Exercise

March 24, 2023

Problem. Give a characterization of when a half-space $\mathscr{H}_{1}=\left\{\mathbf{x} \in \mathbb{R}^{n}: c_{1}^{T} \mathbf{x} \leq b_{1}\right\}$ is contained in a half-space $\mathscr{H}_{2}=\left\{\mathbf{x} \in \mathbb{R}^{n}: c_{2}^{T} \mathbf{x} \leq b_{2}\right\}$.

Solution. Note that as half-spaces, it holds that neither c_{1} nor c_{2} is equal to $\mathbf{0}$. First, as a case, assume that there does not exist $\alpha \in \mathbb{R}$ such that $c_{1}=\alpha c_{2}$. We claim that $\mathscr{H}_{1} \nsubseteq \mathscr{H}_{2}$.

Consider first the vector subspaces S_{1} defined by the set of \mathbf{x} such that $c_{1}^{T} \mathbf{x}=\mathbf{0}$. Then there exists $\mathbf{z} \in S_{1}$ and β such that $\beta c_{1}+\mathbf{z}=c_{2}$. To see this, pick a basis $d_{1}, d_{2}, \ldots, d_{n-1}$ of S_{1}. Then $d_{1}, \ldots, d_{n-1}, c_{1}$ is a basis for \mathbb{R}^{n} and thus there exist $\beta_{1}, \ldots, \beta_{n-1}, \beta$ such that

$$
c_{2}=\beta_{1} d_{1}+\beta_{2} d_{2}+\cdots+\beta_{n-1} d_{n-1}+\beta c_{1} .
$$

Let $\mathbf{z}=\beta_{1} d_{1}+\cdots+\beta_{n-1} d_{n-1}$. Note that by assumption, $\mathbf{z} \neq \mathbf{0}$.
Fix an element $\mathbf{y} \in \mathscr{H}_{1}$. It holds that

$$
c_{1}^{T}(\mathbf{y}+\gamma \mathbf{z})=c_{1}^{T} \mathbf{y}+\gamma c_{1}^{T} \mathbf{z}=c_{1}^{T} \mathbf{y} \leq b_{1} .
$$

Thus $\mathbf{y}+\gamma_{\mathbf{z}} \in \mathscr{H}_{1}$ for all $\gamma \in \mathbb{R}$.
If $c_{2}^{T} \mathbf{y}>b_{2}$, then $\mathbf{y} \notin \mathscr{H}_{2}$ and the claim holds. Assume instead that $c_{2}^{T} \mathbf{y} \leq b_{2}$. We have that

$$
\begin{aligned}
c_{2}^{T}(\mathbf{y}+\gamma \mathbf{z}) & =c_{2}^{T} \mathbf{y}+\gamma c_{2}^{T} \mathbf{z} \\
& =c_{2}^{T} \mathbf{y}+\gamma\left(\beta c_{1}+\mathbf{z}\right)^{T} z \\
& =c_{2}^{T} \mathbf{y}+\gamma \beta c_{1}^{T} \mathbf{z}+\boldsymbol{\gamma}^{T} \mathbf{z} \\
& =c_{2}^{T} \mathbf{y}+\gamma_{\mathbf{z}} \mathbf{z}^{T} .
\end{aligned}
$$

As $\mathbf{z} \neq \mathbf{0}$, we have that $\mathbf{z}^{T} \mathbf{z}>0$ and thus for large values of $\gamma, c_{2}^{T}(\mathbf{y}+\gamma \mathbf{z})>b_{2}$. Thus, $\mathbf{y}+\gamma \mathbf{z} \in \mathscr{H}_{1}$ but $\mathbf{y}+\gamma \mathbf{z} \notin \mathscr{H}_{2}$. We conclude that if $c_{1} \neq \alpha c_{2} \forall \alpha \in \mathbb{R}$, then $\mathscr{H}_{1} \nsubseteq \mathscr{H}_{2}$.

Assume now that there exists $\alpha \in \mathbb{R}$ such that $c_{1}=\alpha c_{2}$. Fix $\mathbf{y} \in \mathscr{H}_{1}$.

$$
c_{2}^{T} \mathbf{y}=\frac{1}{\alpha} c_{1}^{T} \mathbf{y} \leq \frac{1}{\alpha} b_{1} .
$$

Thus, $c_{2}^{T} \mathbf{y} \leq b_{2}$ if and only if $\frac{1}{\alpha} b_{1} \leq b_{2}$. Note that for the "only if" to hold, we are using the property that there exist $\mathbf{y} \in \mathscr{H}_{1}$ such that $c_{1}^{T} \mathbf{y}=b_{1}$.

We conclude that $\mathscr{H}_{1} \subseteq \mathscr{H}_{2}$ if and only if there exists $\alpha \in \mathbb{R}$ such that $c_{1}=\alpha c_{2}$ and $\frac{1}{\alpha} b_{1} \leq b_{2}$.

