }+ \text { stop }
$$

Semantics

	$\frac{M}{M^{h n f}}$
$\frac{\text { read F }}{F a_{1}}$	$\frac{\text { write b F }}{F} \quad$ stop

Input stream a_{1}, a_{2}, \ldots

Output stream
b, ...

The process of reading two inputs and printing the sum becomes

$$
P \equiv \operatorname{read}(\lambda x \cdot r e a d(\lambda y . w r i t e(x+y) \text { stop }))
$$

The process of continuously reading two inputs and printing the sum becomes

$$
\begin{aligned}
Q & \equiv \operatorname{read}(\lambda x \cdot \operatorname{read}(\lambda y \cdot w r i t e(x+y) Q)) \\
& \equiv Y(\lambda q \cdot \operatorname{read}(\lambda x \cdot r e a d(\lambda y \cdot \text { write }(x+y) q)))
\end{aligned}
$$

This essentially happens in the language Haskell

Using this idea arbitrary interactive programs can be written

Disadvantages

- This interaction is obtained by 'delegation'

Some of the output b's have to be interpreted
Put $7+7$ on the screen:
write 'echo (7+7)' stop

Print 7+7:
write 'Ipr (7+7)' stop

- Execution order has to be overspecified

Print 7+7 and put it on the screen (any order)
write 'echo (7+7)' (write 'Ipr (7+7)' stop)
write 'lpr (7+7)' (write 'echo (7+7)' stop)

There is a natural solution without having to rely on 'theoretical' non-determinism.

The world as values

In the language Clean interaction is not done via delegation, but by direct operation.

In order to describe the method we want to be more explicit about what happens with continuations.

Let

$$
\begin{aligned}
\text { In } & =\left[a_{1}, a_{2}, a_{3}, \ldots\right] \\
\text { Out } & =\left[\ldots, b_{3}, b_{2}, b_{1}\right]
\end{aligned}
$$

be the input and output streams. We want to mention them explicitly with the continuations.

$$
\begin{aligned}
& \text { read } F<[a, \ln] \text {, Out }>=F \text { a <ln, Out> } \\
& \text { write b F <ln, Out> = F <ln, [b, Out }]>
\end{aligned}
$$

In this way the input and output streams are taken into the functional world and operated on.

One has to be careful: In and Out may not be copied, the have to be unique. This can be checked by a type system.

Having that, the umbellical cord to the world

<In, Out>

can be improved by having as copy of the world something like
<keybord, mouse, screen, files, printer>

Uniqueness types

Want a type system such that
$f:$ File, write : File \rightarrow Char \rightarrow File $\vdash \ldots$ write 'a' $f . .$.
warrants that f occurs only one time at the RHS
$\lambda \rightarrow$ resource conscious version
$\mathrm{x}: \sigma \vdash \mathrm{x}: \sigma$
$\Gamma, x: \sigma \vdash \mathrm{M}: \tau \Rightarrow \Gamma \vdash(\lambda x . M):(\sigma \rightarrow \tau)$
$\Gamma \vdash \mathrm{F}:(\sigma \rightarrow \tau) \& \Delta \vdash \mathrm{a}: \sigma \& \Gamma, \Delta$ disjoint $\Rightarrow \Gamma, \Delta \vdash(\mathrm{Fa}): \tau$
$\Gamma \vdash \mathrm{M}: \tau \Rightarrow \Gamma, \mathrm{x}: \sigma \vdash \mathrm{M}: \tau \quad$ weakening
$\Gamma, x: \sigma, x^{\prime}: \sigma \vdash \mathrm{M}: \tau$

$$
\Rightarrow \Gamma, \mathrm{y}: \sigma \vdash \mathrm{M}\left[\mathrm{x}:=\mathrm{y}, \mathrm{x}^{\prime}:=\mathrm{y}\right]: \tau \quad \text { contraction }
$$

$\lambda \rightarrow L$ first three rules
$\lambda \rightarrow \mathrm{A}=\lambda \rightarrow \mathrm{L}+$ weakening
$\lambda \rightarrow=\lambda \rightarrow \mathrm{A}+$ contraction
$\lambda \rightarrow \mathrm{U}$ (Barendsen \& Smetsers) is the following system Type annotations

$$
\begin{aligned}
& \text { type }=\text { typevar } \mid \text { atype } \rightarrow \text { atype } \\
& \text { atype }=\text { type }\left.\right|^{*} \text { type }
\end{aligned}
$$

Subtyping

* $\mathrm{p} \leq \mathrm{p}$
$A \rightarrow B \leq A^{\prime} \rightarrow B^{\prime} \Leftrightarrow{ }^{*}(A \rightarrow B) \leq^{*}\left(A^{\prime} \rightarrow B^{\prime}\right) \Leftrightarrow A^{\prime} \leq A \& B \leq B^{\prime}$
Permissiveness [] : atype \rightarrow type

$$
\begin{aligned}
& {[p]=\left[{ }^{*} p\right]=p} \\
& {[A \rightarrow B]=A \rightarrow B} \\
& {\left[^{*}(A \rightarrow B)\right]=\uparrow \quad \text { (undefined) }}
\end{aligned}
$$

$x: \sigma \vdash \mathrm{x}:$ \%	
$\Gamma, \mathrm{x}: \sigma \vdash \mathrm{M}: \tau \Rightarrow \Gamma \vdash(\lambda \mathrm{x} . \mathrm{M}): \cap \Gamma(\sigma \rightarrow \tau)$	
where $\cap \Gamma={ }^{*}$ if $(z: * A) \in \Gamma$, nothing else	
$\Gamma \vdash \mathrm{F}:(\sigma \rightarrow \tau) \& \Delta \vdash \mathrm{a}: \sigma \& \Gamma, \Delta$ disjoint $\Rightarrow \Gamma, \Delta \vdash(\mathrm{Fa}): \tau$	
$\Gamma \vdash \mathrm{M}: \tau \Rightarrow \Gamma, \mathrm{x}: \sigma \vdash \mathrm{M}: \tau$	weakening
$\Gamma \vdash \mathrm{M}: \sigma, \sigma \leq \tau \Rightarrow \Gamma \vdash \mathrm{M}: \tau$	subsumption
$\Gamma, \mathrm{x}:[\sigma], \mathrm{x}^{\prime}:[\sigma] \vdash \mathrm{M}: \tau$	
$\Rightarrow \Gamma, \mathrm{y}: \sigma \vdash \mathrm{M}\left[\mathrm{x}:=\mathrm{y}, \mathrm{x}^{\prime}:=\mathrm{y}\right]: \tau$	[]-contraction

Example

```
implementation module figureio
import StdEnv
import deltaEventIO, deltaIOSystem, deltaPicture, deltaWindow
IOStart :: *s (Int,Int) (Keybdfct *s (IOState *s)) (UpdateFunction *s) *World
-> *World
IOStart initstate windowsize keybdfct updatefunction world = CloseEvents
events` world`
where
(s, events`) = StartIO [menu, window] initstate [ ] events
(events, world`) = OpenEvents world
menu = MenuSystem [file];
file = PullDownMenu 1 "File" Able
                                [ MenuItem 2 "Quit" (Key 'Q') Able Quit]
window = WindowSystem [ ScrollWindow 3 (0,0) "Picture"
    (ScrollBar (Thumb 0) (Scroll 10)) (ScrollBar (Thumb 0)
    (Scroll 10))((0,0), (1000,1000)) (50,50)
    windowsize updatefunction
    [Keyboard Able keybdfct, GoAway Quit]]
Quit state io = (state, QuitIO io)
Start :: * World -> * World
Start world =
    IOStart InitState (windowwidth,windowheight) KeyboardHandler
Update world
```


Things go well because menu operations are higherorder functions and these can be handled

For Clean information, a quality compiler and examples can be obtained from

http://www.cs.kun.nl/~clean

3. Exercises

3.1 Write a continuation program that reads from the input list of integers and adds them until a zero appears; then the sum obtained thus far is put on the output stream and the process is stopped.
3.2 Write a continuation program that reads from the input list of integers and puts the square of each nonzero integer on the output stream until a zero comes in; then the input is discarded and the process waits until the next zero comes in; then the process continues putting the squares of the (non-zero) numbers on the output stream; etcetera forever.

4 The quest for correctness

Correctness: becomming commercially important scientifically this was always the case

Technology

Products consisting of components consisting of components

The Chinese box

Compositional modules

$$
S_{1}\left(x_{1}\right), \ldots, S_{n}\left(x_{n}\right) \vdash S(x)
$$

where $\quad x=f\left(x_{1}, \ldots, x_{n}\right)$

For reliable products we want proofs here

Hardware \approx propositional logic
Software
Mathematics \approx predicate logic
predicate logic + computations

Proofs of understandable statements are important

But may be difficult

Why are they correct?

- Understanding by anybody
- Understanding by trained person
- Sociological verification: peer reviews
- Machine verification of formal versions

Aim: highest degree of certainty
Should we believe machine checked proofs?

Methodology (N.G. de Bruijn)
The verifying program should be small
small enough to be checked by hand

Case study: proof-checking mathematics

- understandable statements
- non-trivial
- will have spin-off for verification of programs

Notion of proof in mathematics

Thales ± 600 BC first proofs
Plato $\pm 400 \mathrm{BC} \quad$ emphasis on importance of proofs
Aristotle $\pm 300 \mathrm{BC}$ axiomatic method quest for logic proof verification $=$ proof finding
Euclid ± 275 BC axiomatic geometry
Frege $\pm 1870 \quad$ full description of logic
Russell $\pm 1910 \quad$ formalised mathematics
de Bruijn ± 1970 computer verification in type theory

In mathematics
In context Γ we have A

Logic

$\Gamma \vdash_{L} A$ because of proof p
Type theory
$[\Gamma] \vdash_{\lambda}[p]:[A]$
Automated verification $\operatorname{type}_{[\Gamma]}([\mathrm{p}])=[\mathrm{A}]$

Statement A of predicate logic are translated as types Curry, Howard, de Bruijn:
propositions-as-types interpretation

$$
\begin{array}{ll}
{[\mathrm{A}]} & =\text { type }(\text { set }) \text { of proofs of } \mathrm{A} \\
{[\mathrm{~A} \supset \mathrm{~B}]} & =[\mathrm{A}] \rightarrow[\mathrm{B}] \\
{[\forall \mathrm{x} \in \mathrm{X} . \mathrm{P}]} & =\Pi \mathrm{x}: \mathrm{X} .[\mathrm{P}]
\end{array}
$$

Example

$$
\begin{aligned}
& \Gamma=X: \text { set, } P: X \rightarrow p r o p \\
& \Gamma \vdash \lambda(\lambda y:[P x] \cdot y):[P x \supset P x] \\
& \Gamma \vdash \lambda(\lambda x: X \lambda y:[P x] \cdot y):[\forall x: X . P x \supset P x]
\end{aligned}
$$

Other example

Proposition. Let R be a binary relation on a set A. Then

R is antisymmetric $\rightarrow R$ is irreflexive.
Proof. Antisymmetry is
$\forall \mathrm{ab}[\mathrm{Rab} \rightarrow \neg$ Rba].

Let $\mathrm{a} \in \mathrm{A}$ be arbitrary and suppose

Raa.

Then
\neg Raa,
contradiction. Therefore
$\forall \mathrm{a} \neg$ Raa

In lambda notation.

$$
\begin{aligned}
& \Gamma=A: \text { set, } \mathrm{R}: \mathrm{A} \rightarrow \mathrm{~A} \rightarrow \text { prop } \\
& \Gamma \vdash \text { ?? : antisym } \mathrm{R} \rightarrow \text { irrefl } \mathrm{R} .
\end{aligned}
$$

$$
\text { ?? = } \lambda \mathrm{p}: \text { antisym R } \lambda \mathrm{a}: \mathrm{A} \lambda \mathrm{q}: \text { :irrefl R.paaqq. }
$$

Indeed

$$
\begin{array}{ll}
\Gamma, \mathrm{p}: \operatorname{antisym} \mathrm{R} & \vdash \mathrm{p}: \forall \mathrm{ab}[\mathrm{Rab} \rightarrow \mathrm{Rba} \rightarrow \perp] \\
\Gamma, \mathrm{p}: \text { antisym R, a:A } & \vdash \mathrm{paa}: \mathrm{Raa} \rightarrow \mathrm{Raa} \rightarrow \perp \\
\Gamma, \mathrm{p}: \text { antisym R, a:A, q:Raa } & \vdash \text { paaqq }: \perp \\
\Gamma, \mathrm{p}: \text { antisym R, a:A } & \vdash \lambda \mathrm{q}: \text { Raa.paaqq }: \\
& \text { Raa } \rightarrow \text { Raa } \rightarrow \perp \\
\Gamma, \mathrm{p}: \text { antisym R } & \vdash \lambda \mathrm{a}: \mathrm{A} \lambda \mathrm{q}: \text { Raa.paaqq } \\
& : \forall \mathrm{a}[\mathrm{Raa} \rightarrow \text { Raa } \rightarrow \perp] \\
& =\text { irrefl } \mathrm{R}
\end{array}
$$

$\Gamma \vdash$ ㄱp:antisym R λ a $a: A \quad \lambda q$:Raa.paaqq :
antisym $R \rightarrow$ irrefl R

Curry version: λ paq.paaqq

Assume

antisym $R \equiv \forall \mathrm{ab}[\mathrm{Rab} \rightarrow \mathrm{Rba} \rightarrow \perp]$
so
Raa \rightarrow Raa $\rightarrow \perp$
We know
$($ Raa \rightarrow Raa $\rightarrow \perp) \rightarrow($ Raa $\rightarrow \perp)$
SO
Raa $\rightarrow \perp \equiv$ irrefl R
As to (*)
assume $\mathrm{p} \rightarrow \mathrm{p} \rightarrow \perp$
ax
$(\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
subst
$(\mathrm{p} \rightarrow((\mathrm{r} \rightarrow \mathrm{p}) \rightarrow \mathrm{p})) \rightarrow(\mathrm{p} \rightarrow(\mathrm{r} \rightarrow \mathrm{p})) \rightarrow(\mathrm{p} \rightarrow \mathrm{p})$
ax
$\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})$
subst
$\mathrm{p} \rightarrow((\mathrm{r} \rightarrow \mathrm{p}) \rightarrow \mathrm{p})$
MP
$(\mathrm{p} \rightarrow(\mathrm{r} \rightarrow \mathrm{p})) \rightarrow(\mathrm{p} \rightarrow \mathrm{p})$
$\mathrm{ax} \quad(\mathrm{p} \rightarrow(\mathrm{r} \rightarrow \mathrm{p}))$
MP $\quad(\mathrm{p} \rightarrow \mathrm{p})$
ax
$(\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \perp)) \rightarrow(\mathrm{p} \rightarrow \mathrm{p}) \rightarrow(\mathrm{p} \rightarrow \perp)$
MP
$(\mathrm{p} \rightarrow \mathrm{p}) \rightarrow(\mathrm{p} \rightarrow \perp)$

MP
$p \rightarrow \perp$

Natural deduction proofs \approx lambda terms
Hilbert style proofs $\quad \approx$ combinators
Id $=\lambda x \cdot x$

$$
=\quad S K K
$$

with

$$
\begin{aligned}
& S=\lambda x y z \cdot x z(y z) \\
& K=\lambda x y \cdot x
\end{aligned}
$$

Translation

$$
\lambda x y \cdot y x=S(K(S I)) K
$$

Translation from λ-term into combinatory term is exponential or if one uses suitably chosen combinators quadratic. Best result by

Statman

$$
\mathrm{O}(\mathrm{n} \cdot \log \mathrm{n})
$$

Conclusion

Better use lambda terms

Constructing formal proofs

Question How do we obtain proof-objects?

Proofs can be produced by
 - a trained person
 a cooperation between a trained person and a computer

Interactive proof development systems

Lego, Coq

Goal
Producing proof-objects with the same effort as writing in, say, LaTeX

Pure Type Systems

General rules PTS

Start \quad| $\Gamma \vdash A: s$ |
| :---: |
| $\Gamma, x: A \vdash x: A$ |$\quad x$ fresh

$$
\Gamma \vdash \mathrm{A}: \mathrm{B} \quad \Gamma \vdash \mathrm{C}: \mathrm{s}
$$

Weakening
-————————————— x fresh

$$
\Gamma, \mathrm{x}: \mathrm{C} \vdash: \mathrm{B}
$$

Application

$$
\Gamma \vdash F:(\Pi x: A . B) \quad \Gamma \vdash a: A
$$

$$
\Gamma \vdash \mathrm{Fa}: \mathrm{B}[\mathrm{x}:=\mathrm{a}]
$$

$$
\Gamma, x: A \vdash A: B \quad \Gamma \vdash(\Pi x: A . B): s
$$

Abstraction

$$
\Gamma \vdash(\lambda x: A):(\Pi x: A . B)
$$

$\Gamma \vdash \mathrm{A}: \mathrm{B} \quad \Gamma \vdash \mathrm{B}^{\prime}: \mathrm{s}$

Conversion

$$
B=\beta B^{\prime}
$$

$\Gamma \vdash \mathrm{A}: \mathrm{B}^{\prime}$

term $::=$ var \mid cons \mid term term $\mid \lambda$ var:term term $\mid \Pi$ var:term term
context $\left.::=\quad<x_{1}: A_{1}, \ldots, x_{n}: A_{n}\right\rangle$
statement $::=$ term $:$ term

Specific axioms and rules for PTS

Specification of a PTS

| Sorts S | s_{1}, s_{2}, \ldots |
| :--- | :--- | :--- |
| Axioms A | $s_{1}: s_{2}, \ldots$ |
| Rules R | $\left(s_{1}, s_{2}, s_{3}\right), \ldots$ |

Let $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3} \in \mathrm{~S}$. The following rules are declared by the specification of the PTS

```
axioms <> \vdash s1:s2
for S1:s2 in A
Product \Gamma\vdashA:s1 \Gamma,x:A\vdashB:s2
    \Gamma 卜 (\Pix:A.B) : s3
```

Write $\left(s_{1}, s_{2}\right)=\left(s_{1}, s_{2}, s_{2}\right)$
$\lambda \rightarrow \quad$ Simply typed lambda calculus
Propositional logic

S	$*, ■$
A	$*: ■$
R	$(*, *)$

$\lambda 2$ Second order lambda calculus Second order propositional logic

$$
\begin{array}{ll}
\hline \mathrm{S} & *, ■ \\
\mathrm{~A} & *: \square \\
\mathrm{R} & (*, *),(\square, *) \\
\hline
\end{array}
$$

$\lambda P \quad$ Dependent types

```
S *,
A *:
R (*,*),(■,*)
```


$\lambda C \quad$ Calculus of constructions

Information about proof assistents by Frank Pfenning, CMU, under the name "Logical Frameworks" can be obtained from

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/fp/www/lfs.html
or via my home page
http://www.cs.kun.nl/~henk/

Exercises

4.1 Construct a lambda term p such that
$\mathrm{X}:$ set, $\mathrm{P}: \mathrm{X} \rightarrow \mathrm{prop}, \mathrm{Q}:$ prop $\vdash \mathrm{p}:$
$\forall \mathrm{x} .(\mathrm{Px} \rightarrow \mathrm{Px} \rightarrow \mathrm{Q}) \rightarrow \mathrm{Px} \rightarrow \mathrm{Q}$

Hence p is a proof-object for $\forall x .(P x \rightarrow P x \rightarrow Q) \rightarrow P x \rightarrow Q$.

We can do this in λP taking set $=$ prop $=$ *.
4.2 Construct a proof in $\lambda 2$ of
$(\forall \mathrm{p}: *(\mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{p}) \rightarrow \mathrm{p}) \rightarrow \mathrm{B}$.

5 Computations and proofs

Doing mathematics

Computations are needed for asserting e.g. the following statements

$$
[\sqrt{ } 45]=6
$$

Prime (61)

$$
(x+1)(x-1)=x^{2}-1
$$

Babylonians were good at computations but no proofs Greek were good at proving but had few computations

Formal proofs of computations should not be done in first order predicate logic with equality
Law of Ruys:
proofs of an equation are quadratic in size of statement

Poincaré principle

If in a mathematical argument we need

$$
2+2=4
$$

this is not a proof in the strict sense, but just a verification

In type systems this becomes
p proves $A(t)$
$t \rightarrow R s \quad\}$
$\Rightarrow \quad \mathrm{p}$ proves $\mathrm{A}(\mathrm{s})$
de Bruijn adopted the PP for $\beta \delta$-reduction
Scott and Martin-Löf later for 1 -reduction
Recursor R for primitive recursion over natural numbers but also trees and other data structures
$\mathrm{Rab} \underset{\mathrm{O}}{\mathrm{O}} \mathrm{a} \mathrm{a}$
$R a b \underline{n+1} \rightarrow b \underline{n}(R a b \underline{n})$

Examples

Using R one can make an F such that

$$
\mathrm{F} \underline{\mathrm{n}} \rightarrow \beta \delta_{\imath}[\sqrt{ } \mathrm{n}]
$$

Proof obligation

$$
\forall \mathrm{n}(\mathrm{~F} \mathrm{n})^{2} \leq \mathrm{n}<((\mathrm{F} \mathrm{n})+1)^{2}
$$

Symbolic computing consists of manipulations with syntactic expressions

$$
\begin{aligned}
& x+1: \text { Int } \\
& \text { 'x+1' : term(lnt) }
\end{aligned}
$$

There is a self-interpreter

$$
E^{\prime} \mathrm{t}^{\prime} \rightarrow \beta \delta \mathrm{t} t
$$

There is a term simplify such that

$$
\text { simplify ' }(x+1)(x-1)^{\prime} \rightarrow \beta \delta ı{ }^{\prime} x^{2}-1 \text { ' }
$$

Proof obligation

$\forall \mathrm{t}$:term(Int). E(simplify t$)=\mathrm{E} \mathrm{t}$

Then

$$
\begin{aligned}
& E\left(\text { simplify ' }(x+1)(x-1)^{\prime}\right)=E^{\prime}(x+1)(x-1)^{\prime} \\
& E^{\prime} x^{2}-1 \prime \quad(x+1)(x-1) \\
& x^{2}-1
\end{aligned}
$$

SO

$$
x^{2}-1=(x+1)(x-1)
$$

Goes smoothly in new versions of Lego and Coq

For checking primality, one can construct from the recursor R a function Kprime such that

$$
\begin{aligned}
\text { KPrime } \underline{\mathrm{n}} & =\underline{\text { true }} & & \text { if } \mathrm{n} \text { is a prime; } \\
& =\underline{\text { false }} & & \text { else. }
\end{aligned}
$$

Proof obligation

$$
\begin{aligned}
& \forall \mathrm{n}\left[\left(\text { Prime } \mathrm{n} \Leftrightarrow \text { KPrime }_{\mathrm{n}}^{\mathrm{n}}=\underline{\text { true }}\right)\right. \\
& \&(\text { KPrime } \mathrm{n}=\underline{\text { true }} \text { or KPrime } \mathrm{n}=\underline{\text { false }})]
\end{aligned}
$$

where

$$
\text { Prime } n \Leftrightarrow \forall d<n(d \mid n \rightarrow d=\underline{1}) \& n>1
$$

M. Oostdijk automatised this for all primitive recursive functions and predicates
H. Elbers constructed by hand a different KPrime by applying Fermat's little theorem (together with the needed proof of correctness).

General pattern of computations

$$
\begin{aligned}
& p \rightarrow 1 \ldots \rightarrow 1 p^{1-n f}=f_{1}(p) \\
& p \rightarrow 2 \ldots \rightarrow 2 p^{2-n f}=f_{2}(p)
\end{aligned}
$$

\qquad

$\mathrm{F}_{1} \mathrm{p} \rightarrow \beta \delta \iota \ldots \rightarrow \beta \delta_{\imath} \mathrm{f}_{1}(\mathrm{p})$
$\mathrm{F}_{2} \mathrm{p} \rightarrow \beta \delta \iota \ldots \rightarrow \beta \delta_{\imath} \mathrm{f}_{2}(\mathrm{p})$
with proof obligations
$\forall p S_{1}\left(p, F_{1} p\right)$
$\forall \mathrm{p} \mathrm{S}_{2}\left(\mathrm{p}, \mathrm{F}_{2} \mathrm{p}\right)$

Extending the use of the Poincaré Principle

Fixedpoint reduction

$$
Y f \rightarrow Y f(Y f)
$$

Arithmetic

$$
\text { add } \underline{n} \underline{m} \rightarrow \mathrm{~A} \underline{\mathrm{n}+\mathrm{m}}
$$

Conclusion

Computer Algebra

- Representing $\sqrt{ } 2$ exactly
- Symbolic computations

Computer Mathematics

- Representing exactly

$$
X=\left\{n \in N \mid \neg \exists x_{1} \ldots x_{k} p\left(x_{1}, \ldots, x_{k}, n\right)=0\right\}
$$

- Stating properties about infinity

We can state with confidence that

$$
3 \in\left\{n \in N \mid \neg \exists x_{1} \ldots x_{k} p\left(x_{1}, \ldots, x_{k}, n\right)=0\right\}
$$

or
There are infinitely many primes
because of having proofs
Even if a statement A may not be decidable, the statement
p proves A
is decidable

Applications of Computer Mathematics

- Different function of referees
- Library of Mathematics
- Education

Interactive books

- Interactive theorem proving
- Computational meaning of theorems
|- $\forall x \exists y A(x, y) \quad \Rightarrow$
$\exists \mathrm{f}$ computable $\mid-\mathrm{A}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$
provided that A is decidable
- Numerical values automatically

Tactics

```
Goal \{x:nat \} Ex [y:nat] and (less_nat x y) (is_prime y);
    Intros x ;
        \(\mathrm{z}==\operatorname{succ}(\) fac x\() ; \quad\left(*\right.\) let z be \(\left.\mathrm{x}!+1^{*}\right)\)
        Refine has_prime_factor z ; (* we have a prime factor of z , if \(1<\mathrm{z}\) *)
                Refine le2less; (* we have \(1<\mathrm{z}\), if \(1<=\mathrm{x}\) ! *)
                Refine faculty_lemma; (* prove \(1<=x\) ! *)
    Intros y PF;
        \(\mathrm{D}==\) fst \(\mathrm{PF}:\) divides \(\mathrm{y} \mathrm{z} ; \quad(*\) so \(\mathrm{y} \mid \mathrm{z} *)\)
        \(\mathrm{P}==\) snd PF : is_prime \(\mathrm{y} ; \quad\) (* so \(\left.\operatorname{prime}(\mathrm{y})^{*}\right)\)
        \(\mathrm{H}==\) fst \(\mathrm{P}:\) less one \(\mathrm{y} ; \quad\) (* so \(1<\mathrm{y} \quad *)\)
    Refine ExIntro |? ?| y; (* take y and prove \(\mathrm{x}<\mathrm{y} \&\) is_prime(y) *)
    Refine pair ? P; (* we have \(\mathrm{x}<\mathrm{y}\) and is_prime(y), if \(\mathrm{x}<\mathrm{y}^{*}\) )
    Refine less2not_le;
    Intros H1;
    Refine less_irrefl one
    Refine less_exten ? ? \(\mathrm{H} ; \quad\left(*\right.\) we have \(1<1\), if \(1=1 \& y=1 \& 1<\mathrm{y}^{*}\) )
    Refine eq_refl; (* prove \(1=1^{*}\) )
    Refine divides_lemma ? \(\mathrm{D} ; \quad\) (* we have \(\mathrm{y}=1\), if \(\mathrm{y} \mid \mathrm{x}\) ! \& \(\mathrm{y} \mid \mathrm{z} *\) )
    Refine fac_divides ? ? ? H1; (* we have y|x!, if \(1<=\mathrm{y} \& \mathrm{y}<=\mathrm{x} *)\)
    Refine less2le; (* we have \(1<=y\), if \(1<y+1 *\) )
    Refine less_succ H; (* prove \(1<y+1\), using \(1<y\) *)
```

Proof-object (M. Ruys)
$=[x: e l$ Nat]infinitely_bounded_primes_exist x (Ex\%\%(el Nat) ([y:el Nat]and (ap2\%\%Nat\%\%Nat\%\%Omega LessN x y) (is_prime y))) ([y:el Nat][H:and (and (ap2\%\%Nat\%\%Nat\%\%Omega LessN x y) (ap2\%\%Nat\%\%Nat\%\%Omega LessEqN y (succ (fac x)))) (is_prime y)]ExIntro\%\% (el Nat) y ([y'4:el Nat]and (ap2\%\%Nat\%\%Nat\%\%Omega LessN x y'4) (is_prime y'4)) (pair\%\%(ap2\%\%Nat\%\%Nat\%\%Omega LessN x y) $\% \%$ (is_prime y) (fst\%\% (ap2\% \%Nat\% \%Nat\%\%Omega LessN x y) $\% \%(\mathrm{ap} 2 \% \% \mathrm{Nat} \% \% \mathrm{Nat} \% \%$ Omega LessEqN y (succ (fac x))) (fst\% \% (and (ap2\%\%Nat\%\%Nat\%\%Omega LessN x y) (ap2\%\%Nat\%\%Nat\%\%Omega LessEqN y ($\operatorname{succ}(\operatorname{fac} x)))$) \% \% (is_prime y) H)) (snd\% \% (and (ap2\%\%Nat\%\%Nat\%\%Omega LessN x y) (ap2\%\%Nat\%\%Nat\%\%Omega LessEqN y $(\operatorname{succ}(\operatorname{fac} x)))) \% \%($ is_prime y) H)))];

Proposed systems for

Computer Mathematics

TS = PTS + extra reduction

Make a general system with a 'joystick'
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { logical } \\
\text { strength }\end{array}
$$ \& Coq/Lego

lambda

cube\end{array}\right]\)| Martin-Löf |
| :--- |
| computational |
| strength |

