# Packing non-zero $A$-paths in an undirected model of group labeled graphs 

Paul Wollan * $\dagger$<br>Mathematisches Seminar der<br>Universität Hamburg<br>Bundesstr. 55<br>20146 Hamburg, Germany


#### Abstract

Let $\Gamma$ be an abelian group, and let $\gamma: E(G) \rightarrow \Gamma$ be be a function assigning values in $\Gamma$ to every edge of a graph $G$. For a subgraph $H$ of $G$, let $\gamma(H)=\sum_{e \in E(H)} \gamma(e)$. For a set $A$ of vertices of $G$, an $A$-path is a path with both endpoints in $A$ and otherwise disjoint from $A$. In this article, we show that either there exist $k$ vertex disjoint $A$-paths $P_{1}, P_{2}, \ldots, P_{k}$ such that $\gamma\left(P_{i}\right) \neq 0$ for all $1 \leq i \leq k$, or there exists a set $X$ of vertices such that $G-X$ does not contain a non-zero $A$-path with $|X| \leq 50 k^{4}$.


Key Words : Group labeled graphs, Disjoint paths, $A$-paths

## 1 Introduction

Given a graph $G$ and a set $A \subseteq V(G)$, an $A$-path is a path with both endpoints laying in $A$ and no internal vertex in $A$. Much work has gone into determining when a given graph contains many disjoint $A$-paths satisfying some specified property. Gallai proved in [2] that a given graph $G$ with a specified set $A$ of vertices either has $k$ disjoint $A$-paths or there exists a set of at most $2 k-2$ vertices hitting every $A$-path. Mader [4] generalized this result as follows. Let $G$ be a graph with a specified set $A$ of vertices and let $\mathcal{S}$ be a partition of the set $A$. Mader showed that either there exist $k$ disjoint $A$-paths $P_{1}, \ldots, P_{k}$ such that $P_{i}$ has endpoints in distinct sets of the partition $\mathcal{S}$, or there exists a set of $2 k-2$ vertices hitting all such $A$-paths. See [5] for a short proof of this result. In each case, the bound on the hitting set is the best possible and actually comes from an exact min-max theorem for the number of such paths. Kriesell [3] proved that a similar min-max result holds for directed $A$-paths in digraphs.

In this article, we will utilize two distinct models of group labeled graphs. The first introduced here will be our primary focus.

Definition Let $\Gamma$ be an abelian group and $G$ a graph. An undirected $\Gamma$-labeling of $G$ is a function $\gamma: E(G) \rightarrow \Gamma$. For a subgraph $H$ of $G$, let $\gamma(H)=\sum_{e \in E(H)} \gamma(e)$ be the weight of the subgraph $H$.

[^0]We will see that either a given undirected $\Gamma$ - labeled graph contains many disjoint non-zero $A$ paths or there exists a set of vertices of bounded size hitting all such $A$-paths. The following theorem is the main result of this article.

Theorem 1.1 Let $\Gamma$ be an abelian group and let $\gamma$ be an undirected $\Gamma$-labeling of a graph $G$. Let $A \subseteq V(G)$ be a set of vertices of $G$. Then for all integers $k \geq 1$, either $G$ contains $k$ pair-wise vertex disjoint $A$-paths $P_{1}, \ldots, P_{k}$ such that $\gamma\left(P_{i}\right) \neq 0$ for all $i=1, \ldots, k$, or there exists a set $X \subseteq V(G)$ with $|X| \leq 50 k^{4}$ such that every $A$-path $P$ in $G-X$ has $\gamma(P)=0$.

An immediate corollary of Theorem 1.1 is the following.
Corollary 1.2 Let $G$ be a graph and let $m$ be a positive integer. Let $A$ be a fixed set of vertices. Then for all integers $k \geq 1$, either there exists $k$ disjoint $A$-paths $P_{1}, \ldots, P_{k}$ such that the length of $P_{i}$ is not congruent to 0 mod $m$, or there exists a set $X$ of vertices with $|X| \leq 50 k^{4}$ such that in $G-X$ every $A$-path has length congruent to zero mod $m$.

In recent work, Chudnovsky, Geelen, Gerards, Goddyn, Lohman, and Seymour [1] generalize the results of Gallai and Mader by considering a different definition of group labeled graphs. In this model of group labeled graphs, the edges are assigned an orientation as well as a group value. When calculating the weight of a path, the weight will be added if the edge is traversed in the same direction as the orientation, and subtracted if it is traversed contrary to the orientation. Explicitly, we give the following definition. In this group labeling of the graph, the group need not be abelian and we use multiplicative notation.

Definition Let $\Gamma$ be an arbitrary group and $G$ a graph. A oriented $\Gamma$-labeling of $G$ is a pair of functions ( $\gamma$, dir) satisfying the following. The function $\gamma: E(G) \rightarrow \Gamma$ maps $E(G)$ to $\Gamma$. The function $\operatorname{dir}$ is an orientation of the edges defined dir $:\{(x, y) \in V(G) \times V(G): x y \in E(G)\} \rightarrow\{1,-1\}$ such that $\operatorname{dir}(u, v)=-\operatorname{dir}(v, u)$ for all edges $u v$ in $E(G)$. Let $P$ be a path in $G$ and let the vertices of the path be $v_{1}, v_{2}, \ldots, v_{k}$ with $v_{i}$ adjacent $v_{i+1}$ for $1 \leq i \leq k-1$. Then $P$ is a non-zero path if $\prod_{i=1}^{k-1} \gamma\left(v_{i} v_{i+1}\right)^{\operatorname{dir}\left(v_{i}, v_{i+1}\right)}$ is not equal to the identity in $\Gamma$.
Observe when calculating $\prod_{i=1}^{k-1} \gamma\left(v_{i} v_{i+1}\right)^{\operatorname{dir}\left(v_{i}, v_{i+1}\right)}$ for a a given path $P$ in an oriented group labeled graph, the exact value will typically depend on which end of the path is labeled to be $v_{1}$. However, whether or not $\gamma(P)$ is equal to the identity is independent of the direction in which the vertices of the path are traversed, and so non-zero paths are in fact well defined.

We recall that a non-identity element $\alpha$ of a group $\Gamma$ is of order two if $\alpha=-\alpha$. If $\Gamma$ is an abelian group such that every element of $\Gamma$ is of order two, then the two different models of group labeled graphs coincide since whether an edge is traversed according to the orientation or contrary to it, the same value $\alpha$ will be added. We will make use of the following observation formalizing this idea.

Observation 1 Let $G$ be a graph and $\Gamma$ an abelian group. Let $\gamma: E(G) \rightarrow \Gamma$ be any function. Let $A \subseteq V(G)$ and $P$ be an $A$-path in $G$. If for every edge e of $P, \gamma(e)$ is either equal to zero or an element of $\Gamma$ of order two, then for all orientations dir of the edges of $G$, the weight of $P$ in in the oriented $\Gamma$-labeling ( $\gamma$, dir) is equal to the weight in the undirected labeling $\gamma$.

Chudnovsky et al. prove the following theorem.
Theorem 1.3 ([1]) Let $\Gamma$ be a group, let $G$ be a graph, and let $\gamma$ and dir be two functions such that ( $\gamma$,dir) is an oriented $\Gamma$-labeling of $G$. Let $A$ be a specified set of vertices in $G$. Then either

1. there exist $k$ vertex disjoint non-zero $A$-paths, or
2. there exists a set $X$ of at most $2 k-2$ vertices such that $G-X$ contains no non-zero $A$-path.

In fact, the authors demonstrate an exact min-max result for the number of such non-zero paths which immediately implies Theorem 1.3 . By choosing an appropriate group labeling, Theorem 1.3 implies the min-max results of both Mader and Gallai mentioned above.

We first establish definitions to discuss paths and collections of paths contained in a larger graph. Let $P$ be a path with endpoints $x$ and $y$ and let $z$ and $z^{\prime}$ be two vertices of $P$. Then by $z P z^{\prime}$, we refer to the subpath of $P$ containing $z$ and $z^{\prime}$.

Definition A linkage is a graph $\mathcal{P}$ where every connected component is a path.
A connected component of a linkage $\mathcal{P}$ is a composite path of the linkage. In a slight abuse of notation, we will sometimes refer to the path $P \in \mathcal{P}$ for a linkage $\mathcal{P}$ to mean that $P$ is a composite path of $\mathcal{P}$. Given a linkage $\mathcal{P}$ contained as a subgraph in a larger graph $G$, a $\mathcal{P}$-bridge is either an edge of $G-E(\mathcal{P})$ with both ends contained in $V(\mathcal{P})$ or a component $C$ of $G-V(\mathcal{P})$ along with any edges with one endpoint in $V(C)$ and one endpoint in $V(\mathcal{P})$. A $\mathcal{P}$-bridge is trivial if it consists of a single edge. Given a $\mathcal{P}$-bridge $B$, the vertices of $V(B) \cap V(\mathcal{P})$ are the attachments of $B$. A bridge $B$ is stable if it has attachments on two distinct components of $\mathcal{P}$.

## 2 Proof of Theorem 1.1

The proof of Theorem 1.1 proceeds in two steps. We define an $A$-star as follows.
Definition Let $G$ be a graph and $A \subseteq V(G)$. Let $P_{1}, \ldots, P_{l}$ be $A$-paths. If there exists a vertex $v \in V(G)-A$ such that $V\left(P_{i}\right) \cap V\left(P_{j}\right)=v$ for every $1 \leq i<j \leq l$, then the subgraph consisting of $P_{1} \cup P_{2} \cup \cdots \cup P_{l}$ is an $A$-star. The paths $P_{1}, \ldots, P_{l}$ are the composite paths of the $A$-star. The vertex $v$ shared by every path $P_{i}$ is the nexus of the $A$-star. For each composite path $P_{i}$, if $x$ is an end of $P_{i}$ in $A$, the subpath $x P_{i} v$ is a ray of the $A$-star.

Let $\gamma$ be a $\Gamma$-labeling of a graph $G$ and let $A$ be a fixed set of vertices. An $A$-star $\mathcal{S}$ with composite paths $P_{1}, \ldots, P_{n}$ is a non-zero $A$-star if $\gamma\left(P_{i}\right) \neq 0$ for all $i=1, \ldots, n$. Notice that the choice of composite paths for a given non-zero $A$-star is not necessarily unique. We will show that in any group labeled graph for any set $A$ of vertices, either there exists a non-zero $A$-star with $l$ composite paths, or there exists $k$ disjoint non-zero $A$-paths, or there exists a set $X$ of bounded size, hitting every non-zero $A$-path. Rigorously, we state this as the following lemma.

Lemma 2.1 Let $\Gamma$ be an abelian group $G$ a graph. Let $\gamma$ be a $\Gamma$-labeling of $G$, and let $A \subseteq V(G)$. Let the function $f_{1}$ be defined as follows:

$$
\begin{aligned}
f_{1}(k, l): & =2(2 k l+3 k)-2+(2 k-2) \\
& =4 k(l+2)-4 .
\end{aligned}
$$

Then for all positive integers $k$ and $l$, either there exists a set $X$ of vertices with $|X| \leq f_{1}(k, l)$ such that every $A$-path in $G-X$ has zero weight, or there exists a non-zero $A$-star with $l$ composite paths, or there exists $k$ vertex disjoint $A$-paths $P_{1}, \ldots, P_{k}$ such that $\gamma\left(P_{i}\right) \neq 0$ for all $i=1, \ldots, k$.

Notice that Lemma 2.1 implies Theorem 1.1 when the graph is assumed to have bounded degree.
Corollary 2.2 Let $\Gamma$ be an abelian group and $(G, \gamma)$ a $\Gamma$-labeled graph with $\Delta(G)=d$. Let $A$ be a subset of vertices of $G$. Then either there exist $k$ vertex disjoint $A$-paths each with non-zero weight, or there exists a set $X$ of at most $f_{1}(k,\lfloor d / 2\rfloor+1)$ vertices such that every $A$-path in $G-X$ has zero weight.

In the proof of Theorem 1.1, we will in fact find $k$ distinct $A$-stars where each composite path has non-zero weight, such that, while not disjoint, at least each $A$-star has a unique nexus vertex. Moreover, we will see that we can choose these $A$-stars to have as many composite paths as we will need. The second step in the proof of Theorem 1.1 is to show that it is possible to "uncross" these non-zero $A$-stars to find $k$ vertex disjoint non-zero $A$-stars, at the expense of sacrificing some of the composite paths of the original $A$-stars.

Lemma 2.3 Let $\Gamma$ be an abelian group and $G$ a graph. Let $\gamma$ be $a \Gamma$-labeling of $G$. Let $A$ be a set of vertices of $G$, and let $k, t$, and $l$ be positive integers. Let

$$
n=t\left[f_{1}(k, t+1)\right]+8 t l+(t+l)
$$

Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{t}$ be a collection of non-zero $A$-stars each with $n$ composite paths. For all $i=1, \ldots, t$, let $P_{1}^{i}, \ldots, P_{n}^{i}$ be non-zero composite paths of $\mathcal{S}_{i}$ and let $v_{i}$ be the nexus vertex of $\mathcal{S}_{i}$. Furthermore, assume that $v_{i} \neq v_{j}$ for all $i \neq j$. Then either $G$ contains $k$ pair-wise vertex disjoint $A$-paths $Q_{1}, \ldots, Q_{k}$ such that $\gamma\left(Q_{i}\right) \neq 0$ for all $i=1, \ldots, k$, or there exists a collection of $A$-stars $\overline{\mathcal{S}_{1}}, \ldots, \overline{\mathcal{S}_{t}}$ such that the following hold:

1. $\bigcup_{i=1}^{t} V\left(\overline{\mathcal{S}_{i}}\right) \subseteq \bigcup_{i=1}^{t} V\left(\mathcal{S}_{i}\right)$,
2. For all indices $i=1, \ldots, t, \overline{\mathcal{S}_{i}}$ has $l$ composite paths $\bar{P}_{1}^{i}, \ldots, \bar{P}_{l}^{i}$, and furthermore, $\gamma\left(\bar{P}_{j}^{i}\right) \neq 0$ for all $j=1, \ldots, l$.
3. For every pair of distinct indices $1 \leq i, j \leq t, V\left(\overline{\mathcal{S}_{i}}\right) \cap V\left(\overline{\mathcal{S}_{j}}\right)=\emptyset$.

We now see that Theorem 1.1 follows easily assuming the lemmas.
Proof. (Theorem 1.1, assuming Lemmas 2.1 and 2.3)
Let $G$ be a graph and $\Gamma$ an abelian group. Let $\gamma$ be an undirected $\Gamma$-labeling of $G$. Let $A$ be a fixed subset of the vertices of $G$. The theorem is trivially true when $k=1$, thus we let $k \geq 2$ be a positive integer. Set

$$
\begin{aligned}
m: & =k\left[f_{1}(k, k+1)\right]+9 k+1 \\
& =k(4 k(k+3)-4)+9 k+1 \\
& \leq 12 k^{3} .
\end{aligned}
$$

We let

$$
\begin{aligned}
n: & =k+f_{1}(k, m) \\
& \leq k+4 k\left(12 k^{3}+2\right)-4 \\
& \leq 50 k^{4} .
\end{aligned}
$$

We may assume that $G$ does not contain $k$ disjoint non-zero $A$-paths. By our choice of $n$, we claim that either there exists a set $X$ of at most $n$ vertices hitting every non-zero $A$-path, or there exist non-zero $A$-stars $S_{1}, S_{2}, \ldots, S_{k}$ each with $m$ composite paths. Moreover, if $v_{i}$ is the nexus vertex of $S_{i}$, then $v_{i} \neq v_{j}$ for $i \neq j$. The existence of one such $A$-star follows immediately from Lemma 2.1. Given $i$ such $A$-stars $S_{1}, \ldots, S_{i}$ for $i<k$, consider the graph $G-\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$. Again, by applying Lemma 2.1, there either exists a non-zero $A$-star with $m$ composite paths, or there exists a set $X$ of size at most $f_{1}(k, m)$ hitting all non-zero $A$-paths in $G-\left\{v_{1}, \ldots, v_{i}\right\}$. In the first case, we find the $A$-star $S_{i+1}$ with nexus vertex disjoint from $\left\{v_{1}, \ldots, v_{i}\right\}$, and in the second case, the set $X \cup\left\{v_{1}, \ldots, v_{i}\right\}$ intersects every non-zero $A$-path in $G$ and has size at most $f_{1}(k, m)+i \leq n$.

Given such non-zero $A$-stars $S_{1}, \ldots, S_{k}$, by our choice of $m$ and Lemma 2.3 there exist $k$ vertex disjoint non-zero $A$-stars each containing one composite path. In other words, we find $k$ disjoint non-zero $A$-paths and the theorem is proven.

## 3 Bridges in group labeled graphs

A classic theorem of Tutte [7] states that given a linkage $\mathcal{P}=P_{1} \cup P_{2} \cup \cdots \cup P_{t}$ contained in a 3-connected graph $G$, there exists a linkage $\mathcal{P}^{\prime}=P_{1}^{\prime} \cup P_{2}^{\prime} \cup \cdots \cup P_{t}^{\prime}$ where $P_{i}$ and $P_{i}^{\prime}$ have the same endpoints and furthermore every $\mathcal{P}^{\prime}$-bridge is stable. We will need a similar result for group labeled graphs. However, difficulties arise since rerouting a given linkage to ensure every bridge is stable may destroy valuable properties concerning the weights of the paths in the linkage.

Let $\mathcal{P}$ be a linkage in a $\Gamma$-labeled graph and let $P$ be a connected component of $\mathcal{P}$ with endpoints $u$ and $v$. Let $\gamma$ be the corresponding weight function. If $\gamma(P)=0$, a vertex $x \in V(P)$ is a breaking vertex if $\gamma(v P x)=\alpha \neq 0$ and furthermore, $\alpha$ is not of order two in the group $\Gamma$.

We now see sufficient conditions to ensure that we can find a linkage with every non-trivial component of weight zero has a stable bridge attaching to a breaking vertex. We recall that a separation in a graph $G$ is a pair $(X, Y)$ with $X \subsetneq V(G), Y \subsetneq V(G)$ such that every edge $x y$ of $G$ either satisfies $x, y \in X$ or $x, y \in Y$. In other words, no edge $x y$ of $G$ has $x \in X-Y$ and $y \in Y-X$. The order of a separation $(X, Y)$ is $|X \cap Y|$.

Lemma 3.1 Let $G$ be a $\Gamma$ - labeled graph with weight function $\gamma$. Let $\mathcal{P}$ be a linkage with composite paths $P_{1}, \ldots, P_{k}$ with the ends of $P_{i}$ labeled $x_{i}$ and $y_{i}$. We allow $\mathcal{P}$ to contain trivial paths $P_{i}$ in which case $x_{i}=y_{i}$. Let $X=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$. Assume that for every separation $(A, B)$ with $X \subseteq A$ the order of $(A, B)$ is at least two, and if the order of $(A, B)$ equals two, then there exist paths $R_{1}$ and $R_{2}$ in $G[B]$ such that the endpoints of $R_{i}$ lie in $A \cap B$ and furthermore $\gamma\left(R_{1}\right) \neq \gamma\left(R_{2}\right)$.

If every non-trivial composite path $P$ of $\mathcal{P}$ either has a breaking vertex or satisfies $\gamma(P) \neq 0$, then there exists a linkage $\mathcal{P}^{\prime}$ with composite paths $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ such that the following hold:

1. the endpoints of $P_{i}^{\prime}$ are $x_{i}$ and $y_{i}$,
2. if $i$ is such that $P_{i}$ is a non-trivial path and the weight $\gamma\left(P_{i}\right) \neq 0$, then $\gamma\left(P_{i}^{\prime}\right) \neq 0$, and
3. if $i$ is such that $P_{i}$ is non-trivial and $\gamma\left(P_{i}^{\prime}\right)=0$, then there exists a stable $\mathcal{P}^{\prime}$-bridge $B$ and a breaking vertex $x$ of $P_{i}^{\prime}$ such that $B$ has $x$ as an attachment.

Proof. The proof will proceed by carefully selecting a potential counter-example and deriving a contradiction. We begin with three desirable properties that we will require when we choose a
potential counter-example to the lemma. However, before we fix a counter-example and proceed with the proof, we first present several implications for a linkage $\mathcal{P}^{\prime}$ satisfying properties $A, B$, and $C$.
A. The linkage $\mathcal{P}^{\prime}$ satisfies 1. and 2. and for every non-trivial composite path $P_{i}^{\prime}$ with $\gamma\left(P_{i}^{\prime}\right)=0$, the path $P_{i}^{\prime}$ contains a breaking vertex.
$B$. Subject to $A$, the number of non-trivial composite paths violating 3. is minimized.
$C$. Subject to $A$, and $B$, the number of vertices contained in stable bridges is maximized.
Notice $\mathcal{P}$ is a linkage satisfying $A$, implying that such a choice of $\mathcal{P}^{\prime}$ exists.
We begin with several preliminary observations.
Claim 3.2 Let $\mathcal{P}^{\prime}$ be a linkage satisfying $A, B$, and $C$. with composite paths $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$. For any non-trivial composite path $P_{i}^{\prime}$ of $\mathcal{P}^{\prime}$ that violates condition 3., there do not exist a separation $\left(W_{1}, W_{2}\right)$ of $G$ with $X \subseteq W_{1}$ and $W_{1} \cap W_{2} \subseteq P_{i}^{\prime}$.

Proof. Assume otherwise, and let $\left(W_{1}, W_{2}\right)$ be such a separation. Let $u$ and $v$ be the vertices of $W_{1} \cap W_{2}$, and assume $u$ is the closer to $x_{i}$ in $P_{i}^{\prime}$. By our assumptions on $G$, in the subgraph $G\left[W_{2}\right]$, there exist two paths $R_{1}$ and $R_{2}$ linking $u$ and $v$ with $\gamma\left(R_{1}\right) \neq \gamma\left(R_{2}\right)$. For either $j=1$ or 2 , the path $x_{i} P_{i}^{\prime} u R_{j} v P_{i}^{\prime} y_{i}$ must have non-zero weight. It follows that the linkage $\mathcal{P}^{\prime}-P_{i}^{\prime} \cup x_{i} P_{i}^{\prime} u R_{j} v P_{i}^{\prime} y_{i}$ violates our choice of $\mathcal{P}^{\prime}$ to minimize the number of non-trivial paths violating condition 3 . for some value of $j=1,2$.

Claim 3.3 Let $\mathcal{P}^{\prime}$ be a linkage satisfying $A$., B. and $C$. with composite paths $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$. Let $z_{i}$ be a breaking vertex of a path $P_{i}^{\prime}$ violating condition 3. Let $B_{1}$ be a stable bridge and $B_{2}$ a non-stable bridge attaching to $P_{i}^{\prime}$. Then there do not exist distinct vertices $u, s_{1}$ and $s_{2}$ where $u$ is an attachment of $B_{1}$ and $s_{1}, s_{2}$ attachments of $B_{2}$ such that the vertices $s_{1}, u, s_{2}, z_{i}$ occur on $P_{i}^{\prime}$ in that order (with the vertex $s_{2}$ possibly equal to the vertex $z_{i}$ ).

Proof. Assume the claim is false and let $\mathcal{P}^{\prime}, P_{i}^{\prime}, B_{1}, B_{2}, s_{1}, s_{2}, u$, and $z_{i}$ be as in the statement. There exists a path $R$ in $B_{2}$ with endpoints $s_{1}$ and $s_{2}$ and otherwise disjoint from $P_{i}^{\prime}$. Let the endpoints of $P_{i}^{\prime}$ be $x_{i}$ and $y_{i}$ and assume the vertices $s_{1}$ is the closer of $s_{1}$ and $s_{2}$ to the vertex $x_{i}$ on $P_{i}^{\prime}$. The linkage $\left(\mathcal{P}^{\prime}-P_{i}^{\prime}\right) \cup x_{i} P_{i}^{\prime} s_{1} R s_{2} P_{i}^{\prime} y_{i}$ contradicts our choice of $\mathcal{P}^{\prime}$. To see this, observe first that $\gamma\left(x_{i} P_{i}^{\prime} s_{1} R s_{2} P_{i}^{\prime} y_{i}\right)=\gamma\left(P_{i}^{\prime}\right)=0$ by the fact that $\mathcal{P}^{\prime}$ satisfies $B$. It follows that $z_{i}$ is a breaking vertex of $x_{i} P_{i}^{\prime} s_{2} R s_{1} P_{i}^{\prime} y_{i}$. Yet the vertex $u$ is now an internal vertex of a stable bridge, contradicting our choice of $\mathcal{P}^{\prime}$ to satisfy $C$. This completes the proof of the claim.

We will make several further refinements before picking a potential counter-example to Lemma 3.1. Towards that end, we define the following special vertices. Let $\mathcal{P}^{\prime}$ be any linkage satisfying A, B, and C. with components $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$. Let $i$ be an index such that $P_{i}^{\prime}$ is nontrivial and $\gamma\left(P_{i}^{\prime}\right)=0$, but $P_{i}^{\prime}$ violates condition 3. Let $z_{i}$ be a breaking vertex in $P_{i}^{\prime}$. Let $u\left(z_{i}\right)$ be an attachment of a stable bridge on the subpath $x_{i} P_{i}^{\prime} z_{i}$ chosen as close to $z_{i}$ as possible on the subpath $x_{i} P_{i}^{\prime} z_{i}$. A bridge $B$ straddles a vertex $v$ in a path $P$ if $B$ has attachments in both components of $P-v$. Let $v\left(z_{i}\right)$ be the attachment in $z_{i} P_{i}^{\prime} y_{i}$ of either
i. a stable bridge, or
ii. a bridge straddling both the vertices $u\left(z_{i}\right)$ and $z_{i}$,
with $v\left(z_{i}\right)$ chosen to be as close as possible to $z_{i}$ as possible on the subpath $z_{i} P_{i}^{\prime} y_{i}$.
Claim 3.4 There exists a linkage $\mathcal{P}^{\prime}$ satisfying $A, B$, and $C$. with components $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ such that for every index $i$ such that $P_{i}^{\prime}$ violates condition 3, there exists a breaking vertex $z_{i}$ such that both $u\left(z_{i}\right)$ and $v\left(z_{i}\right)$ are defined.

Proof. Let $P^{\prime}$ be a linkage satisfying A, B, and C. with components $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$. Let $i$ be an index such that $P_{i}^{\prime}$ fails to satisfy condition 3. By Claim 3.2, the endpoints $x_{i}$ and $y_{i}$ of $P_{i}^{\prime}$ do not separate the vertices of $P_{i}^{\prime}$ from the remaining paths of $\mathcal{P}^{\prime}$. Consequently, some stable bridge attaches to an internal vertex of $P_{i}^{\prime}$. Moreover, no stable bridge attaches to a breaking vertex of $P_{i}^{\prime}$. By possibly re-labeling the endpoints of $P_{i}^{\prime}$, we may assume that there exists a breaking vertex $z_{i}$ on $P_{i}^{\prime}$ such that $u\left(z_{i}\right)$ is defined.

Let $\mathcal{P}^{\prime}$ satisfy $\mathrm{A}, \mathrm{B}$, and C. and let $z_{i}$ be a breaking vertex on $P_{i}^{\prime}$ for every component $P_{i}^{\prime}$ of $\mathcal{P}^{\prime}$ that fails to satisfy condition 3 . such that $u\left(z_{i}\right)$ is defined. The linkage $\mathcal{P}^{\prime}$ is the linkage desired by the claim. Let $i$ be an index such that $P_{i}^{\prime}$ fails to satisfy condition 3. Again, by Claim 3.2, the vertices $u\left(z_{i}\right)$ and $y_{i}$ do not form a 2-cut separating $u\left(z_{i}\right) P_{i} y_{i}^{\prime}$ from $\mathcal{P}^{\prime}-u\left(z_{i}\right) P_{i}^{\prime} y_{i}$. It follows that there exists a bridge $B$ attaching to an internal vertex of $u\left(z_{i}\right) P_{i}^{\prime} y_{i}$ and with a second attachment in $\left(\mathcal{P}^{\prime}-P_{i}^{\prime}\right) \cup\left(z_{i} P_{i}^{\prime} u\left(z_{i}\right)-\left\{u\left(z_{i}\right)\right\}\right)$. If $B$ is a stable bridge, then $B$ cannot have an attachment in the subpath $u\left(z_{i}\right) P_{i}^{\prime} z_{i}$ by our choice of $u\left(z_{i}\right)$, and if $B$ has an attachment on an internal vertex of $z_{i} P_{i}^{\prime} y_{i}$, the vertex $v\left(z_{i}\right)$ is defined and the claim is proven. It follows that we may assume that $B$ is not a stable bridge. If $B$ has as an attachment an internal vertex of $z_{i} P_{i}^{\prime} y_{i}$, then $B$ straddles both $z_{i}$ and $u\left(z_{i}\right)$ and again the vertex $v\left(z_{i}\right)$ is defined. Thus we may assume that $B$ has an attachment an internal vertex $s_{1}$ of the subpath $u\left(z_{i}\right) P_{i}^{\prime} z_{i}$ and a vertex $s_{2}$ in the subpath $x_{i} P_{i}^{\prime} u\left(z_{i}\right)-\left\{u\left(z_{i}\right)\right\}$. This contradicts Claim 3.3, completing the proof the claim.

We are now ready to pick a counter-example to Lemma 3.1. Let $\mathcal{P}^{\prime}$ be a linkage satisfying A, B, and C. For every index $i$ such that $P_{i}^{\prime}$ violates condition 3. we fix a breaking vertex $z_{i}$. Furthermore, we assume
D. For every index $i$ such that $P_{i}^{\prime}$ violates condition 3 , the vertices $u\left(z_{i}\right)$ and $v\left(z_{i}\right)$ are defined.
E. Subject to A, B, C, and D. the $\sum_{\left\{i: P_{i}^{\prime} \text { violates 3. }\right\}}\left|V\left(u\left(z_{i}\right) P_{i}^{\prime} v\left(z_{i}\right)\right)\right|$ is minimized.

Fix an index $i$ such that $P_{i}^{\prime}$ violates condition 3. To simplify the notation, for the remainder of the proof we set $u\left(z_{i}\right)=u_{i}$ and $v\left(z_{i}\right)=v_{i}$.

As a case, assume there exists a stable bridge attaching to $v_{i}$. The vertices $u_{i}$ and $v_{i}$ do not form a 2-cut in $G$, and so we see that there must exist a bridge $B$ attaching to both $u_{i} P_{i}^{\prime} v_{i}-\left\{u_{i}, v_{i}\right\}$ and $\mathcal{P}^{\prime}-u_{i} P_{i}^{\prime} v_{i}$. The bridge $B$ cannot be a stable bridge by our choice of $u_{i}$ and $v_{i}$ to be as close as possible to the vertex $z_{i}$ on $P_{i}^{\prime}$. There are two symmetric cases when the bridge $B$ has an attachment in $u_{i} P_{i}^{\prime} z_{i}-\left\{u_{i}\right\}$ or alternatively an attachment in $z_{i} P_{i}^{\prime} v_{i}-\left\{v_{i}\right\}$. Assume the former. If $B$ straddles the vertex $u_{i}$, then there exist attachments $s_{1}$ and $s_{2}$ of $B$ such that the vertices $s_{1}, u_{i}, s_{2}, z_{i}$ occur on the path $P_{i}^{\prime}$ in that order, contradicting Claim 3.3. Alternatively, the bridge $B$ must straddle both the vertices $z_{i}$ and $v_{i}$. By flipping the labels $x_{i}$ and $y_{i}$, we violate our choice of $u_{i}$ and $v_{i}$ to satisfy E.

We conclude that there exists a non-stable bridge $B^{\prime}$ attaching at the vertex $v_{i}$ straddling both $z_{i}$ and $u_{i}$. Note that by our choice of $v_{i}$, the bridge $B^{\prime}$ has no attachments to an internal vertex of
the subpath $z_{i} P_{i}^{\prime} v_{i}$ and by Claim 3.3, the bridge $B^{\prime}$ has no attachments in $u_{i} P_{i}^{\prime} z_{i}-\left\{u_{i}\right\}$. Let $s_{1}$ be an attachment of $B^{\prime}$ in the subpath $x_{i} P_{i}^{\prime} u_{i}-\left\{u_{i}\right\}$ and let $R_{1}$ be a path linking $s_{1}$ to $v_{i}$ in $B^{\prime}$. The vertices $u_{i}$ and $v_{i}$ do not form a 2 -cut in $G$, so there must exist a third bridge $B^{\prime \prime}$ attaching to an internal vertex of $u_{i} P_{i}^{\prime} v_{i}$ and attaching to a vertex of $\mathcal{P}^{\prime}-u_{i} P_{i}^{\prime} v_{i}$. The bridge $B^{\prime \prime}$ cannot be a stable bridge by our choice of $u_{i}$ and $v_{i}$ to be as close as possible to the vertex $z_{i}$. There are now essentially four cases to consider: the bridge $B^{\prime \prime}$ may have one attachment in either $u_{i} P_{i}^{\prime} z_{i}$ or $z_{i} P_{i}^{\prime} v_{i}$ and a second attachment in either $x_{i} P_{i}^{\prime} u_{i}-\left\{u_{i}\right\}$ or $v_{i} P_{i}^{\prime} y_{i}-\left\{v_{i}\right\}$.

We first consider what happens when the bridge $B^{\prime \prime}$ attaches to a vertex $s_{2}$ of $z_{i} P_{i}^{\prime} v_{i}-\left\{z_{i}, v_{i}\right\}$. The bridge $B^{\prime \prime}$ cannot attach to the subpath $x_{i} P_{i}^{\prime} u_{i}$ by our choice of $v_{i}$ to be as close to $z_{i}$ as possible. Thus $B^{\prime \prime}$ has an attachment $s_{3}$ in the subpath $v_{i} P_{i}^{\prime} y_{i}-\left\{v_{i}\right\}$. Let $R_{2}$ be a path in $B^{\prime \prime}$ linking $s_{2}$ and $s_{3}$. Consider the linkage $\left(\mathcal{P}^{\prime}-P_{i}\right) \cup x_{i} P_{i}^{\prime} s_{2} R_{2} s_{3} P_{i}^{\prime} y_{i}$. By B., the path $x_{i} P_{i}^{\prime} s_{2} R_{2} s_{3} P_{i}^{\prime} y_{i}$ must have weight zero. It follows that $z_{i}$ is a breaking vertex of $x_{i} P_{i}^{\prime} s_{2} R_{2} s_{3} P_{i}^{\prime} y_{i}$. Moreover, the bridge containing the path $R_{1}$ attaches at the vertex $s_{2}$ of the path $x_{i} P_{i}^{\prime} s_{2} R_{2} s_{3} P_{i}^{\prime} y_{i}$, contradicting our choice of $\mathcal{P}^{\prime}$ to satisfy E.

We now consider the case when $B^{\prime \prime}$ has an attachment $s_{2}$ in $u_{i} P_{i}^{\prime} z_{i}-\left\{u_{i}\right\}$. If $B^{\prime \prime}$ attaches to a vertex $s_{3}$ of $x_{i} P_{i}^{\prime} u_{i}-\left\{u_{i}\right\}$, we contradict Claim 3.3. Thus we may assume $B^{\prime \prime}$ has an attachment $s_{2}$ in $u_{i} P_{i}^{\prime} z_{i}-\left\{u_{i}\right\}$ and an attachment $s_{3}$ in $v_{i} P_{i}^{\prime} y_{i}-\left\{v_{i}\right\}$. Let $R_{2}$ be a path linking $s_{2}$ and $s_{3}$ in $B^{\prime \prime}$. See Figure 1. Let $\Gamma^{\prime}$ be the subgraph of $\Gamma$ consisting of 0 and all elements of $\Gamma$ of order two.


Figure 1: Rerouting the path $P_{i}^{\prime}$ using the paths $R_{1}$ and $R_{2}$ in the case when $s_{2}$ lies in $u_{i} P_{i}^{\prime} z_{i}-\left\{u_{i}\right\}$ and $s_{3}$ lies in $v_{i} P_{i}^{\prime} y_{i}-\left\{v_{i}\right\}$.

We first observe that $\gamma\left(x_{i} P_{i}^{\prime} s_{1}\right)$ and $\gamma\left(v_{i} P_{i}^{\prime} y_{i}\right)$ are both contained in $\Gamma^{\prime}$ since both $s_{1}$ and $v_{i}$ are an attachment of a stable bridge of $\left(\mathcal{P}^{\prime}-P_{i}^{\prime}\right) \cup x_{i} P_{i}^{\prime} s_{1} R_{1} v_{i} P_{i}^{\prime} y_{i}$ and we chose $\mathcal{P}^{\prime}$ to satisfy B. Also by our choice of $\mathcal{P}^{\prime}$ to satisfy B, we see that $\gamma\left(R_{1}\right) \in \Gamma^{\prime}$ since $\gamma\left(x_{i} P_{i}^{\prime} s_{1} R_{1} v_{i} P_{i}^{\prime} y_{i}\right)=0$. However, by the fact that $z_{i}$ is a breaking vertex, $\gamma\left(z_{i} P_{i}^{\prime} y_{i}\right) \notin \Gamma^{\prime}$ and consequently, the weight $\gamma\left(z_{i} P_{i}^{\prime} v_{i}\right) \notin \Gamma^{\prime}$. Therefore, $\gamma\left(z_{i} P_{i}^{\prime} v_{i} R_{1} s_{1} P_{i}^{\prime} x_{i}\right) \notin \Gamma^{\prime}$ and the vertex $z_{i}$ is a breaking vertex of the path $x_{i} P_{i}^{\prime} s_{1} R_{1} v_{i} P_{i}^{\prime} s_{2} R_{2} s_{3} P_{i}^{\prime} y_{i}$. If we consider the linkage $\mathcal{P}^{\prime \prime}=\left(\mathcal{P}^{\prime}-P_{i}^{\prime}\right) \cup x_{i} P_{i}^{\prime} s_{1} R_{1} v_{i} P_{i}^{\prime} s_{2} R_{2} s_{3} P_{i}^{\prime} y_{i}$ and consider $u\left(z_{i}\right)$ and $v\left(z_{i}\right)$ in this linkage, we see that both are contained in the subpath $s_{2} P_{i}^{\prime} v_{i}$, contradicting our choice of $\mathcal{P}^{\prime}$ to satisfy E. This final contradiction completes the analysis of the cases and the proof of the lemma.

## 4 Proofs of Lemmas 2.1 and 2.3

We begin with the proof of Lemma 2.1. We will need the following corollary to Theorem 1.3.
Corollary 4.1 Let $G$ be a graph with $A \subseteq V(G)$ a subset of the vertices. Let $\Sigma \subseteq E(G)$ be a subset of the edges. Then either there exist $k$ vertex disjoint $A$-paths each containing at least one edge of
$\Sigma$, or there exists a set $X$ of at most $2 k-2$ vertices such that every $A$-path of $G-X$ contains no edge of $\Sigma$.

Corollary 4.1 follows by labeling the graph with the group $\mathbb{Z}_{2}^{E(G)}$ in the natural way so that an $A$-path has non-zero weight if and only if it contains an edge of $\Sigma$.
Proof. (Lemma 2.1)
Assume the lemma is false and let $\Gamma$ be an abelian group, let $G$ be a graph, and let $\gamma$ be a $\Gamma$-labeling of $G$ forming a counter-example to Lemma 2.1 for a subset $A$ of the vertices of $G$. Furthermore, assume that $G$ and $\gamma$ are chosen over all such counter-examples so that $G$ has a minimal number of vertices.

First, we establish a minimal amount of connectivity in $G$.

Claim 4.2 For any separation $(X, Y)$ of $G$ with $A \subseteq X$, the order of the separation $|X \cap Y|$ is at least two, and if $|X \cap Y|=2$, then in $G[Y]$, there exist paths $R_{1}$ and $R_{2}$ linking the two vertices of $X \cap Y$ such that $\gamma\left(R_{1}\right) \neq \gamma\left(R_{2}\right)$.

Proof. Let $(X, Y)$ be a separation contradicting the claim. If the separation $(X, Y)$ is of order one, then by our choice of $(G, \gamma)$ to form a counter-example on a minimal number of vertices, we may assume there exists a set $Z$ such that $G[X]-Z$ does not contain any non-zero $A$-path where $|Z| \leq f_{1}(k, l)$. But then $G-Z$ also does not contain a non-zero $A$-path either since no $A$-path uses a vertex of $Y-X$, contradicting our choice of $(G, \gamma)$ to be a counter-example. Assume now that the separation $(X, Y)$ is of order exactly two but that every path in $G[Y]$ linking the vertices of $X \cap Y$ has weight $\alpha \in \Gamma$. Let $X \cap Y=\left\{x_{1}, x_{2}\right\}$ and let $G^{\prime}$ be the graph $G[X]$ with an edge linking $x_{1}$ and $x_{2}$ if they are not connected by an edge of $G$. Consider the group labeled graph $\left(G^{\prime}, \gamma\right)$ where the edge $x_{1} x_{2}$ has weight $\gamma\left(x_{1} x_{2}\right)=\alpha$. If $G^{\prime}$ contains either many disjoint non-zero $A$-paths or a large non-zero $A$-star, the graph $G$ must as well since at most one composite path can use the edge $x_{1} x_{2}$ and that edge can be replaced in $G$ by a path linking $x_{1}$ and $x_{2}$ in $G[Y]$ of weight $\alpha$. Alternatively, if there exists a set $Z$ of size at most $f_{1}(k, l)$ hitting every non-zero $A$-path in $G^{\prime}$, then the set $Z$ will also hit every non-zero $A$-path in $G$, contradicting our choice of $G$ to be a counter-example. This completes the proof of the claim.

Let $\Gamma^{\prime}$ be the subgroup of $\Gamma$ consisting of 0 and every element of $\Gamma$ of order two. Let $\mathcal{P}$ be a linkage with components $P_{1}, \ldots, P_{n}$ such that each non-trivial composite path $P_{i}$ is either an $A$-path containing edge $e$ of weight $\gamma(e) \in \Gamma-\Gamma^{\prime}$ or satisfies $\gamma\left(P_{i}\right) \neq 0$. We define an objective function value as follows:

$$
\operatorname{value}(\mathcal{P})=3\left|\left\{i: \gamma\left(P_{i}\right) \neq 0\right\}\right|+\mid\left\{i: P_{i} \text { is a nontrivial path and } \gamma\left(P_{i}\right)=0\right\} \mid
$$

Claim 4.3 Let $\mathcal{P}$ be a linkage with components $P_{1}, \ldots, P_{n}$ such that each non-trivial composite path $P_{i}$ is either an $A$-path containing an edge $e$ of weight $\gamma(e) \in \Gamma-\Gamma^{\prime}$ or satisfies $\gamma\left(P_{i}\right) \neq 0$. Then $\operatorname{value}(\mathcal{P})<2 l k+3 k$.

Proof. Let $\mathcal{P}$ be a linkage with components $P_{1}, \ldots, P_{n}$ as in the statement and assume, to reach a contradiction, that value $(\mathcal{P}) \geq 2 l k+3 k$. Furthermore, assume $\mathcal{P}$ is chosen over all such linkages to maximize the function value. If $P_{i}$ is a component of $\mathcal{P}$ such that $\gamma\left(P_{i}\right)=0$, then $P_{i}$ contains an edge $e$ with $\gamma(e) \in \Gamma-\Gamma^{\prime}$. It follows that one endpoint of $e$ is a breaking vertex for the path $P_{i}$. Consider the linkage $\overline{\mathcal{P}}=\mathcal{P} \cup A$ where we consider each additional vertex of $A$ as a trivial path of
length zero. By Lemma 3.1 and Claim 4.2, we may assume that every non-trivial component of $\overline{\mathcal{P}}$ either has non-zero weight or has a breaking vertex that is the attachment of a stable bridge.

Let $P_{i}$ be a non-trivial component of $\overline{\mathcal{P}}$ with $\gamma\left(P_{i}\right)=0$. Let $B$ be a stable bridge attaching to the breaking vertex $z_{i}$ of $P_{i}$. We claim that $B$ cannot attach to any other component $P$ of $\overline{\mathcal{P}}$ with $\gamma(P)=0$. Assume $B$ does attach to such a $P$ at the vertex $s$. Let the ends of $P$ be $x$ and $y$ (with possibly $x=y$ when $P$ is trivial), and let the ends of $P_{i}$ be $x_{i}$ and $y_{i}$. There exists a path $R$ contained in $B$ linking $s$ and $z_{i}$ and otherwise disjoint from $\overline{\mathcal{P}}$. Either $\gamma\left(x P s R z_{i} P_{i} x_{i}\right)$ or $\gamma\left(x P s R z_{i} P_{i} y_{i}\right)$ must be non-zero since $\gamma\left(z_{i} P_{i} x_{i}\right) \neq \gamma\left(z_{i} P_{i} y_{i}\right)$. In either case, we contradict our choice of $\overline{\mathcal{P}}$ to maximize value as either the linkage $\overline{\mathcal{P}}-\left\{P_{i}, P\right\} \cup x P s R z_{i} P_{i} x_{i}$ or $\overline{\mathcal{P}}-\left\{P_{i}, P\right\} \cup x P s R z_{i} P_{i} y_{i}$ would increase value.

Let $P_{i}$ and $P_{j}$ be two non-trivial components of $\overline{\mathcal{P}}$ such that $\gamma\left(P_{i}\right)=\gamma\left(P_{j}\right)=0$, and let $B_{i}$ and $B_{j}$ be two stable bridges attaching to a breaking vertex $z_{i}$ of $P_{i}$ and a breaking vertex $z_{j}$ of $P_{j}$, respectively. If $P$ is a component of $\overline{\mathcal{P}}$ with $\gamma(P) \neq 0$ containing attachments of both $B_{i}$ and $B_{j}$, then there exists a vertex $s$ of $P$ that is the unique attachment of $B_{i}$ and $B_{j}$ on $P$. Assume otherwise, and that there exists a non-zero path $P$ containing distinct vertices $s_{i}$ and $s_{j}$ that are attachments of $B_{i}$ and $B_{j}$, respectively. Let the endpoints of $P$ be $x$ and $y$ and assume that the vertices $x, s_{1}, s_{2}, y$ occur on $P$ in that order. Let the endpoints of $P_{i}$ be $x_{i}$ and $y_{i}$ and similarly, the endpoints of $P_{j}$ be $x_{j}$ and $y_{j}$. As in the previous paragraph, let $R_{i}$ be a path linking $s_{i}$ and $z_{i}$ in $B_{i}$ and let $R_{j}$ be defined analogously. Either the path $x P s_{i} R_{i} z_{i} P_{i} x_{i}$ or $x P s_{i} R_{i} z_{i} P_{i} y_{i}$ must have non-zero weight. Without loss of generality, assume $\gamma\left(x P s_{i} R_{i} z_{i} P_{i} x_{i}\right) \neq 0$. Similarly, we may assume $\gamma\left(y P s_{j} R_{j} z_{j} P_{j} x_{j}\right) \neq 0$. We now contradict our choice of $\overline{\mathcal{P}}$ as the linkage $\overline{\mathcal{P}}-\left\{P_{i}, P_{j}, P\right\} \cup\left\{x P s_{i} R_{i} z_{i} P_{i} x_{i}, y P s_{j} R_{j} z_{j} P_{j} x_{j}\right\}$ violates our choice of $\overline{\mathcal{P}}$ to maximize value.

The linkage $\overline{\mathcal{P}}$ contains at most $k-1$ non-trivial components with non-zero weight by our choice of $G$ to be a counter-example. Given that $\operatorname{value}(\overline{\mathcal{P}}) \geq 2 l k+3 k$, there exist at least $2 l k$ non-trivial components in $\overline{\mathcal{P}}$, each with weight zero. It follows that there exists a subset $\mathcal{I}$ of indices of size at least $2 l$, a non-zero composite path $P$ of $\overline{\mathcal{P}}$, and a vertex $s$ on $P$ such that the following holds. For all $i \in \mathcal{I}, P_{i}$ is a non-trivial path with $\gamma\left(P_{i}\right)=0$ containing a breaking vertex $z_{i}$ such that there exists a bridge attaching to both $s$ and $z_{i}$. By our observations in the previous paragraph, we can find internally disjoint paths $R_{i}$ for all $i \in \mathcal{I}$ such that $R_{i}$ links $z_{i}$ and $s$ and $R_{i}$ is internally disjoint from $\overline{\mathcal{P}}$. We now can construct a non-zero $A$-star with $l$ composite paths each of the form $x_{i} P_{i} z_{i} R_{i} s R_{i^{\prime}} z_{i^{\prime}} P_{i^{\prime}} x_{i^{\prime}}$ or $x_{i} P_{i} z_{i} R_{i} s R_{i^{\prime}} z_{i^{\prime}} P_{i^{\prime}} y_{i^{\prime}}$ for some pair of indices $i$ and $i^{\prime}$ in $\mathcal{I}$. This contradiction implies that $\operatorname{value}(\overline{\mathcal{P}})<2 k l+3 k$, and consequently, $\operatorname{value}(\mathcal{P})<2 l k+3 k$ as desired by the claim.

An immediate consequence of Claim 4.3 is that there do not exist $2 k l+3 k$ disjoint $A$-paths each containing an edge with weight equal to some element of $\Gamma-\Gamma^{\prime}$. If we apply Corollary 4.1, we see that there exists a set $X$ of at most $2(2 k l+3 k)-2$ vertices hitting every $A$-path containing an edge of weight equal to an element of $\Gamma-\Gamma^{\prime}$. We now fix an arbitrary orientation dir of the edges of $G-X$. If the oriented labeling $(\gamma, d i r)$ of $G-X$ contains $k$ disjoint non-zero $A$-paths, then by Observation 1, $G-X$ would contain $k$ disjoint non-zero $A$-paths in the unoriented labeling $\gamma$. Thus by our choice of $X$, there exists a set $X^{\prime}$ of at most $2 k-2$ vertices intersecting all non-zero $A$-paths in the unoriented labeling $\gamma$ in the graph $G-X$. We conclude that $X \cup X^{\prime}$ is a set of at most $2(2 k l+3 k)-2+(2 k-2)$ vertices intersecting every non-zero $A$-path in $G$, contrary to our choice of $G$ as a counter-example. This completes the proof of Lemma 2.1.

We now proceed with the proof of Lemma 2.3.
Proof. (Lemma 2.3)

Notice that the statement is vacuously true when $t=1$. Assume the lemma is false, and choose a counter-example $G=\bigcup_{i=1, \ldots, t} \mathcal{S}_{i}$ for the minimal value of $t$ for which the lemma fails to hold. We first observe that if we delete the vertices $v_{1}, \ldots, v_{t}$ from $G$, the resulting graph has maximum degree $2 t$. Since we may assume $G$ does not contain $k$ disjoint non-zero $A$-paths, we see that there exists a set $X \subseteq V(G)-\left\{v_{1}, \ldots, v_{t}\right\}$ with $|X| \leq f_{1}(k, t+1)$ such that every non-zero $A$-path of $G-X$ must contain at least one of the nexus vertices $v_{1}, \ldots, v_{t}$. We discard any composite path containing a vertex in $X$ to construct non-zero $A$-stars $\mathcal{S}_{1}^{\prime}, \ldots, \mathcal{S}_{t}^{\prime}$ each with at least $n-f_{1}(k, t+1)$ composite paths. Moreover, every non-zero $A$-path contained in the subgraph $\bigcup_{i=1, \ldots, t} \mathcal{S}_{i}^{\prime}$ must contain a nexus vertex.

By our choice of counter-example to minimize $t$, we see that $\mathcal{S}_{1}^{\prime}, \ldots, \mathcal{S}_{t-1}^{\prime}$ contain $t-1$ non-zero $A$-stars $\mathcal{I}_{1}, \ldots, \mathcal{T}_{t-1}$ such that each $\mathcal{T}_{i}$ has $l$ composite paths and moreover, for every pair of distinct indices $i$ and $j, \mathcal{T}_{i}$ and $\mathcal{T}_{j}$ have no vertex in common. The next claim will complete the proof.

Claim 4.4 Let $\mathcal{R}_{1}, \ldots, \mathcal{R}_{t^{\prime}}$ be $t^{\prime}$ pairwise vertex disjoint non-zero $A$-stars, each with $l$ composite paths. Let $\mathcal{R}_{t^{\prime}+1}$ be a non-zero $A$-star with $8 t^{\prime} l+t^{\prime}+l$ composite paths. Let $v_{i}$ be the nexus vertex of $\mathcal{R}_{i}$ for all $i=1, \ldots, t^{\prime}+1$, and assume that for all $i \neq j, v_{i} \neq v_{j}$. Furthermore, assume every non-zero $A$-path $P$ contained in $\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{t^{\prime}} \cup \mathcal{R}_{t^{\prime}+1}$ must contain the nexus vertex $v_{i}$ of at least one of the $A$-stars $\mathcal{R}_{i}$. Then there exist $t^{\prime}+1$ vertex disjoint non-zero $A$-stars $\mathcal{R}_{1}^{\prime}, \ldots, \mathcal{R}_{t+1}^{\prime}$ with

$$
V\left(\mathcal{R}^{\prime}{ }_{i}\right) \subseteq \bigcup_{j=1, \ldots, t^{\prime}+1} V\left(\mathcal{R}_{j}\right)
$$

for all $i=1, \ldots, t^{\prime}+1$.
Proof. Assume the claim is false, and let $R_{1}, \ldots, R_{t^{\prime}+1}$ be a counter-example on a minimal number of edges. At most $t^{\prime}$ composite paths of paths of $R_{t^{\prime}+1}$ contain a nexus vertex $v_{j}$ for some $j=1, \ldots, v_{t^{\prime}}$. By assumption, $R_{t^{\prime}+1}$ does not have $l$ composite paths that are disjoint from $\bigcup_{j=1, \ldots, t^{\prime}} V\left(\mathcal{R}_{j}\right)$. Also, at most $2 t^{\prime} l$ composite paths of $\mathcal{R}_{t^{\prime}+1}$ have an endpoint contained in $\mathcal{R}_{j}$ for some index $j$. Thus there exist $6 t^{\prime} l$ composite paths $P_{1}, \ldots, P_{6 t^{\prime} l}$ of $\mathcal{R}_{t^{\prime}+1}$ that satisfy the following conditions:

1. each path $P_{i}$ contains a vertex in $\mathcal{R}_{j}$ for some $1 \leq j \leq t^{\prime}$,
2. no path $P_{i}$ has an endpoint contained in $\mathcal{R}_{j}$ for some $j=1, \ldots, t^{\prime}$, and
3. no path $P_{i}$ contains a nexus vertex $v_{j}$ for some $1 \leq j \leq t^{\prime}$.

Let the ends of $P_{i}$ be $x_{i}$ and $y_{i}$, with $x_{i}$ chosen such that the subpath $x_{i} P_{i} v_{t^{\prime}+1}$ intersects some $\mathcal{R}_{j}$.
The union of the $\mathcal{R}_{1}, \ldots, \mathcal{R}_{t^{\prime}}$ contains $2 t^{\prime} l$ distinct rays. Thus there exists a ray $R$ with and three distinct indices $i$ such that $x_{i} P_{i} v_{t^{\prime}+1}$ intersects $R$ in a vertex $z_{i}$, and moreover, the path $x_{i} P_{i} z_{i}$ is disjoint from the union of $\mathcal{R}_{1}, \ldots, \mathcal{R}_{t^{\prime}}$ except for the endpoint $z_{i}$. Without loss of generality, we may assume that $P_{1}, P_{2}$, and $P_{3}$ are three such composite paths of $\mathcal{R}_{t^{\prime}+1}$ and that the ray $R$ is contained in the composite path $Q$ of $\mathcal{R}_{1}$. Let $x_{r}$ be the endpoint of $R$ in $A$. By the assumption that every nonzero $A$-path contains a nexus vertex, we see that $\gamma\left(x_{i} P_{i} z_{i}\right)=-\gamma\left(x_{r} R z_{i}\right)$ for $i=1,2,3$. If the subpath $x_{i} P_{i} z_{i}$ has weight $\gamma\left(x_{i} P_{i} z_{i}\right)$ equal to 0 or an element of $\Gamma$ of order two, then $\gamma\left(x_{i} P_{i} z_{i}\right)=\gamma\left(x_{r} R z_{i}\right)$. We conclude that if $\gamma\left(x_{i} P_{i} z_{i}\right)$ has order two, then $\mathcal{R}_{1}-Q \cup x_{i} P_{i} z_{i} Q, \mathcal{R}_{2}, \ldots, \mathcal{R}_{t_{1}^{\prime}}$ is a counter-example to Claim 4.4 on fewer edges.

By our choice of a minimal counter-example, we see that for $i=1,2,3$, the weight $\gamma\left(x_{i} P_{i} z_{i}\right)$ must be a non-zero element $\Gamma$ that is not of order two. It follows that there exist distinct indices
$i, j \in\{1,2,3\}$ such that

$$
\gamma\left(x_{i} P_{i} z_{i} Q z_{j} P_{j} x_{j}\right) \neq 0
$$

contrary to our assumptions since such a path does not contain the nexus vertex of any $\mathcal{R}_{k}$. To see this, assume the vertices $x_{r}, z_{1}, z_{2}, z_{3}$ occur on $R$ in that order. Let $\alpha=\gamma\left(x_{2} P_{2} z_{2}\right)$. Lest there exist a non-zero path not containing a nexus vertex, both $\gamma\left(x_{3} P_{3} z_{r} R z_{2}\right)=\gamma\left(x_{1} P_{1} z_{1} R z_{2}\right)=-\alpha$. But then $\gamma\left(x_{1} P_{1} z_{1} R z_{3} P_{3} x_{3}\right)=-2 \alpha \neq 0$, as desired.

Apply Claim 4.4 to the $A$-stars $\mathcal{T}_{1}, \ldots, \mathcal{T}_{t-1}, \mathcal{S}_{t}^{\prime}$. We then find $t$ pairwise vertex disjoint non-zero $A$-stars each with $l$ composite paths, proving the lemma.

## References

[1] M. Chudnovsky, J. Geelen, B. Gerards, L. Goddyn, M. Lohman and P. Seymour, Packing non-zero $A$-paths in group labeled graphs, Combinatorica 26 (5) (2006), 521-532.
[2] T. Gallai, Maximum-minimum Sätze and verallgemeinerte Factoren von Graphen, Acta. Math. Hung. Acad. Sci. 12 (1961), 131 - 173.
[3] M. Kriesell, Disjoint $A$-paths in Digraphs, J. Combin. Theory, ser. B.95 (2005) 168-172.
[4] W. Mader, Über die Maximalzahl krezungsfreier H-Wege, Archiv der Mathematik (Basel) 31 (1978), 387-402.
[5] A. Schrijver, A short proof of Maders $\mathcal{S}$-paths theorem, J. Combin. Theory, Ser. B 82 (2001), 319-321.
[6] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, Europ. J. Combinatorics 26 (2005), 309-324.
[7] W. T. Tutte, Graph Theory, Addison-Wesley, Menlo Park, CA, 1984.


[^0]:    *paul.wollan@gmail.com
    ${ }^{\dagger}$ This work partially supported by a fellowship from the Alexander von Humboldt Foundation

