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Abstract

A graph is k-linked if for every set of 2k distinct vertices {s1, . . . , sk, t1, . . . , tk} there exist disjoint

paths P1, . . . , Pk such that the endpoints of Pi are si and ti. We prove every 6-connected graph on n

vertices with 5n − 14 edges is 3-linked. This is optimal, in that there exist 6-connected graphs on n

vertices with 5n − 15 edges that are not 3-linked for arbitrarily large values of n.

1 Introduction and Results

A graph is k-linked if for every set of 2k distinct vertices {s1, . . . , sk, t1, . . . , tk} there exist disjoint paths

P1, . . . , Pk such that the endpoints of Pi are si and ti. A natural question is whether or not there exists

a function f(k) such that every f(k)-connected graph is k-linked. Larman and Mani [6] and Jung [3] first

showed that such a function f(k) exists by showing that the existence of a topological complete minor of

size 3k and 2k-connectivity suffice to make a graph k-linked. This result, along with an earlier result of

Mader’s that sufficiently high average degree forces a large topological minor [7] proved that such a function

f above does exist. Robertson and Seymour [8] proved in their Graph Minor series that 2k-connectivity and

the existence of a K3k minor suffices to make a graph k-linked. This, together with bounds on the extremal

function for complete minors by Kostochka [5] and Thomason [15] showed that average degree O(k
√

log k)

implies the existence of a Kk minor, and consequently, that f(k) = O(k
√

log k) suffices. Random graphs show

that the extremal function for a K3k minor is Ω(k
√

log k), and as a consequence, this bound for f(k) could

not be further improved by only taking advantage of a complete minors. Bollobás and Thomason [1] showed

that the same effect can be achieved by replacing the K3k minor with a sufficiently dense (noncomplete)

minor, whose existence requires only ck|V (G)| edges for a constant c. Thus they improved the bound on
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f(k) to 22k by showing that a 2k-connected graph with 11kn edges is k-linked. In [13], we show that this can

be improved, and every 10k-connected graph is k-linked. Independently of [13], Kawarabayashi, Kostochka

and Yu [4] proved that every 12k-connected graph is k-linked.

When attention is restricted to small values of k, stronger results are known. Jung partially characterized

graphs G without disjoint paths linking {s1, s2, t1, t2} ⊆ V (G) in [3]. Complete characterizations were later

independently proven in [11, 12, 14], as well as efficient polynomial time algorithms developed [12]. An

immediate consequence of the characterization is that f(2) = 6. For the case k = 3, Robertson and Seymour

showed that a polynomial time algorithm exists (see [8], [9], and [10] for an outline of the argument), however

the algorithm uses unreasonable constants, and therefore implementation is infeasible. Recent work by Chen

et al. in [2] shows that the K9 minor required by Robertson and Seymour’s argument can be relaxed and

a K−
9 minor will suffice. Along with bounds for the existence of such a minor, they improve the bound of

f(3) to 18.

In this paper, we prove the optimal edge bound for ensuring a graph is 3-linked.

Theorem 1.1 Every 6-connected graph G on n vertices with 5n − 14 edges is 3-linked.

This bound is best possible because in [13] we exhibited, for every integer l ≥ 1, a 6-connected graph on

n = 4(l + 1) vertices with 5n − 15 edges that is not 3-linked. An immediate corollary of Theorem 1.1 is the

following:

Corollary 1.2 Every 10-connected graph is 3-linked.

Thomassen conjectured [14] that every (2k + 2)-connected graph is k-linked. It has been observed that

K3k−1 with k disjoint edges deleted gives a counterexample to this conjecture for k ≥ 4. However, it is still

conjectured for k = 3 that f(3) = 8.

Our proof of Theorem 1.1 is not exactly short. We wish we could find an easier proof, but there are some

obstacles, partially explained in the next section, that seem to necessitate several tedious steps. Lemma 3.1,

and even the weaker Lemma 3.3, have proven useful in graph structure theory. We hope that Theorem 1.1,

a generalization of Lemma 3.3, will also be of some use. Even better would be an analogue of Lemma 3.1

for three disjoint paths, but that seems out of reach at the moment.

2 Definitions and Outline of Proof

For the purposes of this paper, all graphs will be simple. Edges will be considered as subsets of vertices of

size two. For notation, the edge connecting vertices u and v will be written uv. If G is a graph and e ∈ E(G),

we denote by G/e the graph obtained from G by contracting e and deleting all resulting parallel edges. For

notation, N(v) will denote the neighborhood of v; that is, the set of vertices adjacent to the vertex v. We

will denote by δ(G) the minimum degree in a graph G. Given a set of vertices X ⊆ V (G), ∂(X) is the subset
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of vertices in X with a neighbor in V (G) − X . If H is a subgraph of G we abbreviate ∂(V (H)) by ∂(H).

When we say (A, B) is a separation of a graph G, we mean that the union of A and B is the whole of the

vertex set of G and every edge of G has both ends in A or B. The order of a separation (A, B) is |A∩B|. A

separation is trivial if either A = V (G) or B = V (G), and non-trivial otherwise. Given a set X ⊆ V (G), a

separation of the pair (G, X) is a separation (A, B) with X ⊆ A. We will use the notation G[A] to indicate

the subgraph of G induced by the set of vertices A. For X ⊆ V (G), we define ρG(X) (or ρ(X) when the

graph G is understood from the context) to be the number of edges with at least one endpoint in X . Given

a path P in a graph and two vertices x and y in V (P ), we denote the subpath of P with ends x and y by

xPy.

We will need the following definitions.

Definition A linkage is a graph P where every component of P is a path.

Given a linkage P , we will use the standard notation V (P) for the set of vertices and E(P) for the set of

edges. Sometimes we shall regard P as a set of its components and write P ∈ P to mean that the path P

is a component of P . If every member of P has one end in X and the other in Y , then we say that P is a

linkage from X to Y . In that case, we designate, for each path P ∈ P , its end in X as the origin and its

end in Y as the terminus of P . If both ends belong to X ∩ Y , we make an arbitrary choice.

Definition Let G be a graph, let t ≥ 1 be an integer, and let X ⊆ V (G). The pair (G, X) is t-linked if

for all k ≤ t and distinct vertices s1, s2, . . . sk, t1, . . . , tk ∈ X , there exists a linkage P from {s1, . . . , sk} to

{t1, . . . , tk} such that

1. for every i, there exists P ∈ P such that the origin of P is si and the terminus of P is ti, and

2. no component of P has an internal vertex in X .

We say that the pair (G, X) is linked if (G, X) is b|X |/2c-linked. A separation (A, B) in G is k-linked if

(G[B], A ∩ B) is k-linked.

Given a set X of vertices, a linkage problem is a set of pairwise disjoint subsets of X of size 2. A linkage

problem L = {{s1, t1}, . . . , {sk, tk}} is feasible if there exists a linkage P such that for every i = 1, . . . , k,

there exists a component P ∈ P such that the ends of P are si and ti. Such a linkage P ensuring that the

linkage problem L is feasible is said to solve the linkage problem L. Again, consider the linkage problem

L = {{s1, t1}, . . . , {sk, tk}} on a set X of vertices. Given a linkage P from X to some set X ′, label the

vertices of X ′ such that path P ∈ P with end si or ti in X has its other end s′i or t′i, respectively in X ′.

Then the linkage P induces the linkage problem L′ = {{s′1, t′1}, . . . , {s′k, t′k}} on X ′.

Definition Given G a graph, X ⊆ V (G), and α, β two positive integers, (G, X) is (α, β)-massed if

(M1) ρ(V (G) − X) ≥ α|V (G) − X | + β, and
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(M2) every separation (A, B) of order at most |X | − 1 with X ⊆ A satisfies

ρ(B − A) ≤ α|B − A|.

The idea behind the definition of (α, β)-massed is that the graph has the specified number of edges outside

the set X , and no significant portion of those edges are separated from X by a small cut set.

Let us outline our proof of Theorem 1.1 now. We use the method developed in [13]. For the sake of the

inductive argument we replace 6-connectivity by the weaker condition (M2), and the requirement that G

have at least 5|V (G)| − 14 edges by the more-or-less equivalent condition (M1) for α = 5 and β = 4. Thus

we will prove the stronger result stated formally as Theorem 5.1, that if X ⊆ V (G) has size six and the pair

(G, X) is (5, 4)-massed, then it is linked.

Now let (G, X) be a minimal counterexample, and let e be an edge of G with neither end in X . Then the

graph G/e is not (5, 4)-massed, for otherwise a linkage in G/e can be extended to one in G. Thus G/e fails

to satisfy (M1) or (M2). If G/e fails to satisfy (M1), then e belongs to at least five triangles, and if every

edge e has this property, then that is very useful. For then the neighborhood of every vertex has minimum

degree at least five. It is not hard to show that actually ρ(V (G) − X) = 5|V (G) − X | + 4, and hence there

is a vertex v of degree at most nine. Let N = G[N(v) ∪ {v}]. Then N is a fairly dense graph on at most

10 vertices, and it is almost 3-linked. Now it is possible to find six disjoint paths from X to V (N); let X ′

be their ends in V (N). If only N were 3-linked, we could link the vertices of X ′ within N and we would

be done. Unfortunately, N need not be 3-linked, but it is close. However, being only close requires a lot of

additional work, because we need to find a different set of six disjoint paths from X to V (N), linking in a

different pattern, or something else equally good. What we mean here is formalized as conditions (C1) and

(C2) in Section 4. The entire Section 4 is devoted to the proof of an auxiliary lemma (Lemma 4.4) that

enables us to get around the fact that N need not be 3-linked.

So that is what we do when G/e fails to satisfy (M1) for every edge e, and so we may assume that

G/e fails to satisfy (M2) for some e. Thus G/e has a separation of order at most five violating (M2), and

hence G has a separation (A, B) of order at most six such that X ⊆ A and ρ(B − A) ≥ 5|B − A| + 1. If

ρ(B −A) ≥ 5|B−A|+4, then we can apply induction to the graph G and set A∩B and complete the proof

that way, but if ρ(B − A) ≤ 5|B − A| + 3, then we have a problem. The graph G[B] does not have enough

edges for induction to go through, and yet it has too many edges for B − A to be simply deleted. So what

we do is we delete B − A and add three carefully selected edges to make up for the loss. After modifying

this idea a bit (we need to delete several such sets B−A, as it turns out, and add three edges per separation

(A, B)) it is possible to show that the resulting graph G∗ is (5, 4)-massed, and so it has the required linkage

by induction. But why does this linkage extend to one in G? To make sure this will be possible we need to

be extremely careful at selecting the edges we will add. This is done in Lemma 5.13, which is quite technical

and whose proof occupies entire Section 6.

Here is how the paper is organized. In Section 3 we prove a lemma about extremal functions for linkages
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with two components. The lemma follows easily from the well-known characterization of 2-linked graphs. In

Section 4 we prove Lemma 4.4, which gives a sufficient condition for replacing a set of six disjoint paths by

a different set of disjoint paths with desirable properties. The main proof is presented in Section 5, except

that a proof of Lemma 5.13 is deferred until Section 6. In the short Section 7 we recall an example from [13]

showing that the bound in Theorem 1.1 is best possible.

3 Linking Two Pairs of Vertices

We begin by examining edge bounds to ensure that a pair (G, X) is 2-linked where |X | = 6. To achieve this,

we will use the following lemma about the number of edges it takes to force the pair (G, X) to be linked,

for a graph G and a set X ⊆ V (G) when |X | < 6. This lemma is proven easily from the characterization

of 2-linked graphs. As mentioned above, several researchers independently characterized such graphs (see

[3, 11, 12, 14]). We use the formulation from [10].

Lemma 3.1 [10] Let s1, s2, t1, t2 be distinct vertices of a graph G, such that no separation (A, B) of G of

order ≤ 3 has s1, s2, t1, t2 ∈ A 6= V (G). Then the following are equivalent:

1. there do not exist vertex-disjoint paths P1, P2 of G such that Pi links si and ti for i = 1, 2

2. G can be drawn in a disc with s1, s2, t1, t2 on the boundary in order.

As an easy corollary to the above lemma, we get the following:

Corollary 3.2 Let G be a graph and s1, s2, t1, t2 ∈ V (G). If there do not exist paths linking s1, t1 and s2, t2,

then there exist subsets of vertices A, B1, . . . , Bk for some k with the following properties:

1. Every edge e ∈ E(G) either has both ends in A or in Bi for some i ∈ {1, . . . , k}.

2. For every i, |A ∩ Bi| ≤ 3 and every j 6= i, Bi ∩ Bj ⊆ A.

3. s1, s2, t1, t2 ∈ A and G[A] can be drawn in a disc with s1, s2, t1, t2 on the boundary in that order.

We use the above corollary to prove the following lemma.

Lemma 3.3 Let G be a graph and X ⊆ V (G) of size at most 6. Let (G, X) be (5, 1)-massed. Then

(i) if |X | ≤ 5, (G, X) is linked,

(ii) either (G, X) is 2-linked or every pair of adjacent vertices in X have a common neighbor in V (G)−X,

and

(iii) if (G, X) is (5, 2)-massed, then (G, X) is 2-linked.
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Proof The graph G[V (G)−X ] must have some connected component with edges to every vertex of X , lest

G have some separation violating the definition of (5, 1)-massed. Thus we may assume there exist distinct

vertices s1, t1, s2, t2 such that there do not exist two disjoint paths P1 and P2 with the ends of Pi being si

and ti, for otherwise, the lemma holds. Let X ′ = {s1, t1, s2, t2} and X ′′ = X −X ′. By Corollary 3.2 applied

to G−X ′′, there exist subsets A, B1, . . . , Bk of V (G) −X ′′, with the properties stipulated in Corollary 3.2.

Then ρG(V (G) − X) = ρG[A∪X′′](A − X) +
∑k

i=1 ρG(Bi − A). Since (A ∪ (
⋃

i6=k Bi), Bk) is a separation

of order at most 3 in G − X ′′ for every k, we see that (A ∪ X ′′ ∪ (
⋃

i6=k Bi), Bk ∪ X ′′) is a separation of

order at most |X | − 1 in G. Thus, ρG(Bi − A) ≤ 5|Bi − A| for every i. Moreover, since G[A] is planar

and has at least one face of size at least four, we see that ρG[A](A − X ′) ≤ 3|A − X | + 1 and consequently,

ρG[A∪X′′](A − X) ≤ (3 + |X ′′|)|A − X | + 1. If |X | ≤ 5, then ρG[A∪X′′](A − X) ≤ 5|A − X |, contrary to the

fact that (G, X) is (5, 1)-massed. This proves the lemma when |X | ≤ 5; in particular, it proves (i). Thus we

may assume that |X | = 6. We have ρG[A∪X′′](A−X) ≤ 5|A−X |+1, and hence (G, X) is not (5, 2)-massed.

Thus (iii) holds. But (G, X) is (5, 1)-massed, and so the inequalities above hold with equality. In particular,

both vertices in X ′′ are adjacent every vertex of V (G) − X , the graph G[A] is a triangulation except for

exactly one face of size four (incident with s1, s2, t1, t2), and the pairs of vertices s1, t1 and s2, t2 are not

adjacent. It follows that every pair of adjacent vertices in X have a common neighbor in V (G) − X , as

desired by (ii). �

4 Extremal Functions for Rerouting Paths

In this section, we focus on graphs where we are given a linkage with components P1, . . . , P6 and we want

to know how many edges the graph can have before we can find a different linkage P ′
1, . . . P

′
6 in the graph

satisfying various properties.

We are given the following setup: a graph G, a set X of six vertices and a fixed linkage problem L on X ,

and six disjoint paths from X to some set X ′. We want to show that if the graph has enough edges, subject

to the graph having a basic amount of connectivity, then either we can reroute the six paths to arrive in a

distinct linkage problem on X ′, or we can actually find a path linking one pair of the linkage problem L,

and still find paths from the remaining four vertices of X to X ′. This arises in a natural way when we are

attempting to prove the edge bound necessary to force a graph to be 3-linked.

The following will be a common hypothesis of several definitions and lemmas, and therefore it seems

worthwhile to give it a name.

Hypothesis H: Let G be a graph and X, X ′ ⊆ V (G) two sets of size 6. Let P = {P1, . . . , P6} be 6

disjoint induced paths where the ends of Pi are xi ∈ X and x′
i ∈ X ′. Let L be the linkage problem

{{x1, x4}, {x2, x5}, {x3, x6}}, and let L′ be the linkage problem {{x′
1, x

′
4}, {x′

2, x
′
5}, {x′

3, x
′
6}}.
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Before proceeding, we prove a general lemma about desirable linkages from a fixed subgraph to the vertex

set of another linkage.

Definition Let k be an integer and let P be a linkage with k components from X to X ′ in a graph G,

where |X | = |X ′| = k. Let the vertices of X and X ′ and the components P1, P2, . . . , Pk of P be numbered

such that the ends of Pi are xi ∈ X and x′
i ∈ X ′. Let H be a subgraph of G, and let Q be a linkage from

V (H) to V (P). We say a vertex v ∈ V (Pi) is left Q-extremal if v ∈ V (Q) and v is the only vertex of xiPiv

that belongs to V (Q). Similarly, we say v ∈ V (Pi) is right Q-extremal if v ∈ V (Q), and v is the only vertex

of vPix
′
i that belongs to V (Q). We say a vertex v is Q-extremal if it is either left or right Q-extremal. We

say that a vertex v ∈ V (Pi) is Q-sheltered if Pi has a Q-extremal vertex and v belongs to the subpath of Pi

with ends the left and right Q-extremal vertices.

We say that Q is an H-comb if

1. for each Q ∈ Q, its origin is in V (H) and its terminus is a Q-extremal vertex,

2. every Q-extremal vertex is the terminus of some component of Q, and

3. if some vertex of V (H) ∩ V (P ) for some P ∈ P is not the terminus of any path Q ∈ Q and it is not

Q-sheltered, then every path of Q has length zero and P includes the terminus of at most one path in

Q.

Lemma 4.1 Let G be a graph, let k, t ≥ 1 be integers, and let H be a subgraph of G. Let X, X ′ ⊆ V (G)

with |X | = |X ′| = k and let P be a linkage from X to X ′ with components P1, . . . , Pk such that the ends of

Pi are xi ∈ X and xi ∈ X ′. Then either there exists a separation (A, B) of order strictly less than t with

X ∪ X ′ ⊆ A and V (H) ⊆ B, or there exists an H-comb with t components.

Proof: Let there be no separation as stated in the lemma. By Menger’s theorem, there exists a linkage

from V (H) to X ∪ X ′ with t components and no internal vertices in V (H) ∪ X ∪ X ′. Let us choose such a

linkage Q such that E(Q) − E(P) is minimal.

Let Q1, . . . , Qt be the components of Q. For j = 1, . . . , t, let qj be the origin of Qj and let wj ∈
V (Qj) ∩ V (P). Let Q′

j be defined as qjQjwj , and let Q′ denote the linkage Q′
1 ∪ · · · ∪ Q′

t. Let us pick

w1, w2, . . . , wt such that

(i) each wi is Q′-extremal, and

(ii) subject to (i), |V (Q′)| is minimal.

Such a choice is possible because each terminus of a path in Q is Q-extremal. We make the following claim.

Claim 4.2 Each Q′-extremal vertex is a terminus of a path in Q′.
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Proof: Suppose to the contrary that there exists a Q′-extremal vertex w ∈ V (Pi) ∩ V (Q′
j) for some

i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , t}, and w 6= wj . Then replacing Q′
j by qjQjw yields a linkage that

contradicts (ii). �

It immediately follows that Q′ satisfies conditions 1. and 2. in the definition of H-comb.

To prove that Q′ satisfies Condition 3. in the definition of H-comb, let x ∈ V (H) ∩ V (Pi) be not Q′-

sheltered. We may assume from symmetry that the path xiPix is disjoint from Q′. We may also assume

that x is the only vertex of V (H) in xiPix. Since x ∈ V (H)− V (Q′) and no internal vertex of a component

of Q belongs to H , we deduce that x /∈ V (Q). We claim that xiPix is disjoint from Q. Assume otherwise,

and let y be the vertex of Q in xiPix closest to x, and let j be the index such that y ∈ V (Qj), The choice

of x implies that yQjqj includes an edge not in E(P). Thus replacing Qj by xPiy ∪ yQjw, where w is the

terminus of Qj , yields a linkage that contradicts the minimality of Q.

Thus xiPix is disjoint from Q. Then the path xiPix could have been chosen for the linkage Q in lieu of

another path. By the minimality of E(Q) − E(P), we deduce that Q is a subgraph of P . By (ii), each Q′
j

has length zero, and since xiPix is disjoint from Q, we see that Pi includes the terminus of at most one path

in Q′. Thus Condition 3. in the definition of H-comb holds. �

We will be looking for conditions to ensure that a graph satisfying Hypothesis H also satisfies one of the

following conditions:

(C1) There exist disjoint paths Q, Q1, . . . Q4 and an index j ∈ {1, 2, 3} such that Q links xj and xj+3 and

each Q1, . . . , Q4 has an end in X and the other end in X ′.

(C2) There exist disjoint paths Q1, . . . , Q6 with the ends of Qi being xi and qi, where qi ∈ X ′ for all i.

Furthermore, the linkage problem {{q1, q4}, {q2, q5}, {q3, q6}} is distinct from L′.

We define

Definition Let X ⊆ V (G). We will say a separation (A, B) of G is a rigid separation of (G, X) if X ⊆ A,

B − A 6= ∅ and (G[B], A ∩ B) is linked.

Let us recall that, for a subgraph H of a graph G, ∂(H) is the set of all vertices of H that have a neighbor

in V (G) − V (H).

Lemma 4.3 Let G be a graph satisfying Hypothesis H. Let H be an induced subgraph with |∂(H)| ≥ 5 and

further, assume the following conditions hold:

1. At most two of the paths in P intersect H in more than one vertex, and at most 3 paths total intersect

V (H).

2. For any distinct vertices v, s1, s2, t1, t2 ∈ ∂(H), there exist paths Q1, Q2 with ends s1, t1 and s2, t2

respectively with all internal vertices of the paths in V (H) − v.
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Then either (C1) or (C2) holds, or the pair (G, X ∪ X ′) has a rigid separation of order at most four.

While technical, this lemma is saying something fairly intuitive. In Hypothesis H , we are given the six

paths in G, and some subgraph H that allows us to cross paths that enter H . By Lemma 4.1, if there does

not exist an H-comb with five components, then there exists a small separation separating X ∪ X ′ from H

which will necessarily be rigid. Otherwise, we find such an H-comb. Then the H-comb either allows us to

cross two of the paths to arrive at X ′ in a distinct linkage problem, or we can link one pair of terminals in

the linkage problem L and still link the other four vertices in X to X ′.

Proof: Assume the statement is false, and let G be as in Hypothesis H forming a counterexample.

If there exists a separation of order at most 4 separating X ∪X ′ from V (H), then by the assumptions on

H , the separation must be rigid. Thus no such separation exists, and by Lemma 4.1, there exists an H-comb

of Q with five components. Let the components of Q be labeled Q1, . . . , Q5. Let qi be the origin of Qi in H .

We claim that every vertex of V (H) ∩ V (P) is Q-sheltered. To see that, let x ∈ V (H) ∩ V (P), and

suppose for a contradiction that x is not Q-sheltered. By property 3. in the definition of comb, every path

Qi is trivial and hence at least three paths in P intersect H , with each intersection corresponding to a trivial

path in Q. Then by our assumptions, exactly three paths in P do, two in at least 2 vertices say Pi and Pj ,

and one in exactly one vertex, say Pk. By 3. in the definition of H-comb, x cannot lie on Pi or Pj . As a

result, either x ∈ Pk and three paths of P intersect H in at least 2 vertices, or there is a fourth path of P
intersecting H . Either case is a contradiction to our assumptions. Hence every vertex in V (H) ∩ V (P) is

Q-sheltered.

Because the five termini of Q are distributed among the 6 paths of P , there are two cases to consider.

Case 1: There exists an index i such that Pi and Pi+3 both include a terminus of a path in Q.

Without loss of generality, assume that P1 contains the terminus y1 of Q1 and P4 contains the terminus

y2 of Q2. Then there is at most one other path containing 2 termini of Q. As a subcase, assume some Pj ,

j 6= 1, 4 contains two termini of Q. Without loss of generality, let P2 has y2 the terminus of Q3 and z2 the

terminus of Q4. Then there exist disjoint paths R1, R2 in H where R1 links q1 and q2 and R2 links q3 and

q4. We can pick R1 and R2 to avoid q5, and so by the previous paragraph, we see that R1 and R2 have no

internal vertices in V (P) − (V (y1P1z1) ∪ V (y2P2z2)). Then the linkage

x1P1y1Q1q1R1q2Q2y4P4x4, x2P2y2Q3q3R2q4Q4z2P2x
′
2, P3, P5, P6

satisfies (C1).

Otherwise, each Qi, i ≥ 3 has its terminus in a different path of P . Then each of P2, P3, P5, and P6 have

at most one vertex in V (H), and any such vertex in H must be equal to qi for some i. By our assumptions

on H , there exists a path R in H linking q1 and q2 avoiding q3, q4, and q5. The paths

x1P1y1Q1q1Rq2R2y4P4x4, P2, P3, P5, P6
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satisfy (C1).

Case 2: There exist indices i and j 6= i, i + 3 such that Pi and Pj each contain at least two termini of Q
Without loss of generality, let P1 contain the terminus y1 of Q1 and the terminus z1 of Q2. Let P2 contain

the terminus y2 of Q3 and the terminus z2 of Q4. Observe that q5 is the only possible vertex of P3, P4, P5, P6

to lie in V (H). By our assumptions on H , H contains disjoint paths R1 linking q1 and q4 and R2 linking q2

and q3 avoiding the vertex q5. Then the linkage

x1P1y1Q1q1R1q4Q4z2P2x
′
2 x2P2y2Q3q3R2q2Q2z1P1x

′
1, P3, P4, P5, P6

satisfies (C2). This completes the proof of the lemma.�

Now we immediately apply the previous lemma in proving the following result about the necessary number

of edges in a graph to guarantee (C1) or (C2).

Lemma 4.4 Let G be a graph satisfying Hypothesis H. If

1. ρ(V (G) − X) ≥ 5|V (G) − X | + 1, and

2. every separation (A, B) of order at most 4 with X, X ′ ⊆ A satisfies

ρ(B − A) ≤ 5|B − A|,

then G satisfies (C1) or (C2).

Proof: Assume the lemma is false, and let G be a counterexample satisfying Hypothesis H on a minimal

number of vertices, and, subject to that, with ρ(V (G) − X) minimal. We assume that X has an edge

between all possible pairs of vertices of X except for the pairs (x1, x4), (x2, x5), (x3, x6). Adding these edges

if necessary clearly does not change the truth or falsehood of the hypotheses or conclusions of the lemma.

We proceed in a series of claims, some of them borrowed from [13]. We include proofs for the sake of

completeness.

Claim 4.5 (G, X ∪ X ′) has no rigid separation of order at most four.

Proof: Let (A, B) be such a separation, and assume we have chosen it to maximize |B|. Consider the graph

G′ that is defined to be the graph obtained from G[A] by adding edges between every pair of non-adjacent

vertices in A∩B. For notation, let S := A∩B. By Condition 2 in the statement of the lemma, it follows that

ρ(V (G′)−X) ≥ 5|V (G′)−X |+1. Also, we know that G′ has six disjoint paths from X to X ′ with the same

path ends as in G since any path in G that uses vertices of B −A can be converted to a path in G′ because

G′[S] is complete. Let the paths be labeled P ′
1, . . . , P

′
6 with the ends of P ′

i being xi and x′
i. For paths in G′

satisfying (C1) or (C2), we may assume that each path uses at most one edge of G′[S]. Because edges in S
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may be extended to paths in G with all internal vertices in B −A, we know any paths in G′ satisfying (C1)

or (C2) extend to paths in G. If G′ satisfies Condition 2 in the statement of the lemma, by minimality it

follows that G also satisfies (C1) or (C2), a contradiction. Thus we see that G′ has a separation violating

Condition 2. Let (A′, B′) be such a separation, and assume (A′, B′) is chosen to minimize |B′|. Then by

Lemma 3.3, it follows that (G′[B′], A′ ∩ B′) is linked. Because G′[S] is complete, we know that S ⊆ A′ or

B′. If S ⊆ A′, then (A′ ∪ B, B′) is a separation in G violating Condition 2 in the statement of the lemma.

Consequently S ⊆ B′. As we saw above, disjoint paths in G′ linking terminals in A′ ∩ B′ extend to disjoint

paths in G, and hence, (A′, B′ ∪ B) is a rigid separation in G violating our choice of (A, B).

This contradiction completes the proof that (G, X ∪X ′) has no rigid separation of order at most four. �

Claim 4.6 G has no nontrivial separation (A, B) of order six with X ⊆ A and X ′ ⊆ B.

Proof: Assume otherwise, and let (A, B) be such a separation. Then if we consider G[A], X , and A ∩ B,

the linkage P induces a natural labeling of A ∩ B = {a1, . . . , a6} with {ai} = V (Pi) ∩ A ∩ B. The graph

G[A], the sets X , A ∩ B, and the paths of P restricted to A satisfy Hypothesis H . Similarly, G[B], A ∩ B,

and X ′ also satisfy Hypothesis H . Condition 2 will naturally hold in G[A] and G[B]. Moreover, in at least

one of G[A] or G[B], Condition 1 will also hold. By the minimality of G as a counterexample, one of G[A]

or G[B] has paths satisfying (C1) or (C2), and consequently, G would as well. This contradiction proves the

claim. �

Now we attempt to contract an edge e, e * E(G[X ∪ X ′]) − E(
⋃

i Pi). This may have the effect of

merging two vertices, xj and x′
j into a single vertex, which we will consider to be a member of both X and

X ′ in G/e connected by a path of length zero. Since G has no nontrivial separation of order six separating

X from X ′, we know that G/e has six paths P ∗
1 , . . . , P ∗

6 from X to X ′. Let the ends of P ∗
i be xi and y′

i.

If the linkage problems {{x′
1, x

′
4}, {x′

2, x
′
5}, {x′

3, x
′
6}} and {{y′

1, y
′
4}, {y′

2, y
′
5}, {y′

3, y
′
6}} are distinct, then the

paths P ∗
i in G/e extend to disjoint paths P ′

i with the same endpoints in G satisfying (C2). This implies that

{{x′
1, x

′
4}, {x′

2, x
′
5}, {x′

3, x
′
6}} = {{y′

1, y
′
4}, {y′

2, y
′
5}, {y′

3, y
′
6}}, and so for the sake of this paragraph we may

assume that by possibly renumbering the vertices of X ′, the ends of P ∗
i are x′

i and xi. If G/e were to satisfy

Conditions 1. and 2. in the statement, then by the minimality of G, G/e has paths Q∗
1, . . . Q

∗
k satisfying

(C1) or (C2). Those paths extend to paths Q′
1, . . . Q

′
k in G satisfying (C1) or (C2). Thus we have proven

contracting the edge e violates one of the hypotheses of the lemma.

Claim 4.7 G/e violates Condition 1. for every edge e * X, e * X ′.

Proof: We have seen above that G/e must violate Condition 1. or 2. Assume to reach a contradiction,

that G/e has a separation (A′, B′) violating Condition 2. Pick such a separation to minimize the size of B ′.

Let ve be the vertex of G/e corresponding to the contracted edge e, and let P ∗
i , P ′

i be as in the previous
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paragraph. Then if ve ∈ A′−B′, the separation (A′, B′) induces a separation (A, B) in G violating Condition

2 in the statement of the lemma. We conclude that ve ∈ B′. By Lemma 3.3, (G/e[B′], A′ ∩ B′) is linked.

If ve ∈ B′ − A′, (A′, B′) induces a rigid separation in G of order at most four, contrary to Claim 4.5. Thus

we may assume in fact that ve ∈ A′ ∩ B′, and (A′, B′) induces a separation (A, B) of order five in G with

X, X ′ ⊆ A and ρ(B − A) ≥ 5|B − A| + 1. Also, since only one path of the P ′
i uses endpoints of e, we know

that at most four paths of the P ′
i use vertices of B. If exactly four of the paths P ′

i use vertices of B, then

there exists an index i = 1, 2, 3 such that P ′
i and P ′

i+3 both use vertices of B. Without loss of generality,

assume P ′
1 and P ′

4 use vertices of B. It follows that no path can use vertices of B −A. The graph G[B −A]

must have some connected component with all of A ∩B as neighbors, since ρ(B −A) ≥ 5|B −A|+ 1. Then

the pair of terminals x1 and x4 can be connected with a path using vertices of B without intersecting the

remaining paths P ′
2, P

′
3, P

′
5, P

′
6 and consequently G satisfies (C1). Thus we may assume that at most three

of the paths P ′
i use vertices of B, and because |A ∩ B| = 5, at most two paths use more than one vertex of

B. By Lemma 3.3, (G[B], A ∩ B) is linked. We have shown G[B] satisfies all the conditions of Lemma 4.3.

Since G has no rigid separation of order at most four, we then know that G would satisfy (C1) or (C2), a

contradiction. �

Thus we may assume that contracting the edge e violates Condition 1. in the statement of the lemma.

We will show that the endpoints of e have five common neighbors. We refer to these common neighbors as

triangles containing e. We prove

Claim 4.8 Every edge e * X, e * X ′ is contained in at least five triangles.

Proof: Given such an edge e, by Claim 4.7 we see that G/e violates Condition 1 in the statement of the

lemma. Since G/e has exactly one fewer vertex in G/e − X , the edge count must decrease by at least five.

If e∩X = ∅, then the decrease in the edge count corresponds to the number of common neighbors of u and

v. Thus the endpoints of e have at least five common neighbors, proving the claim. If e = uv and v ∈ X ,

then upon contracting e, the edge count decreases by the sum the number of common neighbors of u and v

and the number of neighbors of u in X besides v. Without loss of generality, assume that v = x1. We know

that u is not adjacent to x4, since by Claim 4.6 there exist four paths from X −{x1, x4} to X ′−{x′
1, x

′
4} not

containing the vertex u. Moreover, we have already assumed that x1 is adjacent to all vertices of X besides

x4. Then, in fact, all the neighbors of u in X are common neighbors with v, and u and v consequently have

at least five common neighbors. �

Similarly to when we contracted an edge, if e * X and if G − e satisfies the conditions of the lemma,

then by minimality, there exist paths in G − e satisfying (C1) or (C2). Those paths would also exist in G.

We conclude that G − e violates Condition 1. or 2. of the lemma.

Claim 4.9 For any edge e * X, e * X ′, G − e violates Condition 1.
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Proof: Assume to reach a contradiction that there exists a separation (A, B) of G− e violating Condition

2. in the lemma. In order for (A, B) not to induce a separation in G violating Condition 2 in the statement

of the lemma, it must be the case that one end of e belongs to A − B and the other end to B − A. But the

ends of e must have at least five neighbors in common, and all these common neighbors must lie in A ∩ B.

This contradicts the order of (A, B), proving the claim. �

Since G − e does not satisfy Condition 1 in the statement of the lemma, as an immediate consequence

we see:

Claim 4.10 ρ(V (G) − X) = 5|V (G) − X | + 1.

We now show that we can find a vertex of small degree outside the sets X and X ′. Let

A := V (G) − X − X ′.

First, we see that A is not empty.

Claim 4.11 V (G) 6= ⋃6
i=1 V (Pi).

Proof: Assume that V (G) does in fact consist of the vertices of the paths P1, . . . , P6. Some path must be

non-trivial, since it is not the case that X = X ′ = V (G). Without loss of generality, assume P1 is non-trivial,

and let uv be an edge on P1, with x1u, v, x′
1 occurring on P1 in the order listed. We may also assume no

vertex of P1 has a neighbor on P4, lest we satisfy (C1). We see that u and v have five common neighbors on

the paths P2, P3, P5, P6. Then u and v have two common neighbors on the same path, say P2, call them r

and s, and assume r precedes s on the path P2. Then we get paths

x1P1usP2x
′
2, x2P2rvP1x

′
1, P3, . . . , P6

satisfying (C2), proving the claim. �

First we prove two facts we will use repeatedly in analyzing the cases to come is the following:

Claim 4.12 G contains no K5 subgraph.

Proof: The statement follows immediately from Lemma 4.3 and the fact that G has no rigid separation of

order at most four. �

Claim 4.13 For any vertex v ∈ A, there exist six disjoint paths P ∗
1 , . . . , P ∗

6 in G where the ends of P ∗
i are

xi ∈ X and yi ∈ X ′ such that the paths avoid v and the linkage problem {{y1, y4}, {y2, y5}, {y3, y6}} is equal

to L.
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Proof: Given such a vertex v ∈ A, by Claim 4.6, we know there exist P ∗
1 , . . . , P ∗

6 such that the ends of

P ∗
i are xi ∈ X and yi ∈ X ′. To see this, consider G − v. If there did not exist six disjoint paths from X

to X ′, then G − v would contain a separation (A, B) of order at most five with X ⊆ A and X ′ ⊆ B. Then

(A∪{v}, B ∪{v}) is a nontrivial separation in G separating X from X ′ of order at most six, a contradiction

to Claim 4.6.

If the paths P ∗
1 , . . . , P ∗

6 induced a distinct linkage problem on X ′, this would violate our choice of G as

a counterexample. �

The next claims establish that there exists a vertex in A of small degree.

Claim 4.14 Every vertex in A has at most six neighbors in X ∪ X ′.

Proof: Assume v ∈ A has strictly more than six neighbors in X ∪ X ′. By Claim 4.13, we may assume

v /∈ ⋃

i V (Pi). Then there exists some index i ∈ {1, 2, 3} such that v has both xi and xi+3 as neighbors, or v

has both x′
i and x′

i+3 as neighbors. Then we are able to link xi and xi+3 through the vertex v and still find

paths from the remaining four vertices of X to X ′. The graph G would then satisfy (C1), a contradiction.

�

Claim 4.15 There exists a vertex in A of degree at most 11.

Proof: Assume otherwise. If we let f(x) be the number of neighbors a vertex x ∈ X has in V (G) − X ,

then we see

2ρ(V (G) − X) =
∑

v∈A

deg(v) +
∑

x∈X′−X

deg(x) +
∑

x∈X

f(x)

By assumption, every vertex in A has degree at least 12, and every vertex v ∈ X ′ −X has some neighbor u

on the path Pi terminating at v. As we saw above, the edge uv is in at least five triangles, implying that v

has degree at least six. Thus we see

2ρ(V (G) − X) ≥ 12|A|+ 6|X ′ − X | +
∑

x∈X−X′

f(x)

Each vertex v ∈ X − X ′ has some neighbor u on the path Pi beginning at v, and the edge uv is in at least

five triangles. Since we know that v has at most four neighbors in X , f(v) ≥ 2. Thus

2ρ(V (G) − X) ≥ 12|A| + 6|X ′ − X | + 2|X − X ′|

= 10|V (G) − X | + 2|V (G) − X | − 4|X ′ − X |

= 10|V (G) − X | + 2|A| − 2|X ′ − X |.

Then because vertices in A have at most six neighbors in X ∪ X ′, we know that |A| ≥ 7. But in fact, if

|A| = 7, G[A] = K7, contradicting the fact that G has no K5 subgraph. Thus we may assume that |A| ≥ 8.

The above equation then contradicts the fact that ρ(V (G) − X) = 5|V (G) − X | + 1. �
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Let v ∈ A be a vertex of degree at most 11. We show that the neighborhood of v, N(v), is sufficiently

dense to apply Lemma 4.3. By Claim 4.8, we see that that the minimum degree of G[N(v)] is five. By

Claim 4.13, we may assume that none of the paths P1, . . . , P6 uses the vertex v.

Claim 4.16 There does not exist an index i ∈ {1, 2, 3} such that Pi and Pi+3 both intersect N(v).

Proof: Assume otherwise, and without loss of generality, that P1 and P4 intersect N(v). Then P1 can be

linked to P4 using the vertex v, implying that G would satisfy (C1), a contradiction. �

Claim 4.17 At most three paths of P intersect N(v). If exactly three such paths do intersect N(v), then

one of them contains exactly one vertex of N(v).

Proof: If four or more paths use vertices of N(v), then there exists an index i such that Pi and Pi+3 both

intersect N(v), contradicting Claim 4.16. Assume exactly three paths do, and further assume that all three

paths use at least two vertices of N(v). Again by Claim 4.16, we may assume the three paths are P1,P2, and

P3.

Let S := N(v) ∩ V (P) and T = N(v) − V (P). Let si and ti be the first and last vertex of S on Pi,

respectively. Then |S| ≥ 6 and hence |T | ≤ 5. We claim that for distinct integers i, j ∈ {1, 2, 3}
(?) There is no path Q from s ∈ S ∩ V (Pi) − {ti} to t ∈ S ∩ V (Pi) − {sj} with interior in T .

Indeed, if such a path Q exists, say for i = 1 and j = 2, then the paths

x1P1sQtP2x
′
2, x2P2s2vt1P1x

′
1, P3, P4, P5, P6

satisfy (C2), a contradiction.

In particular, (?) implies that every s ∈ S has at most three neighbors in S because s1 has at most

one neighbor in V (P1) ∩ S (since P1 is induced) and at most two in S − V (P1), namely s2 and s3. If

s ∈ V (P1)−{s1, t1}, then s has at most two neighbors in V (P1)∩S and none in S−V (P1). Thus each s ∈ S

has at least two neighbors in T by Claim 4.8. Also by (?), the neighbors in T of the vertices s1 and t2 belong

to different components of G[T ]; thus, in particular, G[T ] has at least two components and |T | ≥ 4. Hence

|S| ≤ 7. Since |T | ≤ 5, some component of G[T ], say J , has at most two vertices. By (?) the neighbors of J

that belong to S are contained in one of the following sets: S ∩ V (P1), S ∩ V (P2), S ∩ V (P3), {s1, s2, s3},
or {t1, t2, t3}. Since |S| ≤ 7, each of these sets has at most three vertices. Yet each vertex of J has at least

five neighbors in S ∪ T by Claim 4.8, a contradiction. �

In order to apply Lemma 4.3 and complete the proof of the lemma, all that remains to show is the

following claim.

Claim 4.18 Let S := {s1, t1, s2, t2, x} be vertices in N(v). There exist paths in G[N(v)∪ v] linking s1 to t1

and s2 to t2 that do not contain the vertex x.
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Proof: Consider the vertices s1 and t1. We may assume that s1 is not adjacent to t1, for otherwise the

paths s1t1 and s2vt2 would satisfy the claim. Each of s1 and t1 must have at least two neighbors each

in N(v) − S by Claim 4.8. We may assume these neighbors are in different components of G[N(v) − S],

otherwise, connect s1 and t1 with a path in N(v)− S and link s2 and t2 with the vertex v. But each vertex

in N(v) − S can have at most three neighbors in S, lest si and ti have a common neighbor for one of the

values of i. Thus each vertex of N(v) − S has at least two neighbors in N(v) − S. Since G[N(v) − S] must

have at least two connected components, we see that it in fact consists of two disjoint K3 subgraphs and

every vertex in N(v)−S has exactly three neighbors in S. But then every vertex in N(v)−S is adjacent to

x. Then one of the K3 subgraphs in N(v)−S along with x and v forms a K5 subgraph in G, a contradiction

to Claim 4.12. Thus, in fact we are able to link the pairs (si, ti) and avoid the vertex x. �

We have shown that the subgraph G[N(v) ∪ v] satisfies all the requirements of Lemma 4.3. Because we

have shown in Claim 4.5 that (G, X) does not have any rigid separations of order at most four, we arrive at

the final contradiction to our choice of G to not satisfy (C1) or (C2). �

5 The Extremal Function for 3-linkages

For the proof of Theorem 1.1, we consider the following stronger statement.

Theorem 5.1 Given a graph G and X ⊆ G with |X | = 6, if (G, X) is (5, 4)-massed, then it is linked.

We first see that Theorem 1.1 follows easily from Theorem 5.1.

Proof of Theorem 1.1, assuming Theorem 5.1 Let G be 6-connected, with |E(G)| ≥ 5|V (G)| −
14. Fix a set X of six vertices and a linkage problem L on X . Label the vertices of X such that L =

{{x1, x4}, {x2, x5}, {x3, x6}}. Let t be the number of edges of G with both ends in X . Then

ρ(V (G) − X) = |E(G)| − t ≥ 5|V (G)| − 14− t = 5|V (G) − X | + 16− t.

If t = 15, then the linkage problem L is feasible because G[X ] is a clique. If t = 13 or t = 14, then xi is

adjacent to xi+3 for at least one index i ∈ {1, 2, 3}, and hence L is feasible by Lemma 3.3 (iii). Finally, if

t ≤ 12, then L is feasible by Theorem 5.1. �

In the rest of this section we prove Theorem 5.1, modulo the technical Lemma 5.13, whose proof we

delegate to the next section. The proof method is again inspired by [13]. To begin the proof we rigorously

define what we mean by a minimal counterexample to Theorem 5.1.

Definition Let G be a graph, X ⊆ V (G) with |X | = 6, and let L be a linkage problem on X . Assume the

vertices of X are labeled such that L = {{x1, x4}, {x2, x5}, {x3, x6}}. Then the triple (G, X,L) is 3-minimal

if the following hold:
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(A) (G, X) is (5, 4)-massed.

(B) The linkage problem L is not feasible.

(C) Subject to (A) and (B), |V (G)| is minimal.

(D) Subject to (A), (B) and (C), ρ(V (G) − X) is minimal.

(E) Subject to (A), (B), (C) and (D), the number of edges of G[X ] is maximal.

In the course of the proof, we will ensure that every edge of a 3-minimal triple (G, X,L) not contained

in X is in five triangles. This means the neighborhood of a vertex v ∈ V (G) − X will induce a subgraph N

of minimum degree five. Moreover, we will see in Claim 5.16 that the edge bound (M1) in the definition of

(5, 4)-massed is satisfied with equality. Since the graph then has strictly less than 5|V (G)| edges, we know

G has a vertex of degree at most nine. Additionally we show that there exists such a vertex v of degree at

most nine not contained in the set X . We attempt to find disjoint paths from X to the neighborhood of v.

The graph G[N(v) ∪ {v}] is sufficiently dense that if we consider a set X ′ of at most five vertices in N(v),

the pair (G[N(v) ∪ {v}], X ′) is 2-linked. Thus if there exists a small separation separating X from N(v) in

the graph G, the pair (G, X) will have a rigid separation. The existence of a rigid separation will provide a

contradiction to our choice of a 3-minimal triple (G, X,L).

Given that no small separation exists, by Menger’s Theorem there exist six disjoint paths from X to

N(v). If we let X ′ be the set of ends of the paths in N(v) then the linkage problem on X naturally gives a

linkage problem L′ on the path ends X ′. Let N be the subgraph induced by N(v). Ideally, we would link

two pairs of L′ in the subgraph N , and link the third pair of terminals using the vertex v. It is not the

case, however, that any such two pairs of the linkage problem L′ can be linked in N . This leads us to the

following definition.

Definition Let G be a graph, X ⊆ V (G) with |X | = 6, and let L be a linkage problem on X consisting

of three pairs of vertices. Let the vertices of X be labeled such that L = {{x1, x4}, {x2, x5}, {x3, x6}}. The

triple (G, X,L) is quasi-firm if there exist distinct indices i and j in {1, 2, 3} and disjoint paths Pi and Pj

with all internal vertices in V (G) −X with the ends of Pi equal to xi and xi+3 and the ends of Pj equal to

xj and xj+3.

In our 3-minimal triple (G, X,L) above, we do not need (N, X ′) to be 2-linked and that we be able to link

any two pairs of vertices; it would suffice that only some two pairs of vertices in L could be linked. If the

triple (N, X ′,L′) were quasi-firm, we could link the final pair of vertices of L′ using the vertex v adjacent all

of N(v). Unfortunately, it is not the case that (N, X ′,L′) will always be quasi-firm, but the instances where

it is not are limited in scope.

Following the strategy of [13] we prove that a 3-minimal triple cannot contain a rigid separation of order

at most six.
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Lemma 5.2 Let (G, X,L) be a 3-minimal triple. Then the pair (G, X) does not have a nontrivial rigid

separation of order at most 6.

Proof: Assume that (G, X) does have a nontrivial rigid separation, call it (A, B). Assume from all such

rigid separations, we pick (A, B) such that |A| is minimized. If |A ∩ B| = 6, then find six paths from X to

A ∩ B in G[A]. If such paths existed, we could link the endpoints of the paths as prescribed by the linkage

problem L given the fact that (G[B], A∩B) is linked. But if those six paths did not exist, then G[A] contains

a separation (A′, B′) of order less than six with X ⊆ A′ and A ∩ B ⊆ B′. But such a separation (A′, B′)

chosen of minimal order induces a rigid separation of (G, X), namely (A′, B ∪ B′), violating our choice of

(A, B).

Now assume (A, B) has order at most five. Let G′ be obtained from G in the following manner. The

graph G′ is equal to G[A] with additional edges added to every non-adjacent pair of vertices in A∩B. Thus

G′[A∩B] is a complete subgraph. By (M2) we deleted at most 5|B −A| edges when we deleted the vertices

of B −A, and as a result, ρ(V (G′)−X) ≥ 5|A−X |+ 4. Assume that (G′, X) also satisfies condition (M2).

Then by (C), we know linkage problem L is feasible in G′. Take three paths linking the pairs of L, and

choose them to be as short as possible. Then each path uses at most one edge in A∩B because G′[A∩B] is

a complete subgraph. These disjoint edges can be extended to disjoint paths in G with every internal vertex

in B − A by the fact that (G[B], A ∩ B) is linked. Thus the linkage problem L would be feasible in G, a

contradiction.

Consequently, the pair (G′, X) has a separation violating (M2). Let (A′, B′) be such a separation, and

assume it is picked such that |B′| is minimized. Because G′[A ∩ B] is a complete subgraph, A ∩ B ⊆ A′ or

A∩B ⊆ B′. If A∩B ⊆ A′, then (A′ ∪B, B′) would be a separation in G violating (M2). Thus A∩B ⊆ B ′.

Given our choice of (A′, B′), we know (G′[B′], A′ ∩ B′) is (5, 1)-massed. By Lemma 3.3 (i), we know that

(G′[B′], A′ ∩B′) is linked. Disjoint paths in G′[B′] using edges of A ∩B can be extended as in the previous

paragraph, so we see that (A′, B′ ∪B) is a rigid separation of G, violating our choice of (A, B). This proves

the lemma. �

The following lemma will be used to show that if (G, X,L) is a 3-minimal triple, v ∈ V (G) − X has

degree at most nine, and X ′ ⊆ N(v) satisfies |X ′| ≤ 5, then (G[N(v) ∪ {v}], X ′) is 2-linked.

Lemma 5.3 Let G be a graph and X ⊆ V (G) with |X | ≤ 5. Assume that δ(G) ≥ 6, |V (G)| ≤ 10, and

moreover, assume there exists a vertex v ∈ V (G) − X adjacent to every other vertex of G. Then (G, X) is

2-linked.

Proof: Let L be a linkage problem on X . Clearly, we may assume that |X | ≥ 4 and L consists of two

pairs of vertices, otherwise there can be at most one pair of vertices in L and they can be linked through

the vertex v. Assume that the vertices of X are labeled such that L = {{s1, t1}, {s2, t2}}. Let H be the
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subgraph induced on V (G) − {v} − X . Then |V (H)| ≤ 5. If H is not connected, then it has a component

of order at most two. Consequently, there exists a vertex x ∈ V (H) with at least four neighbors in X , and

there exists an index i = 1 or 2 such that x is adjacent to both si and ti. Then si and ti can be linked

through the vertex x and the other pair of vertices in L can be linked through the vertex v.

Thus we have shown that H must be a connected subgraph. If s1 were adjacent to t1, we could link

s2 and t2 through the vertex v to show that the linkage problem is feasible. Otherwise, s1 and t1 are not

neighbors, and consequently they each have at least two neighbors in H . Since H is connected, we can link

s1 and t1 in the subgraph H and still link s2 and t2 through the vertex v. Thus the linkage problem L is

feasible, completing the proof. �

Lemma 5.4 Let G and X ⊆ V (G) with |X | = 6 such that δ(G) ≥ 5 and |V (G)| ≤ 9. Let L =

{{x1, x4}, {x2, x5}, {x3, x6}} be a linkage problem on X. If (G, X,L) is not quasi-firm, then the follow-

ing hold:

1. For any vertices xi and xj in X, there exists a path linking xi and xj with no internal vertex in X,

2. for any linkage problem L′ on X distinct from L, the triple (G, X,L′) is quasi-firm, and

3. for any index i ∈ {1, . . . , 6} and any vertex y ∈ V (G) − X, if we consider the linkage problem L′ =

{{y, xi+3}, {xi+1, xi+4}, {xi+2, xi+5}} on (X − {xi}) ∪ {y} where all index addition is mod 6, then

(G, (X − {xi}) ∪ {y},L′) is quasi-firm.

Proof: We prove the lemma by a series of intermediate claims. First, we prove several general observations

about the structure of G before we analyze the cases arising from the possible sizes of G. Let H be the

induced subgraph on V (G) − X , and let the vertices of H be labeled h1, . . . , hi where i ≤ 3.

Claim 5.5 H is a connected subgraph.

Proof: Assume H is not connected. Because |V (H)| ≤ 3, one component of H must then consist of an

isolated vertex, call it h1. Then h1 has at least five neighbors in X , and consequently, there exist distinct

indices i and j such that xi, xi+3, xj and xj+3 all are adjacent to h1. Also, there exists some h2 distinct

from h1 that has at most one neighbor in H . Consequently h2 has at least four neighbors in X , and so there

exists an index k such that xk and xk+3 are both adjacent to h2. The index k must be distinct from i or j, so

without loss of generality assume k 6= i. Then the paths xih1xi+3 and xkh2xk+3 contradict our assumption

that (G, X,L) is not quasi-firm. �

Conclusion 1 follows easily now.

Claim 5.6 For any xi and xj in X, there exists a path linking xi and xj with no internal vertex in X.
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Proof: We may assume that xi is not adjacent xj . Then xi and xj each must have some neighbor in H .

By Claim 5.5, H is connected so the desired path exists. �

Claim 5.7 For every i = 1, 2, 3, the vertices xi and xi+3 are not adjacent.

Proof: Assume, without loss of generality, that x1 is adjacent x4. Using Claim 5.6, there exists a path

linking x2 and x5, contradicting the assumption that (G, X,L) is not quasi-firm. �

We have seen that H is connected, but in fact we can show something stronger. We now prove the

following claim.

Claim 5.8 H is a complete subgraph.

Proof: Assume that H is not a complete subgraph. By Claim 5.5, we may assume that H is connected,

forcing H to be a path on three vertices. Without loss of generality, assume that h1 and h3 are the endpoints

of the path. Then h1 and h3 have four neighbors in X , and consequently there exists an index i such that

h1 is adjacent xi and xi+3. Similarly, there exists an index j such that h3 is adjacent to xj and xj+3. We

may assume that i = j, since otherwise the paths xih1xi+3 and xjh2xj+3 contradict our assumption that

(G, X,L) is not quasi-firm. Without loss of generality, we assume i = 1 and x1 and x4 are both adjacent to

h1 and h3. We know that h2 must have at least three neighbors in X , so h2 has some neighbor that is neither

x1 nor x4. Without loss of generality, assume that x2 is adjacent to h2. The vertex x5 has some neighbor

in V (H). If x5 is adjacent to h2, we get the linkage x1h1x4 and x2h2x5. But otherwise, x5 is adjacent one

of h1 and h3. The cases are symmetric, so assume x5 is adjacent h1. Then we get the linkage x1h3x4 and

x2h2h1x5. Every case contradicts the assumption that (G, X,L) is not quasi-firm, proving the claim. �

It will be convenient to refer to pairs of vertices we have shown to not be adjacent.

Definition A set a = {x, y} of two distinct vertices x and y is an anti-edge if x is not adjacent to y.

To avoid confusion with edges, we will denote an anti-edge containing x and y by (x, y). An anti-matching

of size k is a set of k disjoint anti-edges. A perfect anti-matching in a graph H is an anti-matching of size

|V (H)|/2.

Claim 5.9 G[X ] does not contain two distinct perfect anti-matchings.

Proof: We know by Claim 5.7 that the pairs x1x4, x2x5, and x3x6 form a perfect anti-matching. If another

distinct perfect anti-matching on X existed, then there would exist two distinct indices i and j such that xi,

xi+3, xj and xj+3 all have at most three neighbors in X . Thus they each have at least two neighbors in H .

Then xi and xi+3 have a common neighbor in H , say h1. By Claim 5.8, the subgraph H − h1 is connected.
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Since xj and xj+3 each have a neighbor in H −h1, we get the linkage consisting of xih1xi+3 and a path from

xj to xj+3 with interior in H − h1, a contradiction. �

In other words, if G[X ] does not contain a unique perfect anti-matching, then (G, X,L) is quasi-firm.

The second conclusion of the lemma now follows easily.

Claim 5.10 For any linkage problem L′ on X distinct from L, the triple (G, X,L′) is quasi-firm.

Proof Assume that (G, X,L′) is not quasi-firm. Then Claim 5.7 holds for the triple (G, X,L′). However,

then both L and L′ induce distinct perfect anti-matchings in X , contrary to Claim 5.9. �

This proves Conclusion 2 of the lemma. We also can now prove the third point in the lemma.

Claim 5.11 For any index i ∈ {1, . . . , 6} and any vertex y ∈ V (G) −X, if we consider the linkage problem

L′ = {{y, xi+3}, {xi+1, xi+4}, {xi+2, xi+5}} on (X − {xi}) ∪ {y} where all index addition is mod 6, then

(G, (X − {xi}) ∪ {y},L′) is quasi-firm.

Proof Assume the claim is false and that (G, (X − {xi}) ∪ {y},L′) is not quasi-firm. Without loss of

generality, assume i = 1 and L′ = {{y, x4}, {x2, x5}, {x3, x6}}. By the previous claims, we know that H is

connected, and that x1 is not adjacent x4, which forces x4 to have at least one neighbor in H . If x2 and

x5 or x3 and x6 had x1 as a common neighbor, say x2 and x5, we would get the path x2x1x5 and we can

connect y1 to x4 using H , contradicting the fact that (G, (X − {x1}) ∪ {y},L′) is not quasi-firm. Hence

x1 is adjacent to at most one vertex of x2 and x5 and at most one vertex of x3 and x6. Without loss of

generality assume x1 is not adjacent x2 and x3. By the minimum degree condition of G, it follows then that

x1 has three neighbors in H and that x1 is adjacent to x5 and x6. From Claim 5.7 applied to the triple

(G, (X − {x1}) ∪ {y},L′), we deduce that x4 is not adjacent to y. It follows that x4 must have a neighbor

h1 in H different from y. Let h2 be the other vertex of H not equal to h1 or y. Note that y is adjacent h1

and h2 by Claim 5.8.

If the vertex x2 is adjacent to h2, then the linkage x2h2x1x5 and yh1x4 contradicts the fact that (G, (X−
{x1}) ∪ {y},L′) is not quasi firm. Thus x2 is not adjacent to h2 and by the minimum degree condition, x2

is adjacent to y. Similarly, h2 is not adjacent to x3 and x3 is adjacent to y. The vertex h2 must be adjacent

to one of x5 and x6, again by the minimum degree condition of G. By symmetry, assume h2 is adjacent x5.

We get the linkage x2yh2x5 and x1h1x4, contradicting the fact that the triple (G, X,L) is not quasi-firm.

This final contradiction proves the claim.�

This completes the proof of the lemma. �

A significant difficulty in the proof of Theorem 5.1 is what to do with separations (A, B) of order six

where X ⊆ A and ρ(B −A) > 5|B −A| and ρ(B −A) < 5|B −A|+ 4. If ρ(B −A) > 5|B −A|, then B −A
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contains too many edges to simply disregard, however, with ρ(B−A) < 5|B−A|+4, G[B] does not contain

enough edges to provide a rigid separation. However, in the application in the proof, the separation (A, B)

will be such that (G[B], A ∩ B) is 2-linked, and we will be able to proceed.

Moreover, these unpleasant separations need not be unique. We will have to examine the case when

the graph can be decomposed into a large number of non-crossing separations. We explicitly define a

decomposition thus:

Definition Let X ⊆ V (G) with |X | = 6 and let k ≥ 1. A sequence (A, B1, . . . , Bk) of subsets of V (G) is a

star decomposition of (G, X) if the following conditions hold:

1. X ⊆ A,

2. for all distinct indices i, j ∈ {1, . . . , k}, Bi ∩ Bj ⊆ A,

3. for all i ∈ {1, . . . , k}, (
⋃

j 6=i Bj ∪ A, Bi) is a separation of order exactly six, and

4. for all i ∈ {1, . . . , k}, (G[Bi], A ∩ Bi) is 2-linked.

The separations (
⋃

j 6=i Bj∪A, Bi) are called the separations determined by the star decomposition (A, B1, . . . ,

Bk).

As an easy observation about star decompositions, we give the following lemma.

Lemma 5.12 Let (G, X,L) be a 3-minimal triple, and let (A, B1, . . . , Bk) be a star decomposition of (G, X).

For all i = 1, . . . , k, there does not exist a separation (C, D) of G of order at most five with X ⊆ C and

Bi ⊆ D.

Proof: Assume such a separation (C, D) existed for some index i. Assume we pick such a separation of

minimal order. Then there exist disjoint paths from C ∩ D to Bi ∩ A in G[D], and any linkage problem on

C ∩D extends to a linkage problem on Bi ∩A. Moreover, since |C ∩D| ≤ 5, the induced linkage problem has

at most two pairs of vertices. Consequently, the induced linkage problem will be feasible in G[Bi], implying

that (C, D) is a rigid separation of (G, X). This contradicts Lemma 5.2. �

Given a pair (G, X) and a star decomposition (A, B1, . . . , Bk), let e = uv be a fixed edge of G not con-

tained in X . Then the star decomposition (A, B1, . . . , Bk) induces the star decomposition (A∗, B∗
1 , . . . , B∗

k)

in G/e where ve, the vertex of G/e corresponding to the contracted edge e, lies in B∗
i or A∗ if and only if

either u or v are elements of Bi or A, respectively.

Lemma 5.13 Let (G, X,L) be a 3-minimal triple. Let e = uv be a fixed edge in G not contained in X. Let

G have a star decomposition (A, B1, . . . , Bk) with the added constraint that e ⊆ Bi ∩ A for all i = 1, . . . , k.

Let (A∗, B∗
1 , . . . , B∗

k) be the induced star decomposition in G/e. Then
⋃

i(B
∗
i ∩A∗) has at least 3k anti-edges.

The proof of Lemma 5.13 is somewhat involved and technical. We postpone the proof until Section 6

and proceed with the proof of Theorem 5.1.
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Proof of Theorem 5.1, assuming Lemma 5.13. Assume the theorem is false. We let (G, X,L) be a

3-minimal triple. First, we make the following observation.

Claim 5.14 The pairs (xi, xi+3) are anti-edges for all i = 1, 2, 3. Moreover, these are the only anti-edges

in G[X ].

Proof: If there exists some index, say i = 1, such that x1 is adjacent to x4, then by Lemma 3.3 (iii), the

linkage problem L is feasible in G, a contradiction. Moreover, since adding any edge to G[X ] not linking a

pair of vertices of L does not affect the feasibility of L, we see by (E) in the definition of 3-minimality that

every anti-edge of G[X ] is of the form (xi, xi+3) for some index i. �

Claim 5.15 Every edge e, where e * X, the edge e is contained in at least five triangles.

Proof Assume e = uv is such an edge but that the endpoints of e do not have five common neighbors.

Contract the edge e. If the pair (G/e, X) is (5, 4)-massed, then by minimality, L is feasible in G/e. The paths

solving L extend to paths in G, contradicting the fact that L is not feasible in G. It follows that (G/e, X)

fails to satisfy (M1) or (M2). We claim it fails the latter. To prove this claim, suppose for a contradiction

that (G/e, X) satisfies (M2); then it does not satisfy (M1). Thus ρG(V (G)−X)−ρG/e(V (G/e)−X) ≥ 6. If

e does not have an end in X , the number ρG/e(V (G/e)−X) decreases by the number of common neighbors

of u and v plus one. By our assumptions on e, then, either u or v must be a vertex of X . In this case,

ρG/e(V (G/e) − X) decreases by the number of triangles containing e plus the number of neighbors of v in

X −{u} not adjacent to u. By (E) in the definition of 3-minimal, the vertex u has at most one non-neighbor

in X . It follows that ρG/e(V (G/e) − X) ≥ 5|V (G/e) − X | + 3 and if equality holds, there exists an index

i such that xi and xi+3 in X are adjacent in G/e. Since the pair (G/e, X) satisfies (M2), either (G/e, X)

is (5, 4)-massed, or (G/e, X) is (5, 3)-massed and xi is adjacent to xi+3. The linkage problem L is feasible

in G/e by minimality in the first case; L is feasible by Lemma 3.3 (iii) in the second case. Either is a

contradiction. This proves the claim, and we conclude that (G/e, X) fails to satisfy (M2).

Then G/e has a separation (A∗, B∗) of order at most five with ρ(B∗ −A∗) ≥ 5|B∗−A∗|+1. We will use

the separation (A∗, B∗) to construct a star decomposition of (G, X). Note that (A∗, B∗) is a rigid separation

of (G/e, X) by Lemma 3.3 (i). This separation induces a separation (A, B) in G in the following manner.

Let ve ∈ V (G/e) be the vertex corresponding to the contracted edge, and then A = (A∗ ∪ {u, v}) − {ve} if

ve ∈ A∗ and A = A∗ otherwise. Similarly define B. First consider the case when e * A ∩ B. If the edge

e ⊆ A, then (A, B) is a separation in G violating (M2). Now assume e ⊆ B. Then (A, B) is a rigid separation

of (G, X), since any paths linking A∗ ∩B∗ in G/e also exist in G. This is a contradiction to Lemma 5.2. We

conclude that e ⊆ A ∩ B. Note that in G, ρ(B −A) ≥ 5|B −A| + 1. Consequently |A ∩ B| = 6. By Lemma

3.3, we know that (A, B) is a 2-linked separation of (G, X) with e ⊆ A ∩ B.
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A 2-linked separation (A, B) of (G, X) of order six with e ⊆ A ∩ B is maximal if there does not exist a

separation (A′, B′) of (G, X) of order six with e ⊆ A′ ∩B′ and X ⊆ A′ ( A. Since (G, X) has at least one 2-

linked separation with e contained in the intersection, it must have at least one maximal 2-linked separation

of order six. Let (A, B1, . . . , Bk) be a star decomposition of (G, X), where each separation determined by

the star decomposition is maximal and e ⊆ Ai ∩Bi for all i. Assume we have chosen the decomposition such

that k is maximum. Let A∗, B∗
1 , . . . , B∗

k be the sets of vertices induced in G/e by (A, B1, . . . , Bk), and again

let S∗
i = B∗

i ∩ A∗. We know that ρ(Bi − Si) ≤ 5|Bi − Si| + 3, lest by minimality we find a rigid separation

of order six. Thus in G/e, ρ(B∗
i − S∗

i ) ≤ 5|B∗
i − S∗

i |+ 3. By Lemma 5.13, we see that in G/e that there are

a total of 3k anti-edges contained in
⋃

S∗
i . Moreover, each (

⋃

j 6=i B∗
j ∪ A∗, B∗

i ) is a rigid separation of G/e.

Consider G∗ defined by taking G/e and deleting all vertices in B∗
i − S∗

i for every i and adding edges to

all non-adjacent pairs in any S∗
i . First observe that any linkage solving L in G∗ would extend to a linkage in

G solving L. That is because if we picked such a linkage to minimize the number of vertices used, each path

would use at most one edge in any S∗
i since G∗[S∗

i ] is complete. Moreover, since |S∗
i | ≤ 5, at most two paths

in our solution use edges contained in S∗
i . Then looking at the linkage solving L in G, we are missing at most

two edges in Si for any index i. Because the determined separations of a star decomposition are 2-linked,

we can extend the solution of L in G∗ to a solution in G, contradicting the definition of 3-minimality.

We now prove that the pair (G∗, X) satisfies (M2). Assume we have a separation (C, D) in (G∗, X)

violating (M2). Pick such a separation to minimize |C|. If ve ∈ C − D, then every S∗
i ⊆ C, and as a

consequence, ((C − {ve}) ∪ {u, v} ∪ (
⋃

i Bi), D) is a separation in G violating (M2). If ve ⊆ D − C, then

(C, (D − {ve}) ∪ {u, v} ∪ (
⋃

i Bi)) is a rigid separation in G because disjoint paths linking C ∩ D in G∗

extend to disjoint paths in G as in the previous paragraph. Thus we may assume ve ∈ C ∩ D. Then

no S∗
i is a subset of D, lest we violate the maximality of the separation (A ∪ (

⋃

j 6=i Bj), Bi) or Lemma

5.12. Also, we know that |C ∩ D| = 5, lest (G, X) have a separation violating (M2). It follows that

((C − {ve}) ∪ {u, v}, B1, . . . , Bk, (D − {ve}) ∪ {u, v}) is a star decomposition of G violating our choice to

make k maximum. This completes the proof that (G∗, X) satisfies (M2).

We now count ρG∗(V (G∗) − X) and show that L must be feasible in G∗, contradicting our earlier

observation that a linkage solving L in G∗ extends to a linkage solving L in G. In our initial observations

for this claim, we saw that ρG/e(V (G/e)−X) ≥ 5|V (G/e)−X |+3 with equality holding if and only if there

exists an index i such that xi is adjacent to xi+3 in G/e. When we construct G∗ and we delete the vertices of

B∗
i −A∗, we lose at most 5|B∗

i −A∗|+3 edges for i = 1, . . . , k. By Lemma 5.13, |E(G∗)| ≥ |E(G/e[A∗])|+3k,

which implies that ρG∗(V (G∗) − X) − ρG/e(A
∗ − X) is at least 3k minus the number of edges added to G∗

that have both ends in X . We conclude that ρG∗(V (G∗ −X) ≥ 5|V (G∗)−X |+ 4− t where t is the number

of indices i such that xi is adjacent xi+3 in G∗. By the 3-minimality of (G, X,L) if t = 0, or by Lemma 3.3

if t ≥ 1, it follows that L is feasible in G∗, a contradiction. This completes the proof of the claim. �

Claim 5.16 ρ(V (G) − X) = 5|V (G) − X | + 4.
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Proof Consider an edge e = uv such that e * X . If (G − e, X) is (5, 4)-massed, then by the definition of

3-minimality, there exist disjoint paths in G − e solving the linkage problem L. Those paths would exist in

G as well, a contradiction. We conclude that G − e violates (M1) or (M2).

Let (A, B) be a separation of (G− e, X) violating (M2). Then without loss of generality, we may assume

u ∈ A−B and v ∈ B−A, lest (G, X) have a separation violating (M2). By Claim 5.15, we know u and v have

at least five common neighbors. These neighbors must be in A because u ∈ A−B, and these neighbors must

also be in B because v ∈ B−A. It follows that u and v are adjacent to every vertex of A∩B, and |A∩B| = 5.

By considering the separation (A, B ∪ {u}) in G, we see that ρ((B ∪ {u})) − A) ≥ 5|(B ∪ {u}) − A| + 2, so

(G[B∪{u}], (A∩B)∪{u}) is 2-linked by Lemma 3.3 (iii). In fact, this is actually a rigid separation because

u is adjacent every other vertex in A∩B, so given any linkage problem on (A∩B)∪{u}, we can link u to its

paired vertex with an edge and link the remaining two pairs of vertices with paths in G[B]. This contradicts

Lemma 5.2. We conclude that (G − e, X) violates (M1), implying the claim.�

Claim 5.17 There exists a vertex v ∈ V (G) − X such that 6 ≤ deg(v) ≤ 9, and in fact if no such vertex

of degree at most seven exists, then there exist at least two vertices in V (G) − X with degree either eight or

nine.

Proof The previous claim states that ρ(V (G)−X) = 5|V (G)−X |+4. Observe that every vertex in X must

have at least two neighbors in V (G) − X . If xi ∈ X had no neighbors in V (G) − X , then (X, V (G) − {xi})
is a separation of order five violating (M2). If xi had only one neighbor in V (G)−X , say the vertex y, then

the edge xiy must be in five triangles. But xi has no other neighbor in V (G) − X , so xi and y must have

five common neighbors in X , and consequently, xi is adjacent to xi+3, contrary to Claim 5.14. Hence, every

vertex xi ∈ X has at least two neighbors in V (G) − X .

Define f(x) to be the number of neighbors that x ∈ X has in V (G) − X . Then

2ρ(V (G) − X) =
∑

v∈V (G)−X

deg(v) +
∑

x∈X

f(x).

Suppose that every vertex of V (G) − X has degree in G at least eight, and let k be the number of vertices

of V (G) − X of degree at most nine. Then

∑

v∈V (G)−X

deg(v) +
∑

x∈X

f(x) ≥ 10(|V (G) − X | − k) + 8k + 2|X |.

Claim 5.16 implies that the left-hand side is equal to 2(5|V (G) − X | + 4), and hence k ≥ 2, as desired. �

Now we will see that either the linkage problem L is feasible in G contradicting the fact that (G, X,L)

is a 3-minimal pair, or we find a separation violating Lemma 5.2.

Claim 5.18 There do not exist two vertices in V (G) − X each adjacent to every vertex of X.
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Proof Assume the claim is false, and let u and v be two such vertices. Then consider connected com-

ponents A1, . . . , At of G − (X ∪ {u, v}). Then ρG(V (G) − X) = ρG[X∪{v,u}]({v, u}) +
∑k

i=1 ρ(Ai). Since

ρG[X∪{v,u}]({v, u}) ≤ 13 = 5(2) + 3, we see that ρG(Ai) ≥ 5|Ai|+ 1 for some index i. Then Ai must have at

least six neighbors in X ∪ {v, u}, implying that Ai must have four neighbors among X . Thus there exists

an index j such that Ai has a neighbor of xj and xj+3. Then the linkage problem L is feasible since we can

link one pair with Ai and the other two pairs with u and v, a contradiction. �

Now we examine the neighborhood of a vertex of small degree in V (G) −X . Let v ∈ V (G) −X be such

a vertex of degree equal to the minimum of 6 or 7, if possible, and otherwise, pick v to be a vertex of degree

at most 9, and if possible, pick it such that it is not adjacent every vertex of X . As we saw above, such a

vertex exists. Let N be the subgraph induced on N(v) ∪ {v}.

Claim 5.19 There exist six disjoint paths linking X to N(v).

Proof Assume the paths do not exist. Then there exists a separation (A, B) of order at most five with

X ⊆ A and N(v) ⊆ B. Pick such a separation of minimal order. Then there exist a linkage Q with |A ∩ B|
components from A ∩ B to N(v). We may assume that no component of Q uses the vertex v. Let X ′ be

the termini of the components of Q in N(v). By Lemma 5.3 and Claim 5.15, the pair (N, X ′) is linked.

Consequently, the separation (A, B) is rigid contrary to Lemma 5.2. This proves the claim. �

Let P be a linkage from X to N(v). Label the components of P P1, . . . , P6 and label the termini of P
such that the endpoints of Pi are xi and x′

i. Let X ′ := {x′
1, x

′
2, . . . , x

′
6} and let L′ be the linkage problem on

X ′ induced by L and P .

If (G[N(v)], X ′,L′) were quasi-firm, then L would be feasible, a contradiction. Thus the conclusions of

Lemma 5.4 hold for the triple (G[N(v)], X ′,L′). If there exists a path from V (P) − X ′ to N(v) − X ′, then

we can reroute some path Pi to arrive in N(v) in some vertex y not contained in X ′. As a result, we have

a linkage from X to N(v) with the set of termini being (X ′ − {xi}) ∪ {y} such that the linkage problem L′

induced by L is {{y, xi+3}, {xi+1, xi+4}, {xi+2, xi+5}} with all index addition mod six. Then by Lemma 5.4,

(G[N(v)], (X ′ − {xi}) ∪ {y},L′) is quasi-firm, implying that L is feasible in G, a contradiction.

We conclude that there exists a separation (A, B) with X ⊆ A, V (N) ⊆ B, and A ∩ B = X ′. Assume

that the separation (A, B) is non-trivial. Then we see that ρ(B − A) ≤ 5|B − A| + 3, lest (A, B) be a rigid

separation by the minimality of (G, X,L). Consequently, ρG[A](A − X) ≥ 5|A − X | + 1. We apply Lemma

4.4 to the subgraph G[A] and the linkage P from X to A∩B. If (C1) holds, then we can link the remaining

two pairs of vertices in L′ by property 1. in Lemma 5.4 and using the vertex v adjacent all of X ′. If (C2)

holds in the application of Lemma 4.4, then there exists a linkage P ′ from X to A ∩ B inducing a distinct

linkage problem on X ′. But then by property 2. Lemma 5.4, this new linkage problem is feasible in G[B].

Either case gives a contradiction to the fact that L is not feasible in G.
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If the separation (A, B) in the previous paragraph were in fact trivial, then the vertex v is adjacent to

every vertex of X . If |N(v)| = 6, then G[X ] is a complete subgraph, a contradiction. If |N(v)| = 7, then

since there does not exist an index i with xi adjacent to xi+3, Claim 5.15 implies that N(v) consists of X

and a single vertex adjacent to all of X . This contradicts Claim 5.18. Thus we see deg(v) ≥ 8. But then

there is at least one more such vertex u of degree at most nine by Claim 5.17. By the choice of v, the vertex

u is also adjacent to every vertex of X , again contradicting Claim 5.18. This final contradiction completes

the proof of Theorem 5.1 demonstrating that no 3-minimal triple exists. �

6 Proof of Lemma 5.13

Given the star decompositions in the statement, let Si := A∩Bi and S∗
i = B∗

i ∩A∗. The proof of the lemma

will follow from two main arguments. First, since every Bi determines a 2-linked separation, we will see

that every Si must contain several anti-edges. In fact, we will see that even upon contracting the edge e, Si

will contain three anti-edges. We will show that these anti-edges can be chosen to be pairwise distinct for

different values of the index i.

Claim 6.1 For all i = 1, 2, . . . , k we have ρ(Bi − Si) ≤ 5|Bi − Si| + 3.

Proof: Otherwise the separation (
⋃

j 6=i Bj ∪ A, Bi) is rigid by the 3-minimality of (G, X,L), contrary to

Lemma 5.2. �

Claim 6.2 For every value of i ∈ {1, 2, . . . , k}, G[Si] has two distinct perfect anti-matchings. For any anti-

edge (x, y) of either of the two anti-matchings, there exists a linkage P from X to Si with six components

and an index j such that if we label Pk the component of P containing xk, then the termini of Pj and Pj+3

are x and y.

Proof: By Lemma 5.12, there exist six disjoint paths from X to Si. Given a linkage from X to Si, the

linkage problem L induces a linkage problem L′ on Si. Each pair of L′ must be an anti-edge, lest we link

the two remaining pairs in G[Bi] and contradict the fact that L is not feasible.

Given that ρ(G−X) ≥ 5|G−S|+4, Claim 6.1 implies that ρ
((

⋃

j 6=i Bj ∪ A
)

− X
)

≥ 5|
(

⋃

j 6=i Bj ∪ A
)

−
X |+1. By Lemma 4.4, one of (C1) or (C2) must hold. If (C1) holds, we can link one pair of L in G[

⋃

j 6=i Bj∪A]

and link the two remaining pairs in G[Bi], making L feasible, a contradiction. Thus (C2) holds. Through this

new linkage from X to Si, L induces a linkage problem L′′ distinct from L′. As in the previous paragraph,

the pairs in L′′ form an perfect anti-matching. Thus G[Si] contains two distinct perfect anti-matchings, and

the claim follows. �

We now examine in more depth the properties of G[Si].
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Claim 6.3 Fix i and let x, y ∈ Si. Then G[Si] has at least two anti-edges not incident with x or y, and

moreover, if there are exactly two such edges, then they have a common end point.

Proof: By Claim 6.2 the complement of the graph G[Si] has a subgraph isomorphic to C6 or C4 ∪ K2.

Thus G[Si] must contain at least one anti-edge not incident with x or y. We may assume that G[Si] has at

least three anti-edges incident with x or y, for otherwise the conclusion holds.

Assume for every vertex v in G[Si], there is at most one anti-edge incident with v that does not have x

or y as the other endpoint. Let the graph G′ obtained from G by deleting the vertices Bi −Si and for every

z ∈ Si −{x, y}, adding the edge xz and yz if it does not already exist, and adding the edge xy if it does not

already exist. By Claim 6.1 and the fact that Si had at least three anti-edges incident with x or y, we know

that ρG′(V (G′) − X) ≥ 5|V (G′) − X | + 4. Now if (G′, X) had no separation violating (M2), then by the

3-minimality of (G, X,L), the pair (G′, X) is linked. Let P1, P2, and P3 be paths solving the linkage problem

L. At most two of these paths use the vertices x and y, so we may assume P3 uses only edges present in G.

If either the paths P1 and P2 contain vertices of Si, then they have first and last vertices in Si. Label the

vertices w1, w2 for P1, and z1, z2 for P2. In G[B], there exist paths Q1 and Q2 with ends w1, w2 and z1, z2

respectively, with the property that Qi ∩V (G′) ⊆ Si. Then x1P1w1Q1w2P1x4, x2P2z1Q2z2P2x5 and x3P3x6

is a linkage in G solving L. This contradiction implies that (G′, X) has a separation violating (M2).

Let (A′, B′) be a separation in (G′, X) violating (M2). Then if Si ⊆ A′, then (A′ ∪Bi, B
′) is a separation

of (G, X) violating (M2). If Si ⊆ B′, then we would have a separation of order at most five separating X

from Si, contradicting Lemma 5.12. It follows that there exist some vertices w1 and w2 in Si such that

w1 ∈ A′ −B′ and w2 ∈ B′ −A′. Then w1 is not adjacent w2, and by our assumptions on G[Si], we know w1

and w2 are each adjacent (in G′) to every other vertex in Si. If the other vertices of Si are x, y, z1, z2, then

x, y, z1, z2 ∈ A′ ∩ B′. If A′ ∩ B′ = {x, y, z1, z2}, then (A′ ∪ {w2} ∪ Bi, B
′) is a separation in G of order five

separating X from Bi, a contradiction again to Lemma 5.12. We conclude A′∩B′ contains exactly one other

vertex not yet defined. Call it a. In the graph G′, there exist six disjoint paths from X to {x, y, z1, z2, a, w1},
lest G have a separation of order at most five separating X from Si. Label the six paths P1, . . . , P6 and let

the ends of Pj be xj ∈ X and x′
j ∈ {x, y, z1, z2, a, w1}. Note Pj may be a trivial path consisting of just one

vertex, in which case xj and x′
j are not distinct.

The linkage problem L induces the linkage problem L′ = {{x′
1, x

′
4}, {x′

2, x
′
5}, {x′

3, x
′
6}} on {x, y, z1, z2,

w1, a}. We now show that the linkage problem L′ is feasible in G[B′ ∪ Bi], contradicting the fact that L
is not feasible in G. Some pair of vertices in the linkage problem L′ lies in {x, y, z1, z2}. Without loss of

generality, say x′
1, x

′
4 ∈ {x, y, z1, z2}. Then in G there exist paths Q1, Q2 with all internal vertices in Bi with

the ends of Q1 being w1 and w2 and the ends of Q2 being x′
1 and x′

4. Now there are two cases to consider.

Case 1: w2 is adjacent to every vertex in A′∩B′. In this case ρG(B′−A′−{w2}) ≥ 5|B′−A′−{w2}|+1,

and as a consequence, G restricted to B′ − A′ − {w2} has some connected component C with ρ(V (C)) ≥
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5|V (C)|+1. This implies the vertices of (A′∩B′)∪{w2} all have a neighbor in the component C, lest (G, X)

have a separation violating (M2). We can link the path end w1 with its paired vertex in L′ via w2 and the

path Q1, x′
1 and x′

4 via the path Q2 and the remaining pair of vertices in L′ via the connected component

C. This would make L′ feasible in G[Bi ∪ B′ ∪ {w1}], a contradiction.

Case 2: w2 has at least one non-neighbor in A′ ∩ B′. In this case, ρ(B′ − A′ − {w2}) ≥ 5|B′ − A′ −
{w2}| + 2. Then by Lemma 3.3, we know any two path problem on {x, y, w2, z1, z2, a} can be solved with

disjoint paths with all internal vertices in B′ − A′ − {w2}. We can link x′
1 and x′

4 in Bi with the path Q1.

By linking w1 to w2 with Q2, we can link the remaining two pairs of vertices in L′ in B′−A′−{w2} to show

that the linkage problem L′ is feasible.

This completes the proof of Claim 6.3 that G[Si] must have at least two anti-edges not incident with e,

and if it has exactly two, then they must share a common endpoint. �

Recall, the edge e = uv lies in every Si of our star decomposition.

Claim 6.4 Fix i. If G[Si] has exactly two anti-edges not incident with e, then we can label the anti-edges

a1 and a2 and label the underlying vertices a1 = (x, y), a2 = (y, z) such that

1. There exists a linkage P from X to Si with six components and an index j such that if we label Pk the

component of P containing xk, then a1 contains the two endpoints of Pj and Pj+3 in Si, and

2. the vertex z is a common non-neighbor of the ends of e.

Proof: By Claim 6.2, the complement of G[Si] has a subgraph A isomorphic to C6 or C4 ∪ K2. If G[Si]

has exactly two anti-edges not incident e, then there are three possible cases, up to isomorphism, for how

the edge e = uv intersects with A.

First, assume that A is isomorphic to C4∪K2. Let the vertices of Si be labeled c1, c2, c3, c4 corresponding

to the C4 in order and k1, k2 corresponding to the K2.

Case 1: u = c1, v = k1. In this case, one of the following pairs must be an anti-edge: (k1, c2), (k1, c4),

(k2, c2), (k2, c4). Otherwise, when we consider the vertices c3 and c1, there would not exist at least two

incident anti-edges with neither c3 nor c1 as an endpoint, contrary to Claim 6.3. Since G[Si] has exactly two

anti-edges not incident with e, we may assume the pair (k1, c2) is an anti-edge. Then let a1 = (c3, c4) and

a2 = (c2, c3). By Claim 6.2, there exists a linkage P from X to Si such that if we label Pi the component of

P containing xi, then there exists an index j such that a1 contains the two ends of Pj and Pj+3 in Si. As

we have already seen that c2 is a common non-neighbor of the ends of e, we have proven the claim.

Case 2: u = c2, v = c4. Again by Claim 6.3, there must be some other anti-edge not incident with e.

Without loss of generality, it’s the pair (k1, c1). Then if we let a1 = (k1, k2), a2 = (k1, c1) we have the desired
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labeling of the anti-edges where now c1 is the common non-neighbor of the ends of e. Again, by Claim 6.2,

there exists a linkage from X to Si where for some pair of the linkage problem L, the corresponding paths

terminate on the anti-edge a1, as desired.

This completes the analysis when A is isomorphic to C4∪K2. Now we assume A is isomorphic to C6. Let

the vertices of Si be labeled c1, c2, . . . , C6 in the order determined by A. There is only one possible choice,

up to isomorphism, for the edge e such that there are only two anti-edges not incident e.

Case 3: u = c1, v = c3. By applying Claim 6.3 to the vertices c2 and c5, one of the following pairs must be

an anti-edge: (c3, c6), (c6, c4), (c4, c1). And since by assumption G[Si] has exactly two anti-edges not incident

with e, we may assume that either (c3, c6) or (c1, c4) is an anti-edge. The two cases are symmetric, so we

may assume (c3, c6) is an anti-edge, and then if we let a1 = (c4, c5) and a2 = (c5, c6), we have the desired

properties. Again the existence of the required linkage follows from Claim 6.2.

This completes the proof of Claim 6.4. �

Now we have a solid grip on what the subgraph G[Si] can look like; G[Si] must have at least two anti-edges

not incident with e. Moreover, if there are exactly two such anti-edges, there is a common non-neighbor of

the ends of e. Then clearly, upon contracting the edge e, G/e[S∗
i ] has at least three anti-edges. We will first

show that if |Si ∩ Sj | ≥ 5 for some j 6= i, then these anti-edges may be chosen so that they belong to no S∗
`

for ` = i.

For notation, the next claims will be proven for S1, S2, and S3. Since the labeling of the Si’s is arbitrary,

we see that the results will hold for any distinct Si, Sj , and Sk.

Claim 6.5 Given S1 and S2 above, |S1 ∩ S2| ≤ 4. If |S1 ∩ S2| = 4, then there exists a linkage P in G with

six components from X to S1∪S2, where if we label Pi the component of P containing xi, the following hold.

1. There exists an index i such that both Pi and Pi+3 have their termini in S1 ∩ S2.

2. No other component of P has its terminus in S1 ∩ S2.

3. For indices j ∈ {1, . . . , 6}, j 6= i, i + 3, if the terminus of Pj lies in S1 − S2, then the terminus of Pj+3

lies in S2 − S1, with all index addition mod 6.

4. At least one vertex of u and v is not the terminus of a component of P.

5. V (P) ∩ (S1 ∪ S2) consists of the six termini of the components of P.

Proof Assume |S1 ∩ S2| ≥ 4. Clearly, S1 6= S2, lest (
⋃

j 6=1,2 Bj ∪ A, B1 ∪ B2) form a rigid separation.

It follows that |S1 ∩ S2| is at most five. There exists a linkage P from X to S1. Let the component of P
containing xi be labeled Pi. Let the terminus of Pi in S1 be labeled x′

i. The linkage problem L induces a

linkage problem L′ on S1. If we can find paths solving L′ that do not use any vertex of P , except for their
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ends, then clearly we would contradict the fact that L is not feasible in G. Note that since |S1 ∩ S2| ≥ 4,

there exists an index i such that Pi and Pi+3 have their termini in S1 ∩ S2. Without loss of generality,

assume that x′
1, x

′
4 ∈ S1 ∩ S2.

If no path of P uses vertices of B2−S2, then clearly we can link x′
1 and x′

4 with a path in B2−S2 and link

the two remaining pairs in B1 − S1. If at most one path, say Pl, uses vertices of B2 − S2, let x′′
l be the first

vertex of Pl in S2. Then there are two cases. If l = 1 or 4, say l = 1, instead of following Pl to x′
1, instead

find a path in B2 from x′′
1 to x′

4. Link the remaining two pairs of vertices in L′ in B1. Now assume l 6= 1 or 4.

Let y be the final vertex of Pl in S2. Then find paths in B2 solving the linkage problem {{x′′
l , y}, {x′

1, x
′
4}}.

Link the remaining two pairs of vertices in L′ in B1. Either case gives rise to a contradiction. We conclude

that |S1 ∩ S2| = 4, and that exactly two paths, say Pl and Pk, use vertices of B2 − S2. Again, let x′′
k and

x′′
l be the first vertices in S2 − S1 of Pk and Pl, respectively. Then if k = j + 3, or j = k + 3, then we can

link xk and xj with a path in B2 and link the remaining two pairs of terminals in L′ in B1, a contradiction.

Without loss of generality, we assume k = 1 and l = 2. The paths P1, P2 each use a vertex of S2 − S1, so it

follows that x′
1 and x′

2 lie in S1 ∩ S2.

Let P ′ be the linkage (P−{P1, P2})∪{x1P1x
′′
1 , x2P2x

′′
2}. Again, let P ′

i be the component of P ′ containing

xi. The linkage P ′ satisfies the conclusions of the claim. We have proven that P ′
1 and P ′

4 have their termini

in S1 ∩ S2, and that no other path in P ′ has it’s terminus in S1 ∩ S2. Thus 2. and 3. follow. Finally, our

original linkage P was such that x′
1 and x′

4 were not adjacent. When we consider the edge e = uv ⊆ S1 ∩S2,

then at least one vertex of u and v must not be a terminus of a path in P ′, proving 4. Condition 5. holds by

construction. �

We now want to show that if the two S1 and S2 intersect in four vertices, then the other Si’s can only

intersect S1 and S2 in a very limited manner. Towards this, we prove the following claim.

Claim 6.6 If |S1∩S2| = 4 and if S3 satisfies |S3∩(S1∪S2)| ≥ 3, then |S3∩(S1∪S2)| = 3 and S3∩(S1∪S2) ⊆
S1 ∩ S2.

Proof Assume |S1 ∩ S2| = 4 and |S3 ∩ (S1 ∪ S2)| ≥ 3. We know from Claim 6.5 that we have a linkage P
with components P1, . . . P6 from X to S1 ∪ S2 with the path termini as described in the statement of Claim

6.5. Let x′
i be the terminus of Pi. Without loss of generality, assume x′

3 and x′
6 lie in S1 ∩ S2, x′

1 and x′
2

lie in S1 − S2 and x′
4 and x′

5 lie in S2 − S1. Let the vertices w1 and w2 be the vertices of S1 ∩ S2 that are

not the termini of any path in P . Notice that at least one of w1and w2 is an endpoint of the edge e, and

so without loss of generality, we assume w1 ∈ S3. For notation, let L′ be the linkage problem induced by P
and L on S1 ∪ S2 − {w1, w2}.

First assume at most one path Pi uses vertices of B3 −S3. Let y1 and y2 be the first and last vertices of

Pi in S3. Now there are two cases both of which are easily dealt with: either S3 ∩ (S1 ∪ S2) ⊆ S1 ∩ S2 or

S3 ∩ ((S1 − S2) ∪ (S2 − S1)) 6= ∅.
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Case 1: S3 ∩ (S1 ∪ S2) ⊆ S1 ∩ S2.

If |S3 ∩ S1 ∩ S2| = 3, then the claim is proven. Thus we may assume |S3 ∩ S1 ∩ S2| = 4. Consequently,

x′
3, x

′
6 ∈ S3. There exist paths Q1, Q2 in B3 − S3, where the ends of Q1 are y1 and y2 and the ends of Q2

are x′
3 and x′

6.

Now consider the linkage P ′ = P−{Pi}∪{xiPiy1Q1y2Pix
′
i}. This linkage is disjoint from the sets B1−S1,

B2 − S2, and V (Q2) − {x′
3, x

′
6}. There exist disjoint paths with all internal vertices in B1 − S1 solving the

linkage problem {{x′
1, w1}, {x′

2, w2}}. Similarly, there exist disjoint paths with all internal vertices in B2−S2

solving the linkage problem {{x′
4, w1}, {x′

5, w2}}. Thus the linkage problem {{x′
1, x

′
4}, {x′

2, x
′
5}} is feasible in

G[B1 ∪ B2], and we contradict the fact that L is not feasible in G.

Case 2: S3 ∩ ((S1 − S2) ∪ (S2 − S1)) 6= ∅.

Then some vertex of {x′
1, x

′
2, x

′
4, x

′
5} lies in S3. Without loss of generality, say x′

1 ∈ S3. Using the fact

that w1 ∈ S3, we observe that there exist disjoint paths Q1, Q2 with all internal vertices in B3 − S3 where

the ends of Q1 are y1 and y2 and the ends of Q2 are x′
1 and w1. As above, let P ′ be the linkage defined by

P − {Pi} ∪ {xiPiy1Q1y2Pix
′
i}. There exist disjoint paths R1, R2 with all internal vertices in B1 − S1 where

the ends of R1 are x′
3 and x′

6 and the ends of R2 are x′
2 and w2. There exist paths T1, T2 with all internal

vertices in B2 − S2 where the ends of T1 are x′
4 and w1 and the ends of T2 are x′

5 and w2 respectively. We

have the linkage:

x′
1Q1w1T1x

′
4, x′

3R1x
′
6, x′

2R2w2T2x
′
5

solving the linkage problem L′ avoiding any non-terminus vertex of P ′, a contradiction to the fact that L is

not feasible in G.

The analysis of the cases above shows we may assume at least two paths Pi, Pj ∈ P use vertices of

B3 − S3. Assume for the moment that Pi and Pj are the only paths using vertices of B3 − S3. We may

assume that the two paths are not P3 and P6, otherwise we could simply link the first vertices of P3 and

P6 in B3 − S3 and link the remaining pairs of terminals with paths in B2 − S2 and B1 − S1 meeting at the

vertices w1, w2. Thus we may assume one of the paths P1, P2, P4, P5 intersects B3 − S3. Without loss of

generality, say P1. Let x′′
1 be P1’s first vertex in S3. Let Pi be the other path intersecting B3 −S3, and let y1

and y2 be the first and last vertices of Pi in S3. There exist paths in Q1, Q2 in with all internal vertices in

B3 −S3 where the ends of Q1 are y1 and y2 and the ends of Q2 are x′′
1 and w1. Let P ′ be the linkage defined

by P ′
i = xiPiy1Q1y2Pix

′
i and P ′

k = Pk for k 6= i. There exist paths R1 and R2 with all internal vertices in

B2 − S2 where the ends of R1 are x′
3 and x′

6 and the ends of R2 are x′
2 and w2. There exist paths T1, T2

with all internal vertices in B1 −S1 where the endpoints of T1 are w1 and x′
4 and the endpoints of T2 are x′

5

and w2. We get the following linkage:

x1P
′
1x

′′
1Q2w1T1x

′
4P

′
4x4, x2P

′
2x

′
2R2w2T2x

′
5P

′
5x5, x3P

′
3x

′
3R1x

′
6P

′
6x6

that contradicts the fact that L′ is not feasible.
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Finally, three or more components of P cannot use vertices of B3 −S3, because each such path must use

at least two vertices of S3, and yet no w1 ∈ S3 − V (P). This proves the claim. �

We now will prove that if Si and Sj intersect in four vertices, then S∗
i (and similarly in S∗

j ), has three

anti-edges not contained in any other S∗
k .

Claim 6.7 For all distinct indices i, j, if Si and Sj are such that |Si ∩ Sj | = 4, then each G/e[S∗
i ] and

G/e[S∗
j ] have three anti-edges that they do not share with either other or any other G/e[S∗

l ].

Proof For notation, assume that S1 and S2 are as in the statement of the claim and intersect in four

vertices. Let S1 ∩S2 = {u, v, y1, y2} where u and v are the endpoints of the edge e specified in the statement

of the lemma. Let P be a linkage as in Claim 6.5 and let the components of P be labeled P1, . . . , P6

such that Pi contains xi. Let x′
i be the terminus of Pi in S1 ∪ S2. Without loss of generality, assume

x′
3, x

′
6 ∈ S1 ∩ S2 = {u, v, y1, y2}, and that x′

1 and x′
2 lie in S1 − S2. Let L′ be the linkage problem on

the appropriate subset of S1 ∪ S2 induced by L and P . Up to symmetry, there are two cases to consider:

{x′
3, x

′
6} = {y1, y2} or {y1, v}.

Case 1: {x′
3, x

′
6} = {y1, y2}

By Claim 6.3, we know that each of S1 and S2 has some anti-edge not incident with e which is not

contained in S1 ∩ S2. Call them a1 and a2, respectively. Notice that by Claim 6.6, neither a1 or a2 can be

contained in S∗
l for any l 6= 1, 2.

Consider what happens if u or v were adjacent to any vertex x′
1, x

′
2, x

′
4, x

′
5. Say v is adjacent to x′

1. Then

there exist paths Q1, Q2 with all internal vertices B1 − S1 where the ends of Q1 are x′
2 and u and the ends

of Q2 are x′
3 and x′

6. Also, there exist paths R1, R2 with all internal vertices in B2 − S2 such that the ends

of R1 are x′
4 and v and the ends of R2 are x′

5 and u. We get the linkage

x′
1vR1x

′
4, x′

2Q1uR2x
′
5, x′

3Q2x
′
6

proving that L′ is solvable by paths not intersecting V (P) − {x′
1, . . . , x

′
6}, a contradiction.

Thus we may assume that no such edge exists and then u and v have no neighbor in S1 − S2 nor in

S2 − S1. If we let ve be the vertex in G/e coming from the edge e, then in which case, a1, (ve, x
′
1), (ve, x

′
2)

are three anti-edges contained in G/e[S∗
1 ] that are not contained in any other S∗

l . If they were in some S∗
k ,

Sk would necessarily intersect S2 ∪ S1 in at least three vertices and at least one vertex of S1 − S2, contrary

to what we have seen above in Claim 6.6. Thus both G/e[S∗
1 ] and G/e[S∗

2 ] contain three anti-edges they do

not share with each other or any other S∗
k .

Case 2: {x′
3, x

′
6} = {y1, v}.

Again, as in the previous case, we may assume that neither y2 nor u has any neighbor in S2 − S1 nor in

S1−S2. Thus if we consider G[S1], by Claim 6.3 applied to the vertices y2 and u, there must exist at least two
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anti-edges not incident with y2 or u. We conclude that there exists an anti-edge between either y1 or v and

one of either x′
1 and x′

2. Since x′
1and x′

2 are symmetric here, there are two distinct cases: x′
1 is not adjacent

to v and x′
1 is not adjacent to y1. If x′

1 is not adjacent to v, then the anti-edges (ve, x
′
1), (x

′
1, y2), (x

′
2, y2) are

contained in S∗
1 . If x′

1 is not adjacent y1, then S∗
1 contains the anti-edges (x′

1, y1), (x
′
1, y2), and (x′

2, y2). In

either case, G[S∗
1 ] contains three anti-edges that cannot lie in any other S∗

l by Claim 6.6. This proves the

claim. �

Our objective is to show that each S∗
i has at least three anti-edges not shared by any S∗

` for ` 6= i. We

have just shown that if |Si ∩ Sj | ≥ 4 for some j 6= i, then the three anti-edges may be chosen so that they

belong to no other S∗
` for ` 6= i. To complete the proof let i ∈ {1, 2, . . . , k} be such that |Si ∩ Sj | ≤ 3 for all

j 6= i. If Si has at least three anti-edges not incident with u or v, then those are clearly as required. Thus

we may assume that Si has at most two such anti-edges, and hence Claim 6.3 implies that it has exactly two

and they share an end. Let those anti-edges be labeled ai
1 = (xi, yi) and ai

2 = (yi, zi), consistent with the

notation in Claim 6.4. To complete the proof of Lemma 5.13 it suffices to show the following claim.

Claim 6.8 If Si and Sj are as above, then zi 6= zj.

We may assume that i = 1 and j = 2. Suppose for a contradiction that z1 = z2. We show the linkage

problem L is feasible, a contradiction. The intersection S1 ∩ S2 = {u, v, z1}, where u and v are the ends of

e. We know that a1
1 ∩ (S1 ∩ S2) = ∅.

Let P be the linkage in the statement of Claim 6.4. Let the components of P and the vertices of S1 ∪ S2

be labeled such that the ends of Pi ∈ P are xi and x′
i. Without loss of generality, assume that the termini

of P1 and P4 form the anti-edge a1
1. Let L′ be the linkage problem induced by L and P on S1. Three

of the paths P2, P3, P5, P6 must have their ends in S1 ∩ S2. Again without loss of generality, assume that

x′
3, x

′
5, x

′
6 ∈ S1∩S2. We will separately consider the possible number of paths that utilize vertices of B2−S2.

Case 1: no Pi contains vertices of B2 − S2.

Then there exists a path Q ends x′
3 and x′

6 and all internal vertices in B2−S2. Then the linkage problem

{{x′
1, x

′
4}, {x′

2, x
′
5}} is feasible in G[B1], implying that a solution to the linkage problem L′ exists with no

internal vertex intersecting P , a contradiction.

Case 2: exactly one path Pi ∈ P contains vertices of B2 − S2.

Let w1 be the vertex of Pi in S2 closest to X on Pi, and w2 be the vertex of Pi in S2 closest to S1 on

Pi. There exist paths Q1 and Q2 with all internal vertices in B2 − S2 such that the ends of Q1 are w1 and

w2 and the ends of Q2 are x′
3 and x′

6. Then the linkage P ′ = P − {Pi} ∪ {xiPiw1Q1w2Pix
′
i} has the same

endpoints as P . We can link x′
3 and x′

6 avoiding all other vertices of P ′. As in the previous case, the fact

that the linkage problem {{x′
1, x

′
4}, {x′

2, x
′
5}} is feasible in G[B1] implies that L is feasible, a contradiction.
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Case 3: exactly two paths Pi, Pj ∈ P contain vertices of B2 − S2.

First, assume i = j + 3 or j = i + 3. Then we can link xi to xj with a path in B2 avoiding the other

paths of P . The other two pairs of vertices in L can be linked in G[B1], implying that L is feasible.

Thus we conclude i 6= j + 3 and j 6= i + 3. Now assume i = 3. Let x′′
3 be the vertex of S2 closest to x3

on Pi. Let w1 and w2 be the vertices of S2 on Pj closest to xj and x′
j on Pj , respectively. Then there exist

paths Q1 and Q2 with all internal vertices in B2 − S2 such that the ends of Q1 are x′′
3 and x′

6 and the ends

of Q2 are w1 and w2. Then let P ′ = xjPjw1Q2w2Pjx
′
j and P ′

k = Pk for k 6= j.. The ends of P ′
k are equal to

the ends of Pk for all indices k. There exist paths R1 and R2 with all internal vertices in B1 −S1 where the

ends of R1 are x′
1 and x′

4 and the ends of R2 are x′
2 and x′

5. Then we have the linkage

x1P
′
1x

′
1R1x

′
4P

′
4x4, x2P

′
2x

′
2R2x

′
5P

′
5x5, x3P

′
3x

′′
3Q1x

′
6P

′
6x6

solving the linkage problem L, a contradiction.

We conclude that i 6= 3, and symmetrically, i, j 6= 6. Then at least one of i or j is equal to one or four.

Without loss of generality, assume i = 4. Then Pi must use two vertices of S2 − S1. It follows that j = 5

since x′
5 ∈ S1 ∩ S2. Let x′′

5 be the unique vertex of P5 in S2 − S1 and w1 the vertex of P4 in S2 − S1 closest

to x4 on P4 and w2 the other vertex of P4 in S2 −S1. There exist disjoint paths Q1 and Q2 with all internal

vertices in B2 − S2 such that the ends of Q1 are x′′
5 and w2 and the ends of Q2 are w1 and x′

5. There exist

disjoint paths R1 and R2 with all internal vertices in B1 − S1 such that the ends of R1 are x′
3 and x′

6 and

the ends of R2 are x′
5 and x′

1. Notice by the fact that a1
1 is the anti-edge (x′

1, x
′
4) and the second anti-edge

in G[S1] not incident to e must have z1 as an endpoint, we conclude that x′
2 is adjacent to x′

1 and x′
4. The

linkage

x1P1x
′
1R2x

′
5Q2w1P4x4, x2P2x

′
2x

′
4P4w2Q1x

′′
5P5x5, x3P3x

′
3R1x

′
6P6x6

contradicts the fact that L is not feasible.

Case 4: exactly three paths in P contain vertices of B2 − S2

Each of these paths must use at least two vertices in S2. Since P3, P5, P6 each must use one vertex of S2,

it follows that each of P3, P5, P6 uses vertices of B2 − S2, and each one uses exactly one vertex of S2 − S1.

Let x′′
3 , x′′

5 , x′′
6 be the vertices of P3, P5, P6 respectively in S2 − S1. Then there exists paths Q1, Q2 with all

interior vertices in B2 − S2 where the ends of Q1 are x′′
3 and x′′

6 and the ends of Q2 are x′′
5 and x′

5. There

exist paths R1 and R2 with all internal vertices in B1 −S1 where the ends of R1 are x′
1 and x′

4 and the ends

of R2 are x′
2 and x′

5. The linkage

x1P1x
′
1R1x

′
4P4x4, x2P2x

′
2R2x

′
5Q2x

′′
5P5x5, x3P3x

′′
3Q1x

′′
6P6x6

contradicts the fact that L is not feasible.

This completes the proof of the claim. �
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Now we have completed the proof of Lemma 5.13. We have shown that for each Si, upon contracting

the edge e, G/e[S∗
i ] contains at least three anti-edges not contained in any other S∗

j implying that if we sum

over every such Si, there is a total of at least 3k anti-edges contained in
⋃

i G/e[S∗
i ], as desired. �

7 Lower Bounds

In [13], we conjecture that if a graph is 2k connected, has n vertices, and (2k − 1)n − k
2 (3k + 1) + 1 edges,

then the graph is k-linked. There is an infinite family of graphs showing this would be the optimal edge

bound for every k ≥ 2. In the interest of completeness, we present the example appearing in [13] showing

that the bound in Theorem 1.1 is optimal. Let P1, P2, P3, P4 be four paths on k vertices with the vertices

of Pi labeled xi
1, x

i
2, . . . , x

i
k. Let u1, u2, y5, y6 be four additional vertices. Then let the edges of G be defined

thus, where the superscript addition is taken mod four

E(G) ={xi
jx

i+1
j : j = 1, . . . , k, i = 1, . . . , 4}∪

∪ {xi
jx

i+1
j+1 : j = 1, . . . k − 1, i = 1, . . . , 4}∪

∪ {uix
j
k : i = 1, 2, j = 1, . . . , 4}∪

∪ {yix
l
j : i = 5, 6, j = 1, . . . , k, i = 1, . . . 4}∪

∪ {u1u2, y1u1, y1u2, y2, u1, y2u2}

Then G is 6-connected and |E(G)| = 5|V (G)| − 15, but the linkage problem {{x1
1, x

3
1}, {x2

1, x
4
1}, {y1, y2}} is

not feasible, implying that G is not 3-linked.
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