
Applications of the lambda calculus 1

Applications of the Lambda Calculus

Representing computable functions and proofs

Henk Barendregt

Nijmegen University

The Netherlands

Applications of the lambda calculus 2

1 Computability 3

2 Functional programming 14

3 Interactive programs 24

4 The quest for correctness 34

5 Computations and proofs 51

Applications of the lambda calculus 3

1 Computability

Abstract syntax for lambda terms

atom = a | atom ´

term = atom | term term | λ atom term

Axiom

(λx.M) N = M [x:=N] (β)

taken for granted identifications like

 λx.x = λy.y (α)

Applications of the lambda calculus 4

atoms a, a´, a ´´, ...

we write x, y, z, ...

terms x, λx.x, (λx.x)y, ...

we write M, N, L, ...

Intended interpretation

λx.M(x) function F such that F: xÙM(x)

F x F applied to x

hence for F = λx.M(x)

F x = M(x)

F N = M(N) = M [x:=N]

Notational convention

M N1... Nk = (..((MN1)N2) ... Nk)

λx1...xk.M = (λx1(λx2 ... (λxk M)..))

Then using k times (β) one can deduce

(λx1...xk.M(x1,...,xk)) X1... Xk = M(X1,...,Xk)

Applications of the lambda calculus 5

Representing numbers (Church’s numerals)

cn = λfx.fnx

where f0x = x and fn+1x = f(fnx)

Representing computable functions

Simple functions (Rosser 1935)

S+ cn = cn+1

A+ cn cm = cn+m

A* cn cm = cn.m

Aexp cn cm = cn^m

for

S+ = λn.(λfx.f(nfx))

A+ = λnm.(λfx.nf(mfx))

A* = λnm.(λfx.n(mf)x)

Aexp = λnm.(λfx.mnfx)

We say that the function f:INk → IN is represented by
the lambda term F iff

F cn1... cnk = cf(n1,...,nk)

Applications of the lambda calculus 6

Standard terms

true = λpq.p (boolean)

false = λpq.q (boolean)

if B then P else Q = B P Q (conditional)

[M,N] = λz.z M N (pairing)

<M1,...,Mn> = λz.z M1 ... Mn (n-tuple)

zero? = λn.(n (λx.false)) true (test for zero)

Note that

if true then P else Q = P

if false then P else Q = Q

[M,N] true = M and [M,N] false = N

zero? c0 = true

zero? ck+1 = false

Write X.1 = X true and X.2 = X false then

[M1,M2].i = Mi for i=1,2.

More generally write Pn,i = λx1...xn.xi. Then

<M1,...,Mn> Pn,i = Mi,

Applications of the lambda calculus 7

Fixed-point theorem

For all F there exists an X such that FX=X

Proof Take W=λx.F(x x) and X=W W. Then

X = W W = (λx.F (x x)) W = F(W W) = FX n

Corollary Given a term G=G(h,x1,...,xn). Then there is

a term H such that

H x1... xn = G(H,x1,...,xn)

Proof Apply the fixedpoint theorem to

F = λhx1... xn G(h,x1,...,xn) n

Theorem (Kleene 1936) All computable functions on

 IN can be represented this way

Proof The initial functions

zero(x) = x+1

succ(x) = x+1

Un,i (x1,...,xn) = xi

can be represented respectively by

λn.c0, S+ and Pn,i = λx1...xn.xi

Applications of the lambda calculus 8

Functions obtained by primitive recursion can be
represented as follows. Let

f(0) = 13

f(k+1) = h(f(k),k)

and suppose that h is represented by H.

We want to represent pairs (k,f(k))

Note that

T [ck,cf(k)] = [ck+1,cf(k+1)]

where

T = λp .[S+ p.1, H p.2 p.1]

Then

Tk [c0, c13] = [ck, cf(k)]

so F = λk .(k T [c0, c13]).2 does the job.

Applications of the lambda calculus 9

Functions defined by minimalization can be
represented as follows. Let

g(n) = µx[h(x,n)=0]

and suppose h is represented by H. Let

F n x = x if H n x = c0

= F n (S+ x) else

[Use corollary:

F n x = if (zero? (H n x)) then x else (F n (S+ x))]

Then we can take as representation for g

G = λn.F n c0

Indeed

G n = F n c0

= F n c1

.....

= F n ck

= ck

as soon as H n ck equals zero. n

Applications of the lambda calculus 10

Algebraic data types

nat = zero | succ nat

tree = bud | leaf nat | tree + tree

(binary labelled trees)

+ +

 3 + + 3

 5 • • 5

Representation of computable functions over data
types

(Böhm-Piperno-Guerini 1993)

Define ψ: tree → term as follows

 ψ(•) = λe.e P3,1 e

ψ(leaf n) = λe.e P3,2 n e

ψ(t1+t2) = λe.e P3,3 ψ(t1) ψ(t2) e

Applications of the lambda calculus 11

This can best be remembered by taking as

 representation of the constructors

B = λe.e P3,1 e

L = λn λe.e P3,2 n e

P = λt1t2 λe.e P3,3 t1 t2 e

Theorem Given terms A0,A1,A2 there exists a term F

 such that

F B = A0 F

F (L n) = A1 n F

F(P t1 t2) = A2 t1 t2 F

Proof Try F = <<X0,X1,X2>>. Then we want

F B = B <X0,X1,X2>

= P3,1 X0 X1 X2 <X0,X1,X2>

= X0 <X0,X1,X2>

= A0 <<X0,X1,X2>>

= A0 F,

which holds if we take X0 = λx.A0 <x>.

Similarly we can find X1 and X2. n

Applications of the lambda calculus 12

Self-interpretation

Consider the data type with constructors

const (unary)

app (binary)

abs (unary)

Proposition (Mogensen 1992)

Define #: term → term

#(x) = const x

#(P Q) = app #(P) #(Q)

#(λx.P) = abs (λx.#(P))

Then there exists a self-interpreter E such that for all

 terms M

E #(M) = M

Proof By the construction of Böhm et al there is an E

 satisfying

E (const x) = x

E (app p q) = (E p) (E q)

E (abs z) = λx.E (z x)

The statement follows by induction on M.n

We can take E = <<K,S,C>>.

Applications of the lambda calculus 13

Exercises

1.1 The reduction graph of a term is

Gβ(M) = ({N | M →→β N}, →β).

Draw Gβ(WWW) with W = λxy.xyy.

1.2 Prove that Aexp represents exponentiation.

1.3 Represent f(x)=x!, the factorial.

1.4 Represent on trees gmir (mirroring) such that e.g.

 gmir(leaf(3) + ((leaf(5) + •)) = (• + leaf(5)) + leaf(3)

1.5 Represent a function on trees that squares the

numbers at the nodes and adds them.

1.6 (i) Define a term fst such that

fst #(M) = P if M is (P Q)

= false else

(ii) Show that there is no term F such that

F M = P if M is (P Q).

Applications of the lambda calculus 14

2 Functional programming

Types are like dimensions in physics

They provide partial correctness

typevar = p | typevar ´

type = typevar | type → type

(Typing) statement

M : σ “M is of type τ, M in τ”

Context

Γ = {x1: σ1, ... , xn : σn}

Intuitive type assignment

f : σ→τ, x : σ |− f x : τ

Applications of the lambda calculus 15

Type vars: p, p´, p´´, ...

in general: q, r, ...

Types: p→p, p→(q→p), p→q, ...

in general: σ, τ, ...

Notations

σ1 → σ2 →... → σn stands for

(σ1 → (σ2 →(... → σn)..))

|− M : σ stands for ∅ |− M : σ

Γ, x:τ |− M : σ stands for Γ∪{x:τ} |− M : σ

Applications of the lambda calculus 16

Formal system λ→ of type assignment

λ→ implicit (Curry) version

(x : σ)∈Γ ⇒ Γ |− x : σ

Γ |− F : (σ → τ), Γ |− a : σ ⇒ Γ |− (F a) : τ

Γ, x : σ |− M : τ ⇒ Γ |− (λx.M) : (σ→τ)

λ→ explicit (Church) version

(x : σ)∈Γ ⇒ Γ |− x : σ

Γ |− F : (σ → τ), Γ |− a : σ ⇒ Γ |− (F a) : τ

Γ, x : σ |− M : τ ⇒ Γ |− (λx:σ.M) : (σ→τ)

Applications of the lambda calculus 17

Examples Define

Iσ = λx:σ.x

Kστ = λx:σλy:τ.x

Sστρ = λx:σ→τ→ρλy:σ→τλz:σ.xz(yz)

Then

 |− Iσ : σ→σ

 |− Kστ : σ→τ→σ

 |− Sστρ : (σ→τ→ρ)→(σ→τ)→σ→ρ

Non-empty context

x:σ |− Iσ x : σ

Applications of the lambda calculus 18

Substitution theorem

Γ |− M : σ ⇒ Γ∗ |− M : σ∗ ∗ is a substitution

Γ, x:σ |− M : τ & Γ |− N : σ ⇒ Γ |− M[x:=N] : τ

Subject reduction theorem

Γ |− M : σ & M →→β M´ ⇒ Γ |− M´ : σ

Strong normalization theorem

Γ |− M : σ ⇒ M is strongly normalizing

Principal type theorem (Curry version)

[Curry, Hindley 1969]

If M is typable, then M has a principle pair (Γ0,σ0):

Γ0 |− M : σ0

Γ |− M : σ ⇒ (Γ,σ) = (Γ0,σ0)∗ ∗ is a substitution

Moreover, (Γ0, σ0) can be found effectively from M.

Uniqueness of types theorem (Church version)

Γ |− M : σ & Γ |− M : σ´ ⇒ σ = σ´

Applications of the lambda calculus 19

Functional Programming language

ML is essentially λ→Curry extended with

1. |− Y : (σ → σ) → σ

with reduction rule

Y →δ λf.f(Y f)

2. Types Nat, bool for the natural numbers and

 booleans with

|− zero : Nat, |− succ : Nat → Nat, |− pred : Nat → Nat,

|− zero? : Nat → bool

|− conditional : bool → σ → σ → σ “if B then p else q”

pred (succ x) →δ x

zero? zero →δ true

 zero? (succ x) →δ false

conditional true p q →δ p

conditional false p q →δ p

3. The let construction:

let id be λz.z in λfx.(id f)(id x)

Intended meaning

λfx.((λz.z) f)((λz.z) x)

(λid λfx.(id f)(id x))(λz.z)

Applications of the lambda calculus 20

Theorem All computable functions can be
represented in ML

Proof We only do primitive recursion. Let

f(0) = 13

f(k+1) = h(f(k),k)

and suppose that h is represented by H.
Then f can be represented by F such that

F k →→β if zero? k then 13 else (H (F (pred k)) (pred k))

Such an F can be found using Y. n

There are two variants of functional languages, the
 eager and the lazy ones.

In an eager language evaluation of F A first A is
reduced and then F acting on some normal form of M.

In a lazy language F A is evaluated directly and A is
reduced later.

ML is usually eager. Clean and Haskell are lazy.

In lazy languages one can deal with “infinite” objects,
like the list of all primes

[2,3,5,...]

and evaluate

take 3 [2,3,5,...] = [2,3,5]

Applications of the lambda calculus 21

Excerpts from a clean program

Projective view on a cube

implementation module matrix

import StdEnv

cons :: a [a] -> [a]
cons x xs = [x:xs]

zipWith :: (a->b->c) [a] [b] -> [c]
zipWith f xs ys = map (uncurry f) (zip2 xs ys)

repeat :: a -> [a]
repeat x = xs

 where xs = [x : xs]

:: Matrix :== [[Real]]

matmult :: Matrix Matrix -> Matrix
matmult xss yss = map f xss

 where
 f a = map (inprod a) (transpose yss)

inprod xs ys= sum (zipWith (*) xs ys)
t ranspose = foldr (zipWith cons) (repeat [])

Applications of the lambda calculus 22

implementation module transformations

import StdEnv, matrix

// Points and linear maps

:: TwoDPoint :== (Real,Real)
:: ThreeDPoint :== (Real,Real,Real)
:: FourDPoint :== (Real,Real,Real,Real)

:: LinMap :== Matrix

// 4-D matrix application

toMatrix :: FourDPoint -> Matrix
toMatrix (x,y,z,w) = [[x],[y],[z],[w]]

toPoint :: Matrix -> FourDPoint
toPoint [[x],[y],[z],[w]] = (x,y,z,w)

apply4 :: LinMap FourDPoint -> FourDPoint
apply4 m v = toPoint (matmult m (toMatrix v))

// projection of 4-D linear maps to 3-D maps via
//homogeneous coordinates

pointtohom :: ThreeDPoint -> FourDPoint
pointtohom (x,y,z) = (x,y,z,one)

homtopoint :: FourDPoint -> ThreeDPoint
homtopoint (x,y,z,w) = (x,y,z)

apply :: LinMap -> (ThreeDPoint -> ThreeDPoint)
apply f = homtopoint o (apply4 f) o pointtohom

// standard matrices

:: ThreeDVector :== (Real,Real,Real)
:: Angle :== Real

rotationxmap :: Angle -> LinMap
rotationxmap t = [[one, zero, zero, zero],

[zero, cos t, ~(sin t), zero],
[zero, sin t, cos t, zero],
[zero, zero, zero, one]]

Applications of the lambda calculus 23

Exercises

2.1 Solve

(i) |− W : ? W = λxy.xyy

(ii) |− ? : (σ → τ) → (τ → ρ) → (σ → ρ)

(iii) ? |− f [x,y] : p

2.2 Prove that of the following two terms one is
typable in λ→ and the other not.

λxy.x(xI)y λxy.x(Ix)y

2.3 Write a functional program for the factorial.

2.4 Prove that the normalization theorem implies that

not all computable functions are representable in λ→.

2.5 A type σ is called inhabited if |− M : σ for some

term M. Prove the following result by Statman. Let

σ = σ1 → σ2 → ... → σn → p

be a type containing only p as type variable. Then

 σ is inhabited ⇔ ∃i∈{1,...,n} σi is not inhabited.

This gives a decision method for inhabitation for types

built from only one type variable.

Applications of the lambda calculus 24

3 Interactive functional programs

Autistic programming

Compute π in 100 decimals

Pi 100 →→β 3.141592653589....

Interactive programming

Most contemporary applications

Control of traffic, factory, system

Simple example:

read two numbers and print their difference

ML

P = write (read - read)

Applications of the lambda calculus 25

Continuations

λ + read + write + stop

Semantics

 M
 Mhnf

read F write b F stop
 F a1 F

Input stream Output stream

 a1, a2, b, ...

Applications of the lambda calculus 26

The process of reading two inputs and printing the

 sum becomes

P ≡ read(λx.read(λy.write (x+y) stop))

The process of continuously reading two inputs and

 printing the sum becomes

Q ≡ read(λx.read(λy.write (x+y) Q))

≡ Y(λq.read(λx.read(λy.write (x+y) q)))

This essentially happens in the language Haskell

Using this idea arbitrary interactive programs can be

written

Applications of the lambda calculus 27

Disadvantages

• This interaction is obtained by 'delegation'

Some of the output b's have to be interpreted

Put 7+7 on the screen:

write 'echo (7+7)' stop

Print 7+7:

write 'lpr (7+7)' stop

• Execution order has to be overspecified

Print 7+7 and put it on the screen (any order)

write 'echo (7+7)' (write 'lpr (7+7)' stop)

write 'lpr (7+7)' (write 'echo (7+7)' stop)

There is a natural solution without having to rely on

 ‘theoretical’ non-determinism.

Applications of the lambda calculus 28

The world as values

In the language Clean interaction is not done via

delegation, but by direct operation.

In order to describe the method we want to be more

explicit about what happens with continuations.

Let

In = [a1, a2, a3, ...]

Out = [... , b3, b2, b1]

be the input and output streams. We want to mention

them explicitly with the continuations.

read F <[a,In], Out> = F a <In, Out>

write b F <In, Out> = F <In, [b, Out]>

In this way the input and output streams are taken into

the functional world and operated on.

One has to be careful: In and Out may not be copied,

the have to be unique. This can be checked by a type
system.

Applications of the lambda calculus 29

Having that, the umbellical cord to the world

<In, Out>

can be improved by having as copy of the world

something like

<keybord, mouse, screen, files, printer>

Applications of the lambda calculus 30

Uniqueness types

Want a type system such that

f : File, write : File → Char → File |− ... write ‘a’ f ...

warrants that f occurs only one time at the RHS

λ→ resource conscious version

x : σ |− x : σ

Γ, x : σ |− M : τ ⇒ Γ |− (λx.M) : (σ→τ)

Γ |− F : (σ → τ) & ∆ |− a : σ & Γ,∆ disjoint ⇒ Γ, ∆ |− (F a) : τ

Γ |− M : τ ⇒ Γ, x : σ |− M : τ weakening

Γ, x : σ, x´ : σ |− M : τ

⇒ Γ, y : σ |− M[x:=y,x´:=y] : τ contraction

λ→L first three rules

λ→A = λ→L + weakening

λ→ = λ→A + contraction

Applications of the lambda calculus 31

λ→U (Barendsen & Smetsers) is the following system

Type annotations

type = typevar | atype → atype

atype = type | * type

Subtyping

*p ≤ p

A→B≤A´→B´ ⇔ *(A→B)≤*(A´→B´) ⇔ A´≤A & B≤B´

Permissiveness [] : atype → type

[p] = [*p] = p

[A→B] = A → B

[*(A→B)] = ↑ (undefined)

x : σ |− x : σ

Γ, x : σ |− M : τ ⇒ Γ |− (λx.M) : ∩Γ(σ→τ)

where ∩Γ = * if (z:*A)∈Γ, nothing else

Γ |− F : (σ → τ) & ∆ |− a : σ & Γ,∆ disjoint ⇒ Γ, ∆ |− (F a) : τ

Γ |− M : τ ⇒ Γ, x : σ |− M : τ weakening

Γ |− M : σ, σ≤τ ⇒ Γ |− M : τ subsumption

Γ, x : [σ], x´ : [σ] |− M : τ

⇒ Γ, y : σ |− M[x:=y,x´:=y] : τ []-contraction

Applications of the lambda calculus 32

Example

implementation module figureio

import StdEnv
import deltaEventIO, deltaIOSystem, deltaPicture, deltaWindow

IOStart :: *s (Int,Int) (Keybdfct *s (IOState *s)) (UpdateFunction *s) *World
-> *World
IOStart initstate windowsize keybdfct updatefunction world = CloseEvents
events` world`
whe re

(s, events`) = StartIO [menu, window] initstate [] events
(events, world`) = OpenEvents world

m e n u = MenuSystem [file];

file = PullDownMenu 1 "File" Able
[MenuItem 2 "Quit" (Key 'Q') Able Quit]

window = WindowSystem [ScrollWindow 3 (0,0) "Picture"
(ScrollBar (Thumb 0) (Scroll 10)) (ScrollBar (Thumb 0)
(Scroll 10))((0,0), (1000,1000)) (50,50)
windowsize updatefunction
[Keyboard Able keybdfct, GoAway Quit]]

Quit state io = (state, QuitIO io)

Start :: * World -> * World
Start world =

IOStart InitState (windowwidth,windowheight) KeyboardHandler
Update world

Things go well because menu operations are higher-
order functions and these can be handled

Applications of the lambda calculus 33

For Clean information, a quality compiler and
examples can be obtained from

http://www.cs.kun.nl/~clean

3. Exercises

3.1 Write a continuation program that reads from the
input list of integers and adds them until a zero
appears; then the sum obtained thus far is put on the
output stream and the process is stopped.

3.2 Write a continuation program that reads from the
input list of integers and puts the square of each non-
zero integer on the output stream until a zero comes
in; then the input is discarded and the process waits
until the next zero comes in; then the process
continues putting the squares of the (non-zero)
numbers on the output stream; etcetera forever.

Applications of the lambda calculus 34

4 The quest for correctness

Correctness: becomming commercially important

scientifically this was always the case

Technology

Products consisting of components

consisting of components

Applications of the lambda calculus 35

The Chinese box

Applications of the lambda calculus 36

Compositional modules

S1(x1), ... , Sn(xn) |− S(x)

where x = f(x1, ... , xn)

For reliable products we want proofs here

Hardware ≈ propositional logic

Software ≈ predicate logic

Mathematics ≈ predicate logic + computations

Applications of the lambda calculus 37

Proofs of understandable statements are important

But may be difficult

Why are they correct?

• Understanding by anybody

• Understanding by trained person

• Sociological verification: peer reviews

• Machine verification of formal versions

Aim: highest degree of certainty

Should we believe machine checked proofs?

Methodology (N.G. de Bruijn)

The verifying program should be small

small enough to be checked by hand

Applications of the lambda calculus 38

Case study: proof-checking mathematics

• understandable statements

• non-trivial

• will have spin-off for verification of programs

Notion of proof in mathematics

Thales ± 600 BC first proofs

Plato ± 400 BC emphasis on importance of proofs

Aristotle ± 300 BC axiomatic method

quest for logic

proof verification ≠ proof finding

Euclid ± 275 BC axiomatic geometry

Frege ± 1870 full description of logic

Russell ± 1910 formalised mathematics

de Bruijn ± 1970 computer verification in type theory

Applications of the lambda calculus 39

In mathematics

In context Γ we have A

Logic

Γ |−L A because of proof p

Type theory

[Γ] |−λ [p] : [A]

Automated verification

type[Γ]([p]) = [A]

Applications of the lambda calculus 40

Statement A of predicate logic are translated as types

Curry, Howard, de Bruijn:

propositions—as—types interpretation

[A] = type (set) of proofs of A

[A ⊃ B] = [A] → [B]

[∀x∈X.P] = Πx:X.[P]

Example

Γ = X: set, P:X→prop

Γ |− λ (λy:[Px].y) : [Px ⊃ Px]

Γ |− λ (λx:X λy:[Px].y) : [∀x:X.Px ⊃ Px]

Applications of the lambda calculus 41

Other example

Proposition. Let R be a binary relation on a set A.
Then

R is antisymmetric → R is irreflexive.

Proof. Antisymmetry is

∀ab[Rab → ¬Rba].

Let a∈A be arbitrary and suppose

Raa.

Then

¬Raa,

contradiction. Therefore

∀a ¬Raa. n

Applications of the lambda calculus 42

In lambda notation.

Γ = A:set, R:A→A→prop

Γ |− ?? : antisym R → irrefl R.

?? = λp:antisym R λa:A λq:irrefl R.paaqq.

Indeed

Γ, p : antisym R |− p : ∀ab[Rab → Rba → ⊥]

Γ, p : antisym R, a:A |− paa : Raa → Raa → ⊥

Γ, p:antisym R, a:A, q:Raa |− paaqq : ⊥

Γ, p : antisym R, a:A |− λq:Raa.paaqq :
Raa → Raa →⊥

Γ, p : antisym R |− λa:A λq:Raa.paaqq
: ∀a [Raa → Raa →⊥]
= irrefl R

Γ |− λp:antisym R λa:A λq:Raa.paaqq :

antisym R → irrefl R

Curry version: λpaq.paaqq

Applications of the lambda calculus 43

Hilbert style proof of antisym R |− irrefl R

Assume
antisym R ≡ ∀ab [Rab → Rba → ⊥]

so
Raa → Raa → ⊥

We know
(Raa → Raa → ⊥) → (Raa → ⊥) (*)

so
Raa → ⊥ ≡ irrefl R

As to (*)

assume p → p → ⊥

ax (p → (q → r)) → (p → q) → (p → r)

subs t (p → ((r→p) → p)) → (p → (r→p)) → (p → p)

ax p → (q → p)

subs t p → ((r → p) → p)

MP (p → (r→p)) → (p → p)

ax (p → (r→p))

MP (p → p)

ax (p → (p → ⊥)) → (p → p) → (p → ⊥)

MP (p → p) → (p → ⊥)

MP p → ⊥

Applications of the lambda calculus 44

Natural deduction proofs ≈ lambda terms
Hilbert style proofs ≈ combinators

Id = λx.x
= S K K

with

S = λxyz.xz(yz)

K = λxy.x

Translation

λxy.yx = S (K (S I)) K

Translation from λ-term into combinatory term is
exponential or if one uses suitably chosen
combinators quadratic. Best result by

Statman

O(n.log n)

Conclusion

Better use lambda terms

Applications of the lambda calculus 45

Constructing formal proofs

Question How do we obtain proof-objects?

Proofs can be produced by

• a trained person

• a cooperation between a trained person

and a computer

Interactive proof development systems

Lego, Coq

proof
development
system

proof checker
verified
statement

tactics

macro
expander

tacticals

Goal

Producing proof-objects with the same effort as
writing in, say, LaTeX

Applications of the lambda calculus 46

Pure Type Systems

General rules PTS

 Γ |− A : s

Start −−−−−−−−−−− x fresh

 Γ, x:A |− x : A

 Γ |−A : B Γ |− C : s

Weakening −−−−−−−−−−−−−−−− x fresh

 Γ, x: C |− : B

 Γ |− F : (Πx:A.B) Γ |− a : A
Application −−−−−−−−−−−−−−−−−−−−−−−−−−

 Γ |− Fa : B[x:=a]

 Γ, x:A |− A : B Γ |− (Πx:A.B) : s
Abstraction −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Γ |− (λx:A) : (Πx:A.B)

Γ |− A : B Γ |− B' : s
Conversion −−−−−−−−−−−−−−−−−−−−− B =β B'

 Γ |− A : B'

term ::= var | const | term term | λ var:term term | Π var:term term

context ::= <x1 : A1, ... , xn : An>

statement ::= term : term

Applications of the lambda calculus 47

Specific axioms and rules for PTS

Specification of a PTS

Sorts S s1, s2,

Axioms A s1: s2,

Rules R (s1, s2, s3),

Let s1, s2, s3 ∈ S. The following rules are declared by
the specification of the PTS

axioms <> |− s1 : s2 for s1 : s2 in A

 Γ |− A : s1 Γ, x:A |− B : s2
Product −−−−−−−−−−−−−−−−−−−−−−−−−− for (s1, s2, s3) in R

 Γ |− (Πx:A.B) : s3

Write (s1, s2) = (s1, s2, s2)

Applications of the lambda calculus 48

λ→ Simply typed lambda calculus

Propositional logic

S * , nn
A * : nn
R (* , *)

λ2 Second order lambda calculus

Second order propositional logic

S * , nn
A * : nn
R (* , *), (nn, *)

λP Dependent types

S * , nn
A * : nn
R (* , *), (nn, *)

λC Calculus of constructions

S * , nn
A * : nn
R (* , *), (nn, *), (* , nn), (nn, nn)

Applications of the lambda calculus 49

Information about proof assistents by Frank Pfenning,
CMU, under the name "Logical Frameworks" can be
obtained from

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/fp/www/lfs.html

or via my home page

http://www.cs.kun.nl/~henk/

Applications of the lambda calculus 50

Exercises

4.1 Construct a lambda term p such that

X:set,P:X→prop,Q:prop |− p :
∀x.(Px→Px→Q)→Px→Q

Hence p is a proof-object for
∀x.(Px→Px→Q)→Px→Q.

We can do this in λP taking set = prop = *.

4.2 Construct a proof in λ2 of

 (∀p:* (A→B→p)→p)→B.

Applications of the lambda calculus 51

5 Computations and proofs

Doing mathematics

reasoning

defining

computing

Computations are needed for asserting e.g. the
following statements

[√45] = 6

Prime (61)

(x+1)(x-1) = x2 -1

Babylonians were good at computations but no proofs

Greek were good at proving but had few computations

Formal proofs of computations should not be done in

 first order predicate logic with equality

Law of Ruys:

proofs of an equation are quadratic in size of
statement

Applications of the lambda calculus 52

Poincaré principle

If in a mathematical argument we need

2 + 2 = 4

this is not a proof in the strict sense, but just a
verification

In type systems this becomes

p proves A(t)
 ⇒ p proves A(s)

t →R s

de Bruijn adopted the PP for βδ-reduction

Scott and Martin-Löf later for ι-reduction

Recursor R for primitive recursion over natural
numbers but also trees and other data structures

R a b 0 →ι a

R a b n+1 →ι b n (R a b n)

Applications of the lambda calculus 53

Examples

Using R one can make an F such that

F n →βδι [√n]

Proof obligation

∀n (F n)2 ≤ n < ((F n)+1)2

Applications of the lambda calculus 54

Symbolic computing consists of manipulations

with syntactic expressions

x+1 : Int

‘x+1’ : term(Int)

There is a self-interpreter

E ‘t’ →βδι t

There is a term simplify such that

simplify ‘(x+1)(x-1)’ →βδι ‘x2 -1’

Proof obligation

∀ t:term(Int). E(simplify t) = E t

Applications of the lambda calculus 55

Then

E(simplify ‘(x+1)(x-1)’) = E ‘(x+1)(x-1)’

E ‘x2 -1’ (x+1)(x-1)

 x2 -1

so

x2 -1 = (x+1)(x-1)

Goes smoothly in new versions of Lego and Coq

Applications of the lambda calculus 56

For checking primality, one can construct from the
recursor R a function KPrime such that

KPrime n = true if n is a prime;

= false else.

Proof obligation

∀n [(Prime n ⇔ KPrime n = true)

& (KPrime n = true or KPrime n = false)]

where

Prime n ⇔ ∀d<n (d | n → d = 1) & n>1

M. Oostdijk automatised this for all primitive recursive

functions and predicates

H. Elbers constructed by hand a different KPrime by

applying Fermat’s little theorem

(together with the needed proof of correctness).

Applications of the lambda calculus 57

General pattern of computations

p →1 ... →1 p1-nf = f1(p)

p →2 ... →2 p2-nf = f2(p)

......................................

......................................

F1 p →βδι ... →βδι f1(p)

F2 p →βδι ... →βδι f2(p)

......................................

......................................

with proof obligations

∀p S1(p, F1 p)

∀p S2(p, F2 p)

....................

....................

Applications of the lambda calculus 58

Extending the use of the Poincaré Principle

Fixedpoint reduction

Y f →Y f (Y f)

Arithmetic

add n m →A n+m

Applications of the lambda calculus 59

Conclusion

Computer Algebra

• Representing √2 exactly

• Symbolic computations

Computer Mathematics

• Representing exactly

X = {n∈N | ¬ ∃ x1...xk p(x1,...,xk,n) = 0}

• Stating properties about infinity

We can state with confidence that

3∈{n∈N | ¬ ∃ x1...xk p(x1,...,xk,n) = 0}

or

There are infinitely many primes

because of having proofs

Even if a statement A may not be decidable, the statement

p proves A

is decidable

Applications of the lambda calculus 60

Applications of Computer Mathematics

• Different function of referees

• Library of Mathematics

• Education

Interactive books

• Interactive theorem proving

• Computational meaning of theorems

|- ∀x∃yA(x,y) ⇒

∃ f computable |- A(x,f(x))

provided that A is decidable

• Numerical values automatically

Applications of the lambda calculus 61

Tactics

Goal {x:nat} Ex [y:nat] and (less_nat x y) (is_prime y);
 Intros x;
 z == succ (fac x); (* let z be x! + 1*)
 Refine has_prime_factor z;(* we have a prime factor of z, if 1 < z *)
 Refine le2less; (* we have 1 < z, if 1 <= x! *)
 Refine faculty_lemma; (* prove 1 <= x! *)
 Intros y PF; (* assume y, assume prime factor(y,z)*)
 D == fst PF : divides y z; (* so y | z *)
 P == snd PF : is_prime y; (* so prime(y)*)
 H == fst P : less one y; (* so 1 < y *)
 Refine ExIntro |? ?| y; (* take y and prove x < y & is_prime(y)*)
 Refine pair ? P; (* we have x < y and is_prime(y), if x < y*)
 Refine less2not_le; (* we have x < y, if not(y <= x) *)
 Intros H1; (* assume y <=x, prove absurd *)
 Refine less_irrefl one; (* we have absurd, if 1 < 1 *)
 Refine less_exten ? ? H; (* we have 1 < 1, if 1=1 & y = 1 & 1 < y *)
 Refine eq_refl; (* prove 1 = 1*)
 Refine divides_lemma ? D; (* we have y = 1, if y|x! & y|z *)
 Refine fac_divides ? ? ? H1;(* we have y|x!, if 1 <= y & y <= x *)
 Refine less2le; (* we have 1 <= y, if 1 < y + 1 *)
 Refine less_succ H; (* prove 1 < y + 1, using 1 < y *)

===
Proof-object (M. Ruys)

= [x:el Nat]infinitely_bounded_primes_exist x (Ex%%(el Nat) ([y:el
Nat]and (ap2%%Nat%%Nat%%Omega LessN x y) (is_prime y))) ([y:el
Nat][H:and (and (ap2%%Nat%%Nat%%Omega LessN x y)
(ap2%%Nat%%Nat%%Omega LessEqN y (succ (fac x)))) (is_prime
y)]ExIntro%%(el Nat) y ([y'4:el Nat]and (ap2%%Nat%%Nat%%Omega
LessN x y'4) (is_prime y'4)) (pair%%(ap2%%Nat%%Nat%%Omega
LessN x y)%%(is_prime y) (fst%%(ap2%%Nat%%Nat%%Omega LessN x
y)%%(ap2%%Nat%%Nat%%Omega LessEqN y (succ (fac x))) (fst%%(and
(ap2%%Nat%%Nat%%Omega LessN x y) (ap2%%Nat%%Nat%%Omega
LessEqN y (succ (fac x))))%%(is_prime y) H)) (snd%%(and
(ap2%%Nat%%Nat%%Omega LessN x y) (ap2%%Nat%%Nat%%Omega
LessEqN y (succ (fac x))))%%(is_prime y) H)))];

Applications of the lambda calculus 62

Proposed systems for Computer Mathematics

TS = PTS + extra reduction

Make a general system with a ‘joystick’

logical
strength

computational
strength

automath Martin-Löf

Coq/Legolambda
 cube

