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Abstract

A signed graph is a representation of an even cycle matroid M if the cycles of M correspond
to the even cycles of that signed graph. Two long standing, open questions regarding even cycle
matroids are the problem finding an excluded minor characterization and the problem of efficiently
recognizing this class of matroids. Progress on these problems has been hampered by the fact
that even cycle matroids can have an arbitrary number of pairwise inequivalent representations
(two signed graph are equivalent if they are related by a sequence of Whitney-flips and signature
exchanges). We show that we can bound the number of inequivalent representations of an even
cycle matroid M (under some mild connectivity assumptions) if M contains any fixed size minor
that is not a projection of a graphic matroid. For instance, any connected even cycle matroid which
contains R10 as a minor has at most 6 inequivalent representations.

1 Introduction

We assume that the reader is familiar with the basics of matroid theory. See Oxley [6] for the definition
of the terms used here. We will only consider binary matroids in this paper. Thus the reader should
substitute the term “binary matroid” every time “matroid” appears in this text.

In this article, we will consider graphs with multiple edges and loops. Let G be a graph. For a
set X ⊆ E(G), we write VG(X) to refer to the set of vertices incident to an edge of X and G[X ] for
∗Present address: Dept. of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada;
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the subgraph with vertex set VG(X) and edge set X . A subset C of edges is a cycle if G[C] is a graph
where every vertex has even degree. An inclusion-wise minimal non-empty cycle is a circuit. Let G
be a graph. We denote by cycle(G) the set of all cycles of G. The set cycle(G) is the set of cycles of
the graphic matroid of G. We identify cycle(G) with that matroid. We say that G is a representation of
that graphic matroid.

A signed graph is a pair (G,Σ) where G is a graph and Σ ⊆ E(G). A subset B ⊆ E(G) is even
(resp. odd) if |B∩Σ| is even (resp. odd). In particular an edge e is odd if and only if e ∈ Σ. We say
that Σ′ is a signature of (G,Σ) if (G,Σ) and (G,Σ′) have the same set of even cycles. Equivalently, it
is straightforward to prove that Σ′ is a signature if Σ4Σ′ is a cut of G. In that case (G,Σ) and (G,Σ′)

are related by a signature exchange. Let (G,Σ) be a signed graph. We denote by ecycle(G,Σ) the set
of all even cycles of (G,Σ). The set ecycle(G,Σ) is the set of cycles of a binary matroid known as the
even cycle matroid. We identify ecycle(G,Σ) with that matroid. We say that (G,Σ) is a representation
of that matroid. Observe that since cycle(G) = ecycle(G, /0), every graphic matroid is an even cycle
matroid.

1.1 Representations of graphic matroids are nice

We will state a theorem that shows, for a graphic matroid, how to construct the set of all representations
from a single representation. We require a number of definitions.

Let G be a graph and let X ⊆ E(G). We write BG(X) for VG(X)∩VG(X̄). 1 Suppose that BG(X) =

{u1,u2} for some u1,u2 ∈ V (G). Let G′ be the graph obtained by identifying vertices u1,u2 of G[X ]

with vertices u2,u1 of G[X̄ ] respectively. Then G′ is obtained from G by a Whitney-flip on X . We will
also call Whitney-flip the operation consisting of identifying two vertices from distinct components, or
the operation consisting of partitioning the graph into components each of which is a block of G. We
define two graphs to be equivalent if one can be obtained from the other by a sequence of Whitney-flips
(it is easy to verify that this does indeed define an equivalence relation).

In a seminal paper [13], Whitney proved the following.

Theorem 1. A graphic matroid has a unique representation, up to equivalence.

It follows in particular that, if a graphic matroid is 3-connected, then it has a unique representation.

1.2 Representations of even cycle matroids are naughty

The situation is considerably more complicated for even cycle matroids than for graphic matroids as
we will illustrate in this section.

1X̄ = E(G)−X , where for any pair of sets A and B, A−B = {a ∈ A : a /∈ B}. Throughout the paper we shall omit indices
when there is no ambiguity. For instance we may write B(X) for BG(X).
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Suppose that (G1,Σ1) and (G2,Σ2) are signed graphs where G1 and G2 are equivalent and Σ2 is is
a signature of (G1,Σ1). Then we say that (G1,Σ1) and (G2,Σ2) are equivalent. Evidently, in that case
ecycle(G1,Σ1) = ecycle(G2,Σ2). Moreover, it can be easily checked that if G1 and G2 are equivalent
graphs and ecycle(G1,Σ1) = ecycle(G2,Σ2) for some signatures Σ1 and Σ2, then (G1,Σ1) and (G2,Σ2)

are equivalent. Equivalent signed graphs do indeed define an equivalence relation. It follows that for
any even cycle matroid N we can partition its representations into equivalence classes F1, . . . ,Fk. We
will say that Fi (i ∈ [k]) is an equivalence class of N.

There is no direct analogue to Theorem 1 for even cycle matroids as the following result illustrates,

Remark 2. For any integer k, there exists a even cycle matroid M with |E(M)| ≤ 4k and 2k−1 equiva-
lence classes.

We now describe a general operation to construct the matroids given in the previous result.
Let G be a graph. Given U ⊆ V (G), we denote by δG(U) the cut induced by U , that is δG(U) :=

{(u,v) ∈ E(G) : u ∈U,v 6∈U}. We write δG(u) for δG({u}) for a vertex u ∈ V (G). Given a graph G
we denote by loop(G) the set of all loops of G. Let (G,Σ) be a signed graph. A vertex s is a blocking
vertex of (G,Σ) if every odd circuit of (G,Σ) either contains the vertex s or is a loop. Similarly, a pair
of vertices s, t is a blocking pair if every odd circuit of (G,Σ) either uses at least one of s and t or is a
loop. Note that s is a blocking vertex (respectively s, t is a blocking pair) of (G,Σ) if and only if there
exists a signature Σ′ of (G,Σ) such that Σ′ ⊆ δ (s)∪ loop(G) (respectively Σ′ ⊆ δ (s)∪δ (t)∪ loop(G)).

Consider a signed graph (G,Σ) and vertices v1,v2 ∈ V (G), where Σ ⊆ δG(v1)∪δG(v2)∪ loop(G).
So v1,v2 is a blocking pair of (G,Σ). We can construct a signed graph (G′,Σ) from (G,Σ) by replacing
the endpoints x,y of every odd edge e with new endpoints x′,y′ as follows:

• if x = v1 and y = v2 then x′ = y′ (i.e. e becomes a loop);

• if x = y (i.e. e is a loop), then x′ = v1 and y′ = v2;

• if x = v1 and y 6= v1,v2, then x′ = v2 and y′ = y;

• if x = v2 and y 6= v1,v2, then x′ = v1 and y′ = y.

Then we say that (G′,Σ) is obtained from (G,Σ) by a Lovász-flip on v1,v2. It is easy to show that
Lovász-flips preserve even cycles [3, 4]. Using Lovász-flips we can construct inequivalent signed
graphs representing the same even cycle matroid. An example is given in Figure 1. Each G1, . . . ,G4

may stand for an arbitrary graph. As an example we chose G1 to be the graph with edges 1,2,3,4,5,6
given in the figure. The arrows indicate how each piece is flipped between the graph on the left and the
graph on the right. The odd edges, in both signed graphs, are 1,2,3. Note that, for every i∈ [4], the two
vertices in VGi ∩VGi+1 form a blocking pair. It is possible to obtain the signed graph on the right from
the signed graph on the left by signature exchanges and Lovász-flips on each of these blocking pairs.
This construction generalizes to any number of graphs G1, . . . ,Gk and using Lovász-flips and signature
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Figure 1: Inequivalent signed graphs representing the same matroid.

exchanges we can flip any subset of these k graphs. In particular, it is easy to construct matroids M as
in Remark 2 (for each i ∈ [k] let Gi be a complete bipartite graph with 2 vertices on each sides).

As Remark 2 shows, if a signed graph (G,Σ) has blocking pairs then ecycle(G,Σ) may have many
inequivalent representations. On the other hand, if a signed graph has a blocking pair, then it cannot
have three, pairwise vertex disjoint, odd circuits. Thus one may wonder if having three, pairwise vertex
disjoint, odd circuits, forces the representation to be unique, up to equivalence. Slilaty [10] proved that
the analogue of this statement holds for signed-graphic matroids. Alas, no similar result holds for even
cycle matroids, as the following remark indicates. It shows that blocking pairs are not the only reason
for having inequivalent representations.

Remark 3. For every integer k, there exists a signed graph (G,Σ) with the property that:

(1) every signed graph equivalent to (G,Σ) has k, pairwise vertex disjoint, odd circuits, and

(2) ecycle(G,Σ) has at least two inequivalent representations.

We postpone the proof of this remark until Section 4.2.2.

1.3 Main results

Given a matroid M and disjoint subsets I,J ⊆ E(M), the matroid M \ I/J denotes the minor of M
obtained by deleting the elements in I and contracting the elements in J. We define minor operations
on signed graphs as follows. Let (G,Σ) be a signed graph and let e ∈ E(G). Then (G,Σ)\ e is defined
as (G\ e,Σ−{e}). 2 We define (G,Σ)/e as (G\ e, /0) if e is an odd loop of (G,Σ) and as (G\ e,Σ) if e

2Given a graph G and e ∈ E(G), G\ e is the graph obtained by deleting e whereas G/e is the graph obtained by contract-
ing e.
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is an even loop of (G,Σ); otherwise (G,Σ)/e is equal to (G/e,Σ′), where Σ′ is any signature of (G,Σ)

which does not contain e. Observe that (see [5] for instance),

Remark 4. ecycle(G,Σ)\ I/J = ecycle
(
(G,Σ)\ I/J

)
.

In particular, this implies that being an even cycle matroid is a minor closed property.

1.3.1 Non-degenerate minors

We say that an even cycle matroid is degenerate if any of its representation has a blocking pair. If
a signed graph has a blocking pair, then so does every minor. It follows from Remark 4 that being
degenerate is a minor closed property. If an even cycle matroid N is graphic, then it has a representation
(G, /0) as an even cycle matroid, and trivially, any pair of vertices of G is a blocking pair. Hence, graphic
matroids are degenerate. An example of an even cycle matroid that is non-degenerate is given by the
matroid R10 (introduced in [9]). R10 has six representations as an even cycle matroid, all isomorphic
to the signed graph

(
K5,E(K5)

)
. (How to find these representations is explained in [5].) This signed

graph does not have a blocking pair, as the removal of any two vertices leaves an odd triangle.
We are now ready to present the first main result of the paper,

Theorem 5. Let M be a 3-connected even cycle matroid which contains as a minor a non-degenerate
3-connected matroid N. Then the number of equivalence classes of M is at most twice the number of
equivalence classes of N.

This result implies, in particular, that every 3-connected even cycle matroid containing R10 as a minor
has, up to equivalence, at most 12 representations. We will strengthen this result in Section 1.3.2.

We will show that degenerate matroids are “close” to being graphic matroids. We require a number
of definitions to formalize this notion.

Consider a graph H with a vertex v and α ⊆ δH(v)∪ loop(H). We say that G is obtained from H
by splitting v into v1 and v2 according to α if V (G) =V (H)−{v}∪{v1,v2} and for every e = (u,w) ∈
E(H):

• if e 6∈ δH(v)∪ loop(H), then e = (u,w) in G;

• if e ∈ loop(H)∩α , then e = (v1,v2) in G;

• if e ∈ δH(v)∩α and u 6= v,w = v, then e = (u,v1) in G;

• if e ∈ δH(v)−α and u 6= v,w = v, then e = (u,v2) in G.

Let N and M be matroids where E(N) = E(M). Then N is a lift of M if, for some matroid M′ where
E(M′) = E(M)∪{Ω}, M = M′/Ω and N = M′ \Ω. If N is a lift of M then M is a projection of N.
Lifts and projections were introduced in [2]. Every even cycle matroid M is a lift of a graphic matroid;
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indeed, for any representation (G,Σ) of M we may construct (G′,Σ′) by adding an odd loop Ω. Then
ecycle(G′,Σ′)/Ω is a graphic matroid. The following result shows that degenerate even cycle matroids
are projections of graphic matroids.

Remark 6. Let (H,Γ) be a signed graph.

(1) If (H,Γ) has a blocking vertex, then ecycle(H,Γ) is a graphic matroid.

(2) If (H,Γ) has a blocking pair, then ecycle(H,Γ) is a projection of a graphic matroid.

Proof. (1) Suppose that Γ ⊆ δH(s)∪ loop(H) for some vertex s of H. Let G be obtained from H by
splitting s according to Γ. Then cycle(G)= ecycle(H,Γ). (2) Suppose that Γ⊆ δH(s)∪δH(t)∪ loop(H)

for a pair of vertices s, t of H. Let G be obtained from H by splitting s into s1 and s2 according to
δH(s)∩Γ and by adding an edge Ω=(s1,s2). Let M′= ecycle(G,Γ). Then by construction (G,Γ)/Ω=

(H,Γ), hence M′/Ω = M. Moreover, by (1), ecycle(G,Γ)\Ω = M′ \Ω is a graphic matroid, as t is a
blocking vertex of (G,Γ)\Ω.

1.3.2 Substantial minors

Consider a signed graph (G,Σ) and suppose that there exists a partition C1,C2 of the odd circuits of
(G,Σ) and graphs G1 and G2 equivalent to G such that, for i = 1,2, some vi ∈ V (Gi) intersects all
circuits in Ci. Then we call the pair (G1,v1) and (G2,v2) an intercepting pair for (G,Σ). In particular,
if (G,Σ) has a blocking pair v1,v2, then (G,v1), (G,v2) is an intercepting pair for (G,Σ). An even cycle
matroid is substantial if none of its representations has an intercepting pair. Hence, if an even cycle
matroid is degenerate it is not substantial. In particular, substantial matroids are not graphic. We will
see (Remark 13) that not being substantial is also a minor closed property. If, for every representation
(G,Σ) of an even cycle matroid M, the graph G is 3-connected and (G,Σ) has no blocking pair, then M
is substantial. As all 6 representations of R10 are isomorphic to

(
K5,E(K5)

)
, R10 is substantial.

We are now ready to present the second main result of the paper,

Theorem 7. Let M be a connected even cycle matroid which contains as a minor a connected matroid
N that is substantial. Then the number of equivalence classes of M is at most the number of equivalence
classes of N.

This result implies, in particular, that every connected even cycle matroid containing R10 as a minor
has, up to equivalence, at most 6 representations.

1.4 Related results and motivation

Even cycle matroids are a natural class of matroids to study as they are the smallest minor closed class
of binary matroids which contains all single element co-extensions of graphic matroids. Robertson
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and Seymour [7] proved that for every infinite set of graphs one of its members is isomorphic to a
minor of another. Gerards, Geelen, and Whittle announced that an analogous result holds for binary
matroids. Hence, any minor closed class of binary matroids can be characterized by a finite set of
excluded minors. In particular this is the case for even cycle matroids. Tutte [12] gave an explicit
description of the excluded minors for the class of graphic matroids. He also gave a polynomial time
algorithm to check if a binary matroid (given by its 0,1 matrix representation) is graphic [11].

No explicit description of the excluded minors is known for even cycle matroids and we do not
know how to recognize efficiently whether a given binary matroid is an even cycle matroid. The
difficulty for both problems lies with the fact that we do not have a sufficient understanding of the rep-
resentations of even cycle matroids. Theorems 5 and 7 are a first step towards a better understanding
of this problem. Eventually, we wish to extend the aforementioned theorems so as to have a compact
description of the representations of arbitrary even cycle matroids. We believe that there exists a con-
stant k such that every even cycle matroid with more than k inequivalent representations is constructed
in a way analogous to that of the example in Section 1.2. The problem of describing the pairwise
relationship between any two representations of an even cycle matroid is discussed in [4].

1.5 Organization of the paper

Section 2 introduces generalizations of Theorems 5 and 7. An outline of the proofs of these theorems
is then presented leaving out two key lemmas, namely 15 and 16. Lemma 15 is proved in Section 3.
Section 4 we prove a characterization of class of inequivalent representations of even cycle matroids.
This is required for the proof of Lemma 16 which is then given in Section 5.

2 The proofs (modulo the exclusion of several lemmas)

If N is a minor of a matroid M then M is a major of N. Consider an even cycle matroid M with a
representation (G,Σ). Let I and J be disjoint subsets of E(M) and let N := M \ I/J. Let (H,Γ) :=
(G,Σ) \ I/J. It follows from Remark 4 that (H,Γ) is a representation of N. We say that (G,Σ) is an
extension to M of the representation (H,Γ) of N, or alternatively that (H,Γ) extends to M.

The following result implies Theorem 5.

Theorem 8. Let N be a 3-connected non-degenerate even cycle matroid. Let M be a 3-connected
major of N. For every equivalence class F of N, the set of extensions of F to M is the union of at most
two equivalence classes.

The following result implies Theorem 7.

Theorem 9. Let N be a connected substantial even cycle matroid. Let M be a connected major of N.
For every equivalence class F of N, the set of extensions of F to M is contained in one equivalence
class.
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The proofs of Theorems 8 and 9 are constructive. Thus, given a description of the inequivalent repre-
sentations of N, it is possible to construct the set all inequivalent representations of M.

2.1 Definitions

First an easy observation,

Remark 10. If G1 and G2 are equivalent graphs, then G1 \ I/J and G2 \ I/J are equivalent.

Proof. Since G1 and G2 are equivalent, cycle(G1) = cycle(G2). Hence, cycle(G1)\ I/J = cycle(G2)\
I/J. As the minor operations on graphs and matroid commute, we have, cycle(G1 \ I/J) = cycle(G2 \
I/J). The result now follows from Theorem 1.

Consider a matroid M and let N := M\ I/J be a minor of M. If J = /0 and |I|= 1 then M is a column
major of N. If I = /0 and |J| = 1 then M is a row major of N. A set F of representations of an even
cycle matroid is closed under equivalence if, for every (H,Γ) ∈ F and (H ′,Γ′) equivalent to (H,Γ), we
have that (H ′,Γ′) ∈ F.

Remark 11. Let F be a set of representations of an even cycle matroid N and let M be a major of N.
If F is closed under equivalence, then so is the set F′ of extensions of F to M.

Proof. Let (G1,Σ1) ∈ F′ and let (G2,Σ2) be equivalent to (G1,Σ1). We have N = M \ I/J, for some
I,J ⊆ E(M). By definition of F′ there exists (H1,Γ1) ∈ F where (H1,Γ1) = (G1,Σ1) \ I/J. Let
(H2,Γ2) := (G2,Σ2) \ I/J. Remark 10 implies that (H1,Γ1) and (H2,Γ2) are equivalent. As F is
closed under equivalence, (H2,Γ2) ∈ F. Since, F′ is the set of extension of F to M, (G2,Σ2) ∈ F′.

Let F be an equivalence class of an even cycle matroid N that is not graphic. We say that F is row
stable (resp. column stable) if for all row (resp. column) majors M of N, where

• M has no loop, and no co-loop, and

• M is not graphic,

the set of extensions of F to M is an equivalence class.

2.2 A sketch of the proof of Theorem 9

We postpone the proof of the following result until Section 2.4.

Lemma 12. Every equivalence class of an even cycle matroid is column stable.

The following implies that if a matroid is not substantial then neither are any of its minors.

Remark 13. If (G,Σ) has an intercepting pair, then so does every minor (H,Γ) of (G,Σ).
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A signed graph (G,Σ) is bipartite if all cycles are even. We require the following observation,

Remark 14. Suppose (G,Σ) has an intercepting pair (G1,v1) and (G2,v2). Then there exists for
i = 1,2, αi ⊆ δGi(vi)∪ loop(G), such that α14α2 is a signature of (G,Σ).

Proof. Every odd circuit of (G,Σ) is a circuit of G1 using v1 or a circuit of G2 using v2. It follows that
(G,Σ)\

[
δG1(v1)∪δG2(v2)∪ loop(G1)∪ loop(G2)

]
is bipartite. Since loop(G1) = loop(G2) = loop(G),

there is a signature of (G,Σ) contained in δG1(v1)∪δG2(v2)∪ loop(G) and the result follows.

Proof of Remark 13. Suppose (G,Σ) has an intercepting pair (G1,v1),(G2,v2). Let α14α2 be the
signature of (G,Σ) given by Remark 14. We have (H,Γ) = (G,Σ) \ I/J for some I,J ⊆ E(G). For
i = 1,2, let (Hi,βi) := (Gi,αi) \ I/J. Remark 10 implies that H1 and H2 are equivalent. For i = 1,2,
vi is a blocking vertex of (Gi,αi). Hence, there is a blocking vertex wi of (Hi,βi) and we may assume
that βi ⊆ δHi(wi)∪ loop(Hi). It follows from the definition of signed minor that, for some cut Bi of
Gi, βi = (αi4Bi)− I and (αi4Bi)∩ J = /0. Since G,G1,G2 are equivalent, B1,B2 are cuts of G, hence
α14α24B14B2 is a signature of (G,Σ). Hence, β14β2 is a signature of (H,Γ). In particular, every
odd circuit of (H,Γ) is a circuit of Hi using vertex wi for some i ∈ [2], i.e. (H1,w1),(H2,w2) is an
intercepting pair of (H,Γ).

We say that an equivalence class F has no intercepting pair if none of the signed graphs in F have
an intercepting pair. Note, that we could replace “none” by “any” in the previous definition, as by
definition, if a signed graph has an intercepting pair, then so does every equivalent signed graph.

We postpone the proof of the following result until Section 3.

Lemma 15. Equivalence classes without intercepting pairs are row stable.

Proof of Theorem 9. Let N be a connected even cycle matroid, where none of the representations of
N has an intercepting pair. Let M be a connected major of N. It follows (by [1, 8]) that there exists a
sequence of connected matroids N1, . . . ,Nk, where N = N1, M = Nk and, for i ∈ [k−1], Ni+1 is a row or
column major of Ni. In particular, Ni has no loops or co-loops, for every i ∈ [k]. Since N1 is substantial,
it is not graphic, hence neither are N2, . . . ,Nk. Let F be an equivalence class of N that extends to M and,
for every j ∈ [k], define F j to be the set of extensions of F to N j. It suffices to show that, for all j ∈ [k],
F j is an equivalence class. Let us proceed by induction. As N1 = N, the result holds for j = 1. Suppose
that the result holds for j ∈ [k− 1]. By Remark 13, F j does not have an intercepting pair. Therefore,
by Lemma 12 and Lemma 15, F j is column and row stable, respectively. It follows that F j+1 is an
equivalence class.

2.3 A sketch of the proof of Theorem 8

We say that an equivalence class F has no blocking pair if none of the signed graphs in F have a
blocking pair. We postpone the proof of the following result until Section 5.
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Lemma 16. Let N be an even cycle matroid and let F be an equivalence class of N with no blocking
pair. Let M be a row major of N with no loops or co-loops. Suppose that N and M are 3-connected
and suppose that the set F′ of extensions of F to M is non-empty. Then F′ is either an equivalence class
or the union of two equivalence classes F1 and F2 without intercepting pairs.

Proof of Theorem 8. Let N,M be as in the statement of the theorem. Since N is non-degenerate, it is
non-graphic. It follows (by [9], as N is not the the graphic matroid of a wheel) that there is a sequence
of 3-connected matroids N1, . . . ,Nk, where N = N1, M = Nk and, for every i ∈ [k− 1], Ni+1 is a row
or column major of Ni. In particular, Ni has no loops or co-loops for any i ∈ [k]. Since N = N1 is not
graphic, neither are N2, . . . ,Nk. Let F be an equivalence class of N that extends to M. For every j ∈ [k],
define F j to be the set of extensions of F to N j. It suffices to show that, for all j ∈ [k], F j is either

(a) an equivalence class, or

(b) the union of two equivalence classes without intercepting pairs.

Let us proceed by induction. As N1 = N, the result holds for j = 1. Suppose that the result holds for
j ∈ [k−1]. Consider the case where N j+1 is a column major of N j. If (a) holds for F j, then Lemma 12
implies that (a) holds for F j+1. If (b) holds for F j, then Lemma 12 and Remark 13 imply that either
(a) or (b) holds for F j+1. Consider the case where N j+1 is a row major of N j. If (a) holds for F j, then
Lemma 16 implies that either (a) or (b) holds. If (b) holds for F j, then Lemma 15 implies that either
of (a) or (b) holds for F j+1.

2.4 Proof of Lemma 12

The next result, proved in [4], is an easy consequence of Theorem 1.

Remark 17. Suppose that ecycle(G1,Σ1) = ecycle(G2,Σ2). If an odd cycle of (G1,Σ1) is a cycle of
G2, then G1 and G2 are equivalent.

We say that two signed graphs (G1,Σ1) and (G2,Σ2) are siblings if ecycle(G1,Σ1) = ecycle(G2,Σ2)

and graphs G1 and G2 are not equivalent.

Lemma 18. Let (G1,Σ1) and (G2,Σ2) be siblings and let Ω ∈ E(G1). For i = 1,2, let (Hi,Γi) :=
(Gi,Σi)\Ω. Suppose that (H1,Γ1) and (H2,Γ2) are equivalent. Then, for i = 1,2, Ω is either a bridge
of Gi or a signature of (Gi,Σi). In particular, Ω is a co-loop of ecycle(G1,Σ1).

Proof. We prove the statement for i = 1. Remark 17 implies that no odd cycle of (G1,Σ1) is a cycle
of G2. Since H1 and H2 are equivalent, cycle(H1) = cycle(H2). It follows that all odd cycles of
(G1,Σ1) use Ω. Hence, after possibly a signature exchange, Σ1 ⊆ {Ω}. Similarly, we may assume that
Σ2 ⊆ {Ω}. If Ω is a bridge of G1, we are done. Suppose otherwise. If Σ1 = /0, then there exists an even
cycle C of (G1,Σ1) using Ω; hence Ω is not a bridge of G2 and Σ2 6= {Ω}. But then Σ1 = Σ2 = /0 and
cycle(G1) = cycle(G2). It follows by Theorem 1 that G1 and G2 are equivalent, a contradiction.
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Proof of Lemma 12. Let F be an equivalence class of an even cycle matroid N. Let M be a column
extension of N, i.e. for some Ω ∈ E(M), N = M \Ω. Let F′ be the set of all extensions of F to M.
Assume M has no co-loops. We need to show that F′ is an equivalence class. For otherwise there exists
siblings (G1,Σ1),(G2,Σ2) ∈ F′. For i = 1,2, let (Hi,Γi) := (Gi,Σi) \Ω. Then (H1,Γ1),(H2,Γ2) ∈ F.
In particular, (H1,Γ1) and (H2,Γ2) are equivalent. Hence, by Lemma 18, Ω is a co-loop of M =

ecycle(G1,Σ1), a contradiction.

It remains to prove Lemma 15 and 16. Lemma 15 (resp. 16) is proved in Section 3 (resp. 5).

3 Row extensions and intercepting pairs

Before we proceed with the proof of Lemma 15 we establish some preliminaries in Sections 3.1 and 3.2.

3.1 Even cut matroids

Given a graph G, we denote by cut(G) the set of all cuts of G. Since the cuts of G correspond to the
cycles of the co-graphic matroid of G, we identify cut(G) with that matroid.

A graft is a pair (G,T ) where G is a graph, T ⊆ V (G) and |T | is even. A cut δ (U) is even
(respectively odd) if |T ∩U | is even (respectively odd). We denote by ecut(G,T ) the set of all even
cuts of (G,T ). The set ecut(G,T ) is the set of cycles of a binary matroid known as the even cut matroid.
We identify ecut(G,T ) with that matroid. Given a graph H, we denote by Vodd(H) the set of vertices
of H of odd degree.

We will make repeated use of the following result (which was proved in [4]).

Theorem 19. Let G1 and G2 be inequivalent graphs.

(1) Suppose that there exists a pair Σ1,Σ2 ⊆ E(G1) such that ecycle(G1,Σ1) = ecycle(G2,Σ2). For
i = 1,2, if (Gi,Σi) is bipartite define Ci := /0; otherwise let Ci be an odd cycle of (Gi,Σi). Let
Ti :=Vodd(Gi[C3−i]). Then ecut(G1,T1) = ecut(G2,T2).

(2) Suppose that there exists a pair T1 ⊆ V (G1),T2 ⊆ V (G2) (where |T1| and |T2| are even) such
that ecut(G1,T1) = ecut(G2,T2). For i = 1,2, if Ti = /0 let Σ3−i = /0; otherwise let ti ∈ Ti and
Σ3−i := δGi(ti). Then ecycle (G1,Σ1) = ecycle(G2,Σ2).

Moreover, if they exist, the pairs Σ1, Σ2 and T1, T2 are unique (up to signature exchange).

3.2 Split siblings

Consider a pair of equivalent graphs H1 and H2. Suppose that, for i = 1,2, we have αi ⊆ δHi(vi)∪
loop(Hi) for some vi ∈V (Hi). Then, for i = 1,2, let Gi be obtained from Hi by splitting vi into v−i and
v+i according to αi and let Ti := {v−i ,v+i }. As H1 and H2 are equivalent, cycle(H1) = cycle(H2). Since
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cut(H1) and cut(H2) are the duals of cycle(H1) and cycle(H2) we have that cut(H1) = cut(H2). For
i = 1,2, if δGi(U) is an even cut of (Gi,Ti) then Ti ⊆U or Ti ⊆ Ū (because |Ti|= 2). Hence,

ecut(G1,T1) = cut(H1) = cut(H2) = ecut(G2,T2).

If G1 is not equivalent to G2 then Theorem 19 implies that there is a unique pair of signatures Σ1 and
Σ2 (up to signature exchanges) such that ecycle(G1,Σ1) = ecycle(G2,Σ2). We say, in that case, that
(G1,Σ1) and (G2,Σ2) are split siblings. Observe that, in the previous definition, if Ω is a loop of H1,H2

contained in α1 ∩α2, then for i = 1,2, Ω has endpoints Ti in Gi. We will refer to split siblings with
such an edge Ω as Ω-split siblings.

In light of the previous discussion, we say that a tuple T= (H1,v1,α1,H2,v2,α2), where H1,H2 are
2-connected (up to loops), is a split-template if the following conditions hold:

(a) H1 and H2 are equivalent graphs;

(b) for i = 1,2, vi ∈V (Hi);

(c) for i = 1,2, αi ⊆ δHi(vi)∪ loop(Hi).

We say that the split siblings (G1,Σ1) and (G2,Σ2) defined in the previous paragraph arise from the
split-template T.

Remark 20. Let T = (H1,v1,α1,H2,v2,α2) be a split-template and let (G1,Σ1) and (G2,Σ2) be split
siblings that arise from T. Then, up to signature exchange, we have Σ1 = Σ2 = α14α2.

Proof. For i = 1,2, vertex vi of Hi gets split into vertices v−i and v+i of Gi. Let Ω denote the set of
loops of both H1 and H2 that are in α1∩α2. Note, that, for i = 1,2, all edges in Ω will have both ends
in Ti. By construction, αi ∪Ω = δGi(v

−
i ), for i = 1,2. As v−1 ∈ T1, Theorem 19 implies that α1 ∪Ω

is a signature of (G2,Σ2). As α2∪Ω is a cut of G2, α14α2 is a signature of (G2,Σ2). By symmetry,
α14α2 is also a signature of (G1,Σ1). Finally, by Theorem 19, Σ1 and Σ2 are unique up to signature
exchanges.

3.3 Proof Lemma 15

The following easy observation is the analogue to Remark 17 for the case of even cut matroids (see [4]).

Remark 21. Suppose that ecut(G1,T1) = ecut(G2,T2). If any odd cut of (G1,T1) is a cut of G2, then
G1 and G2 are equivalent.

Let (G,T ) be a graft and let e ∈ E(G). Then (G,T ) \ e is defined as (G \ e,T ′), where T ′ = /0 if e is
an odd bridge of (G,T ) and T ′ = T otherwise. (G,T )/e is equal to (G/e,T ′), where T ′ is defined as
follows. Let u,v be the ends of e in G and let w be the vertex obtained by contracting e. If x 6= w, then
x ∈ T ′ if and only if x ∈ T ; w ∈ T ′ if and only if |{u,v}∩T |= 1. Observe that (see [5] for instance),
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Remark 22. ecut(G,Σ)\ I/J = ecut
(
(G,Σ)/I \ J

)
.

In particular, this implies that being an even cut matroid is a minor closed property.
The following result is the analogue to Lemma 18 for even cut matroids.

Lemma 23. Suppose that G1 and G2 are not equivalent and ecut(G1,T1) = ecut(G2,T2). Let Ω ∈
E(G1). For i = 1,2, let (Hi,Ri) := (Gi,Ti)/Ω. Suppose that H1 and H2 are equivalent. Then, for
i = 1,2, either Ω is a loop of Gi or |Ti|= 2 and Ti are the ends of Ω in Gi. In particular, Ω is a co-loop
of ecut(G1,T1).

Proof. For i = 1,2, denote by vi and wi the endpoints of edge Ω in Gi. We prove the statement for
i = 1. Remark 21 implies that no odd cut of (G1,T1) is a cut of G2. Since H1 and H2 are equivalent,
cut(H1) = cut(H2). It follows that all odd cuts of (G1,T1) use Ω. Hence, T1 ⊆ {v1,w1}. Similarly, we
may assume that T2 ⊆ {v2,w2}. If Ω is a loop of G1, we are done. Suppose otherwise. If T1 = /0, then
there exists an even cut B of (G1,T1) using Ω; hence Ω is not a loop of G2 and T2 6= {v2,w2}. But then
T1 = T2 = /0 and cut(G1) = cut(G2). Hence cycle(G1) = cycle(G2) and it follows by Theorem 1 that
G1 and G2 are equivalent, a contradiction. We conclude that T1 = {v1,w1}.

Lemma 24. Let N be a non-graphic even cycle matroid and let F be an equivalence class of N. Let
M be a row major of N with no loops or co-loops. Let Ω denote the unique element in E(M)−E(N).
Suppose that the set F′ of extensions of F to M is non-empty. Then F′ is either an equivalence class or
the union of two equivalence classes F1 and F2 and any (G1,Σ1) ∈ F1 and (G2,Σ2) ∈ F2 are Ω-split
siblings.

Proof. We may assume that F′ is not an equivalence class. Hence, there exist siblings (G1,Σ1),(G2,Σ2)∈
F′. For i = 1,2 let (Hi,Γi) := (Gi,Σi)/Ω. By definition of F′, (H1,Γ1),(H2,Γ2) ∈ F. In particular, H1

and H2 are equivalent. Since G1 and G2 are not equivalent, Theorem 19 implies that there exists a
unique pair T1 ⊆ V (G1), T2 ⊆ V (G2) such that ecut(G1,T1) = ecut(G2,T2). For i = 1,2, we have
(Hi,Ri) = (Gi,Ti)/Ω for some R1 ⊆V (H1) and R2 ⊆V (H2). Lemma 23 implies that, for i = 1,2, either
Ω is a loop of Gi or Ti are the ends of Ω in Gi. If the latter case occurs for both i= 1,2, then we are done
as (G1,Σ1) and (G2,Σ2) are Ω-split siblings (by Theorem 19, the pair Σ1,Σ2 is uniquely determined).
Now suppose that Ω is a loop of Gi, for i = 1 or i = 2. Then every cut of Gi is a cut of Hi, hence a cut
of H3−i (as H1 and H2 are equivalent). It follows that every cut of Gi is a cut of G3−i. Therefore, by
Remark 21, every cut of (Gi,Ti) is even. Therefore Ti = /0. It follows by Theorem 19 that Σ3−i = /0, in
particular M is graphic. Hence, N is graphic as well, contradicting our hypothesis.

It remains to show that F′ can be partitioned into exactly two equivalence classes. Suppose, for
a contradiction, this is not the case. Then, there exist, for i = 1,2,3, (Gi,Σi) ∈ F′, where G1,G2

and G3 are pairwise inequivalent. For i = 1,2,3 let Ti denote the endpoint(s) of Ω in Gi. It follows
from the argument in the previous paragraph that, |T1|= |T2|= 2 and that ecut(G1,T1) = ecut(G2,T2).
Similarly, we have that |T2| = |T3| = 2 and that ecut(G2,T2) = ecut(G3,T3). For i = 1,2, let vi ∈ Ti
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and let Di := δGi(vi). Theorem 19 applied to the pair G1,G3 implies that D1 is a signature of (G3,Σ3).
Similarly, D2 is a signature of (G3,Σ3). Hence, D14D2 is a cut of G3. As Ω 6∈ D14D2 we have
that D14D2 is an even cut of (G3,T3). It follows that D14D2 is an even cut of (G1,T1). Hence,
D14(D14D2) = D2 is an odd cut of G1. But now Remark 21 implies that G1 and G2 are equivalent, a
contradiction.

We are now ready for the main result of this section,

Proof of Lemma 15. Recall that in the definition of “row stable” representations, we assumed that
M has no loops, no co-loops and that N is not graphic. Hence, if the result does not hold we must
have N, M, F, F′ = F1 ∪F2 and Ω as in Lemma 24 and Ω-siblings (G1,Σ1) ∈ F1 and (G2,Σ2) ∈ F2

that arise from some template T = (H1,v1, α1, H2,v2,α2). As the siblings are Ω-siblings, we have
Hi = Gi/Ω for i = 1,2. Because of Remark 20 we may assume (after possibly a signature exchange)
that Σ1 = Σ2 = α14α2. Hence, (H1,α14α2),(H2,α14α2) ∈ F. It follows that (H1,v1) and (H2,v2) is
an intercepting pair of (H1,α14α2), contradicting our hypothesis.

4 A characterization of split siblings

We will rely on Lemma 24 to prove the missing Lemma 16. The key to the proof is a theorem that
characterizes split-siblings. Before we can state the theorem we need to understand 3-connected even
cycle matroids.

4.1 Connectivity

Let G be a graph and let X ⊆ E(G). The set X is a k-separation of G if min{|X |, |X̄ |} ≥ k, |BG(X)|= k
and both G[X ] and G[X̄ ] are connected. A graph G is k-connected if it has no r-separations for any
r < k. Recall that, a signed graph (G,Σ) is bipartite if all cycles are even.

Proposition 25. Suppose that ecycle(G,Σ) is 3-connected. Then

(1) | loop(G)| ≤ 1 and if e ∈ loop(G) then e ∈ Σ;

(2) G\ loop(G) is 2-connected;

(3) if G has a 2-separation X, then (G[X ],Σ∩X) and (G[X̄ ],Σ∩ X̄) are both non-bipartite.

To prove the previous theorem we require a definition and a preliminary result. Let (G,Σ) be a signed
graph and X ⊆ E(G). Then X is a k-(i, j)-separation of (G,Σ), where i, j ∈ {0,1}, if the following
hold:

(a) X is a k-separation of G;
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(b) i = 0 when (G[X ],Σ∩X) is bipartite and i = 1 otherwise;

(c) j = 0 when (G[X̄ ],Σ∩ X̄) is bipartite and j = 1 otherwise.

Lemma 26. Let (G,Σ) be a non-bipartite signed graph and MS := ecycle(G,Σ). For every k-(i, j)-
separation X of (G,Σ), we have λMS(X) = k+ i+ j−1.

Proof. Let r be the rank function of M := cycle(G) and rS be the rank function of MS. As (G,Σ) is non-
bipartite, a basis for MS consists of a spanning tree B of G plus an edge e ∈ B̄ that forms a Σ-odd circuit
with elements in B. Hence rS(MS) = r(M)+1. Similarly, if (G[X ],Σ∩X) (respectively (G[X̄ ],Σ∩ X̄))
is non-bipartite, then the rank of X (respectively X̄) in MS is one more that in M, otherwise the rank of
X (respectively X̄) is the same in both matroids. Thus rS(X) = r(X)+ i and rS(X̄) = r(X̄)+ j. Hence

λMS(X) = rS(X)+ rS(X̄)− rS(MS)+1

= [r(X)+ i]+ [r(X̄)+ j]− [r(M)+1]+1

= λM(X)+ i+ j−1

= k+ i+ j−1

Proof of Proposition 25. Let M := ecycle(G,Σ). As M is 3-connected, it has no loops, no co-loops and
no parallel elements. We may assume that (G,Σ) is non-bipartite, for otherwise M = cycle(G) and G is
3-connected. (1) Let e be a loop of G. Then e ∈ Σ for otherwise e would be a loop of M. There do not
exist distinct loops e, f of G, for otherwise {e, f} would be a circuit of M and e, f would be in parallel
in M. (2) Suppose that X is a 1-(i, j)-separation of (G,Σ). By Lemma 26, λM(X) = 1+ i+ j−1≤ 2.
As M is 3-connected, X is not a 2-separation; hence either |X | = 1 or |X̄ | = 1. The single element in
X (or X̄) is not a bridge of G, for otherwise it is a co-loop of M. Hence X or X̄ is a loop of G. (3)
Suppose that X is a 2-(i, j)-separation of (G,Σ). As M is 3-connected, λM(X) ≥ 3. By Lemma 26,
2+ i+ j−1≥ 3, hence i = j = 1.

We say that S= (X1, . . . ,Xk) is a w-sequence of G if, for all i ∈ [k], Xi is a 2-separation of the graph
obtained from G by performing Whitney-flips on X1, . . . ,Xi−1 (in this order). We denote by Wflip[G,S]
the graph obtained from G by performing Whitney-flips on X1, . . . ,Xk (in this order). For our purpose
the position of loops is irrelevant. Hence we will assume that loops form distinct components of the
graph. Therefore, if G and G′ are equivalent graphs that are 2-connected, except for possible loops,
then G′ = Wflip[G,S] for some w-sequence S of G.

Consider a split-template (H1,v1,α1,H2,v2,α2). If H1 and H2 are 2-connected, except for possible
loops, we have that H2 = Wflip[H1,S] for some w-sequence S. (This occurs, by Proposition 25, when
for instance ecycle(H1,α14α2) is 3-connected.) In this case we slightly abuse terminology and say
that (H1,v1, α1, H2, v2, α2,S) is a split-template.
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4.2 The statement of the theorem

The next result gives a structural characterization of Ω-split siblings.

Theorem 27. Let (G1,Σ1) and (G2,Σ2) be Ω-split siblings. Suppose ecycle(G1,Σ1) and ecycle(G1,Σ1)/Ω

are both 3-connected. Then (G1,Σ1) and (G2,Σ2) are either simple siblings or nova siblings.

Note, in the statement of the theorem we have by definition that ecycle(G1,Σ1) = ecycle(G2,Σ2).
Hence, in particular ecycle(G2,Σ2) and ecycle(G2,Σ2)/Ω are both 3-connected as well. We need to
define the terms “simple siblings” and “nova siblings”. We begin by defining a more restrictive notion,
namely simple and nova twins.

4.2.1 Simple twins

Consider a split-template T = (H1,v1,α1,H2,v2,α2,S). If S = /0, i.e. H1 = H2, then T is simple and
(G1,Σ1) and (G2,Σ2) arising from T are simple twins. By Remark 20, we may assume that Σ1 = Σ2 =

α14α2. Suppose that vertex v1 of H1 gets split into vertices v−1 and v+1 of G1 according to α1. Then
α1 ⊆ δG1(v

−
1 ) and α2 ⊆ δG1(v2). Hence, v−1 and v2 form a blocking pair of (G1,Σ1). Thus,

Remark 28. Simple twins have blocking pairs.

4.2.2 Nova twins

Let (H,Σ) be a signed graph with distinct vertices s1 and s2. Suppose for i = 1,2, there exists an odd
circuit Ci using si and avoiding s3−i. If either, C1 and C2 intersect in a path, or V (C1)∩V (C2) = /0
and there exists a path P with ends ui ∈V (Ci)−{si}, for i = 1,2, such that V (P)∩

(
V (C1)∪V (C2)

)
=

{u1,u2}, then we say that there exists an {s1,s2}-handcuff in (H,Σ). Let (H,Σ) be a signed graph
and consider a 2-separation X of H where B(X) = {s1,s2}. We say that X is a handcuff-separation if
{s1,s2} is a blocking pair of (H[X ],Σ∩X) and there exists an {s1,s2}-handcuff in (H[X ],Σ∩X).

A family S= {X1, . . . ,Xk} of sets of edges of a graph H is a w-star with center v if

(a) Xi∩X j = /0, for all distinct i, j ∈ [k];

(b) there exist distinct v,w1, . . . ,wk ∈V (H) such that B(Xi) = {v,wi}, for all i ∈ [k];

(c) no edge with ends v,wi is in Xi, for all i ∈ [k].

Consider a w-sequence S = (X1, . . . ,Xk) of a graph G where Xi ∩X j = /0 for all distinct i, j ∈ [k]. If
i1, . . . , ik is a permutation of [k], then S′ := (Xi1 , . . . ,Xik) is a w-sequence as well and Wflip[G,S] =
Wflip[G,S′]. Thus we can think of a w-star as a special type of w-sequence (where we can order the sets
in an arbitrary way).

A split-template T= (H1,v1,α1,H2, v2,α2,S) is nova if, for i = 1,2:
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(a) S is a w-star of Hi with center vi, and

(b) all X ′ ⊆ X ∈ S with BHi(X
′) = BHi(X) are handcuff-separations of (Hi,α14α2).

We say that (G1,Σ1) and (G2,Σ2) arising from T are nova twins. By Remark 20 we may assume that
Σ1 = Σ2 = α14α2. This construction is illustrated in Figure 2 for the case where k = |S| = 2. The
signed graph on the left (resp. right) represents (G1,Σ1) (resp. (G2,Σ2)). The arrows indicate how
each piece is flipped to obtained (G2,Σ2) from (G1,Σ1). Shaded regions around a vertex v indicate the
odd edges incident to v. For i = 1,2, recall that αi ⊆ δHi(vi), we denote by ᾱi the set δHi(vi)−αi.

v−1

v+
1α1

α2

X1

v+
1

v−1

α1

α2

X2

v−1
v+
1
α1 ∩ α2

α1 ∩ α2

α1 ∩ α2

α1 ∩ α2

α1

α2X1

α1

α2
X2

v+
2

v+
2

v+
2

v−2

v−2

v−2

α1 ∩ α2
α1 ∩ α2

α1 ∩ α2

α1 ∩ α2

Figure 2: Nova twins
.

4.2.3 From twins to siblings

We say that (G1,Σ1) and (G2,Σ2) are simple (respectively nova) siblings if, for i = 1,2, there exists
(G′i,Σ

′
i) equivalent to (Gi,Σi) such that (G′1,Σ

′
1) and (G′2,Σ

′
2) are simple (respectively nova) twins.

4.2.4 A corollary

Using the nova construction we can find distinct representations of an even cycle matroid with an
arbitrary number of vertex disjoint odd circuits.

Proof of Remark 3. Let T= (H1,v1,α1,H2,v2,α2,S) be a split-template which is nova. Let (G1,Σ1)

and (G2,Σ2) be the siblings arising from T. Because of Remark 20, we may assume that Σ1 = Σ2 =

α14α2. Suppose that S = (X1, . . . ,Xk) for some integer k. Because of (b) (in the definition of nova),
for every j ∈ [k], there exists an odd circuit C j ⊆ X j of (H1,Σ1) avoiding v1. In particular, C j remains an
odd circuit of (G1,Σ1). Thus odd circuits C1, . . . ,Ck of (G1,Σ1) are pairwise vertex disjoint. Moreover,
it is easy to select H1 so that the only 2-separations of H1 are given by S. Then G1 is 3-connected.
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Hence, (1) holds with (G,Σ) = (G1,Σ1). Moreover, ecycle(G1,Σ1) = ecycle(G2,Σ2), thus (2) holds as
required.

4.3 An outline of the proof of Theorem 27

We say that split-templates:

T= (H1,v1,α1,H2,v2,α2,S) and T′ = (H ′1,v
′
1,α

′
1,H

′
2,v
′
2,α

′
2,S′) (1)

are compatible if

(a) Hi and H ′i are equivalent, for i = 1,2, and

(b) αi4α ′i forms a cut of H1 (hence of H2) for i = 1,2.

Lemma 29. Let T and T′ be compatible split-templates. Let (G1,Σ1) and (G2,Σ2) be siblings arising
from T and let (G′1,Σ

′
1), (G

′
2,Σ
′
2) be arising from T′. Then, for i = 1,2, (Gi,Σi) and (G′i,Σ

′
i) are equiv-

alent.

Proof. Let us assume that T and T′ are as described in (1). Then G1 (resp. G′1) is obtained from H1

(resp. H ′1) by splitting v1 (resp. v′1) according to α1 (resp. α ′1). It follows that every cut of G1 is either
a cut of H1 or is equal to α1. Similarly, every cut of G′1 is either a cut of H ′1 or is equal to α ′1. Hence,
(viewing cuts as vector spaces),

cut(G1) = span
(
cut(H1)∪{α1}

)
and cut(G′1) = span

(
cut(H ′1)∪{α ′1}

)
. (?)

By condition (a) of equivalent templates, H1 and H ′1 are equivalent. Hence, cycle(H1) = cycle(H ′1),
and therefore cut(H1) = cut(H ′1). By condition (b) of equivalent templates, α14α ′1 ∈ cut(H1). These
two statements and (?) imply that cut(G1) = cut(G′1), and therefore that cycle(G1) = cycle(G′1). It
follows from Theorem 1 that G1 and G′1 are equivalent. Remark 20 implies that ecycle(G1,α14α2) =

ecycle(G2,α14α2). By Theorem 19, Σ1 = α14α24B where B is a cut of G1. Similarly, Σ′1 =

α ′14α ′24B′ where B′ is a cut of G′1, hence of G1. It follows from condition (b) that Σ14Σ′1 is a cut of
G1 and G′1, hence that (G1,Σ1) and (G′1,Σ

′
1) are equivalent. Similarly, we can prove that (G2,Σ2) and

(G′2,Σ
′
2) are equivalent.

We will postpone the proof of the following Lemma until Section 4.4

Lemma 30. Every split-template has a compatible split-template which is simple or nova.

Proof of Theorem 27. By definition, (G1,Σ1) and (G2,Σ2) arise from a split-template (H1,v1,α1,H2,v2,
α2). Since ecycle(G1,Σ1)/Ω is 3-connected and since G1/Ω=H1, it follows by Proposition 25 that H1

is 2-connected, up to loops. Similarly, H2 is 2-connected, up to loops. In particular, H2 =Wflip[H1,S] for
some w-sequence S. Denote by T the template (H1,v1,α1,H2,v2,α2,S). Lemma 30 implies that there
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exists a split-template T′ which is simple or nova and compatible with T. Let (G′1,Σ
′
1) and (G′2,Σ

′
2) be

the siblings arising from T′. By definition (G′1,Σ
′
1) and (G′2,Σ

′
2) are simple twins or nova twins. By

Lemma 29, for i = 1,2, (G′i,Σ
′
i) is equivalent to (Gi,Σi). Hence, (G1,Σ1) and (G2,Σ2) are simple or

nova siblings.

4.4 Proof of Lemma 30

The following result on 2-separations is postponed until Section 4.5.

Proposition 31. Consider 2-connected equivalent graphs G and G′ and let z ∈ V (G) and z′ ∈ V (G′).
There exist w-sequences L of G, L′ of G′ and graphs H and H ′ such that:

(1) H = Wflip[G,L], where z 6∈BG(X), for all X ∈ L;

(2) H ′ = Wflip[G′,L′], where z′ 6∈BG′(X), for all X ∈ L′; and

(3) H ′ = Wflip[H,S],

where S is a w-star of H with center z (or equivalently a w-star of H ′ with center z′).

Given a graph H and U ⊆ V (H) we denote by H−U the graph obtained from H by deleting all
vertices in U . We write H−u as shorthand for H−{u}. Let G be a graph with disjoint vertex sets A
and B. An A−B path is a path of H with one endpoint in A and one endpoint in B. We use “a−b path”
as shorthand for “{a}−{b} path” and similarly, “a−B path” as shorthand for “{a}−B path”. Given
a graph G and X ⊆ E(G), we denote by IG(X) the set VG(X)−BB(X).

Next we give sufficient conditions for a 2-separation to be a handcuff-separation.

Remark 32. Let (G,Σ) be a signed graph where ecycle(G,Σ) is 3-connected. Then a 2-separation X
of G with B(X) = {s1,s2} is a handcuff-separation if the following conditions hold.

(a) Σ∩X ⊆ δ (s1)∪δ (s2);

(b) For i = 1,2 the sets X ∩δ (si)∩Σ and
(
X ∩δ (si)

)
−Σ are non-empty;

(c) There does not exists X ′ ⊂ X where B(X ′) = B(X).

Proof.

Claim. For all distinct vertices u,v in I (X) there exists a u− v path in G[X ]−{s1,s2}.

Proof. Otherwise there exists components G[Y1], G[Y2] of G[X ]−{s1,s2} where u ∈ V (Y1) and v ∈
V (Y2). Let X ′ := Y1 ∪{(s1,u) ∈ E(G) : u ∈ V (Y1)}∪ {(s2,u) ∈ E(G) : u ∈ V (Y1)}. Then B(X ′) ⊆
{s1,s2}. Moreover, equality holds since ecycle(G,Σ) is 3-connected (Proposition 25). Hence, B(X ′) =
B(X), contradicting hypothesis (c). 3
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By hypothesis (b) there exist edges e = (s1,u) ∈ X ∩ Σ and f = (s1,v) ∈ X − Σ. We may assume
that u 6= s2, for otherwise X ′ := {e} satisfies B(X ′) = B(X), contradicting hypothesis (c). Similarly,
v 6= s2. The Claim implies that there exists a u− v path P in G[X ]−{s1,s2}. Then C1 := {e, f}∪P is
an odd circuit of (G[X ],Σ∩X) avoiding s2. Similarly, there exists an odd circuit C2 of (G[X ],Σ∩X)

avoiding s1. Suppose V (C1)∩V (C2) 6= /0. Because of hypothesis (a), we may assume (after possibly
redefining C1,C2) that C1 and C2 intersect in a path, in which case X is a handcuff-separation as re-
quired. Suppose V (C1)∩V (C2) = /0. Then for i = 1,2 let ui denote an arbitrary vertex of Ci that is
disjoint from si. By the Claim there exists a u1−u2 path P of G[X ]−{s1,s2}. If among all such path
we pick one with as few edges as possible, then V (P)∩

(
V (C1)∪V (C2)

)
= {u1,u2}, in which case X

is a handcuff-separation as required.

Proof of Lemma 30. Let T := (H1,v1,α1,H2,v2,α2,S) be a split-template. Proposition 31 implies
that there exist w-sequences L1 of H1, L2 of H2, such that

• H ′1 = Wflip[H1,L1], where v1 /∈BH1(X) for all X ∈ L1;

• H ′2 = Wflip[H2,L2], where v2 /∈BH2(X) for all X ∈ L2;

• H ′2 = Wflip[H ′1,S]

where S is a w-star of H ′1 with center v1. Observe that (H ′1,v1,α1,H ′2,v2,α2,S), is a template that is
compatible with T. Thus we can choose, among all templates T′ = (H ′1,v

′
1,α

′
1,H

′
2,v
′
2,α

′
2,S′) where T′

is compatible with T and where S′ is a w-star of H ′1 with center v′1, one that minimizes

∑
X∈S′
|X |. (?)

We may assume S′ 6= /0 for otherwise T′ is a simple template. We will show that T′ is a nova template.
We need to show that conditions (a) and (b) of nova templates hold (see Section 4.2.2). It suffices

to consider the case i = 1 as the proof for the case i = 2 is similar. Since S′ is a w-star of H ′1, condition
(a) holds. Let X ∈ S′ and let X ′ be an inclusion-wise minimal set X ′ ⊆ X such that BH ′1

(X) =BH ′1
(X ′).

Denote by p the vertex in BH ′1
(X) that is distinct from v′1. Since S′ is a w-star of H ′1 with center v′1

and a w-star of H ′2 with center v′2, edges in α ′1 ∩X ′ are incident to v′1 in H ′1 and edges in α ′2 ∩X ′ are
incident to v′2 in H ′2, i.e. to vertex p in H ′1. It follows, in particular, that v′1, p is a blocking pair of(
H ′1[X

′],(α ′14α ′2)∩X ′
)
. Hence, to show that condition (b) holds, we need to verify that there exists a

{v′1, p}-handcuff in
(
H ′1[X

′],(α ′14α ′2)∩X ′
)
.

Define the following sets,

A1 := X ′∩δH ′1
(v′1)∩α

′
1, A2 :=

(
X ′∩δH ′1

(v′1)
)
−α

′
1

A3 := X ′∩δH ′1
(p)∩α

′
2, A4 :=

(
X ′∩δH ′1

(p)
)
−α

′
2.
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Since S′ is a w-star of H ′1 there is no edge e = (v′1, p) ∈ X ′. In particular, (α ′1 ∪α ′2)∩X ′ is a signa-
ture of

(
H ′1[X

′],(α ′14α ′2)∩X ′
)
. Therefore, because of Remark 32, it suffices to prove that each of

A1,A2,A3,A4 are non-empty. Observe that, A3,A4 play the same role in H ′2 as the sets A1,A2 in H ′1.
Hence, it will suffice to show that A1,A2 6= /0.

Suppose for a contradiction that A1 = /0. Then let Ĥ be obtained from H ′1 by a Whitney-flip on
X ′ and let v̂ denote the vertex of Ĥ (that used to correspond to vertex v1 in H ′1) that is incident to all
edges in α ′1. Let Ŝ be obtained from S′ by replacing the set X with X −X ′ if X ′ ⊂ X or by removing
the set X if X = X ′. Then (Ĥ, v̂,α ′1,H

′
2,v
′
2,α

′
2, Ŝ) is a template that is compatible with T but that

contradicts our choice (?). Suppose for a contradiction that A2 = /0. Define α̂ := α ′14δH ′1
(v1). Then

(H ′1,v
′
1, α̂,H ′2,v

′
2,α

′
2,S′) is a template that is compatible with T. Since no edge of X ′ incident to v′1 is

in α̂ it corresponds to the case A1 = /0 and we obtain a contradiction as previously.

4.5 Proof of Proposition 31

A pair of sets X and Y are crossing if all of X ∩Y,X−Y,Y −X and X̄ ∩Ȳ are non-empty. A sequence S
is non-crossing if no two sets of S are crossing. Note that if S is a non-crossing w-sequence (X1, . . . ,Xk)

of a graph G, then for any permutation i1, . . . , ik of [k], S′ := (Xi1 , . . . ,Xik) is a w-sequence of G and
Wflip[G,S] = Wflip[G,S′]. Hence, we can view a non-crossing w-sequence sequence as a family of sets.

We say that a family F of sets satisfies the inclusion property if there does not exists X1,X2,X3 ∈ F
such that X̃1 ⊂ X̃2 ⊂ X̃3 where for i ∈ [3], X̃i denotes either Xi or X̄i.

Remark 33. Suppose that F is a non-crossing family of sets with the inclusion property. Then, after
possibly replacing some of the sets of F by their complements, the sets of F are pairwise disjoint.

Proof. Let E denote the ground set of the sets in F. Let k := |F| and let us proceed by induction on k.
The result is trivial if k = 1. Suppose k = 2, i.e. F = {X1,X2}. Then either: (a1) X1∩X2 = /0, or (a2)
Xi ⊆ X3−i, for i ∈ [2], or (a3) X1∩X2,X1−X2,X2−X1 are all non-empty. For (a2) replace X3−i by X̄3−i.
For (a3) as F is non-crossing X1∪X2 = E and replace X1 by X̄1 and X2 by X̄2.

Assume the results holds for some k ≥ 2. Suppose F= {X1, . . . ,Xk+1}. We may assume by induc-
tion that X1, . . . ,Xk are pairwise disjoint. Then for any i ∈ [k] either (b1) Xk+1∩Xi is equal to Xi or the
empty set, or (b2) Xk+1 ⊂ Xi, or (b3) Xk+1 ∩Xi,Xk+1−Xi,Xi−Xk+1 are all non-empty. For (b2), let
j ∈ [k], j 6= i, then Xk+1 ⊂ Xi ⊂ X̄ j, contradicting the inclusion property. For (b3) as F is non-crossing,
Xk+1∪Xi = E. Then after replacing Xk+1 by X̄k+1 we are in case (b2). Thus either, (c1) Xk+1∩Xi = /0
for all i ∈ [k], or (c2) Xk+1 ⊃ Xi for all i ∈ [k], or (c3) there exists i, j ∈ [k] such that Xi ⊂ Xk+1 and
X j ∩Xk+1 = /0. For (c2), replace Xk+1 by X̄k+1. For (c3), Xi ⊂ Xk+1 ⊂ X̄ j, contradicting the inclusion
property.

Lemma 34. Let H and H ′ be 2-connected equivalent graphs with H ′ = Wflip[H,S] for some non-
crossing w-sequence S. Suppose that there exist vertices z in V (H) and z′ in V (H ′) such that z∈BH(X)
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and z′ ∈BH ′(X) for every X ∈ S. Then H ′ = Wflip[H,S′] for some S′ which is a w-star of H (resp. H ′)
with center z (resp. z′).

Proof. We may assume that there does not exists X1,X2 ∈ S with BH(X1) =BH(X2), for otherwise we
can replace in S the sets X1 and X2 by X14X2. If any X ∈ S contains an edge e where the ends of e are
BH(X), we may replace X by X−{e}. Thus properties (b) and (c) of w-star holds (see Section 4.2.2).
Property (a) will follow from the following Claim and Remark 33.

Claim. S satisfies the inclusion property.

Proof. Otherwise, we may assume, that there exists X1,X2,X3 ∈ S such that X1 ⊂ X2 ⊂ X3. Moreover,
after possibly redefining the sets X1,X2,X3, that

(i) X2 is the unique set X ∈ S such that X1 ⊂ X ⊂ X3.

For i = 1,2,3, denote by vi the vertex of H for which BH(Xi) = {z,vi}. Since H is 2-connected. There
exists a non-empty v1−v2 path P1 in X2−X1 avoiding z and there exists a non-empty v2−v3 path P2 in
X3−X2 avoiding z. Since S is non-crossing, we may assume that X1,X2,X3 are the first three elements
in the sequence S. Let Ĥ = Wflip[H,(X1,X2,X3)]. Observe that for the graph Ĥ,

(ii) P1 and P2 are vertex disjoint B(X1)−B(X3) paths of Ĥ.

Since, X4 is non-crossing with X1,X2 and X3, vertices of BĤ(X4) are in one of the following sets, (a)
VĤ(X1), (b) VĤ(X̄3), (c) VĤ(X2−X1) or VĤ(X3−X2). Moreover, for (c) BĤ(X4) does not intersect both
VĤ(P1) and VĤ(P2), for otherwise we contradict (i). Hence, for all all cases (ii) holds for Wflip[Ĥ,(X4)] =

Wflip[H,(X1,X2,X3,X4)]. Repeating the argument for every X ∈ S where X 6= X1,X2,X3,X4 we deduce
that (ii) holds for H ′ as well. In particular, it implies that BH ′(X1)∩BH ′(X3) = /0, a contradiction as
z′ ∈BH ′(X1)∩BH ′(X3).

In the interest of brevity we omit the proof of the following “folklore” result.

Lemma 35. Let G and G′ be 2-connected equivalent graphs and let z ∈ V (G). Then there exist a
w-sequence S1 of G and a graph H with a non-crossing w-sequence S2 such that:

(1) H = Wflip[G,S1], where z /∈BG(X), for all X ∈ S1; and

(2) G′ = Wflip[H,S2], where z ∈BG(X), for all X ∈ S2.

See [5](lemma 5.8) for a proof.

Proof of Proposition 31. Let S1 and S2 be the w-sequences given by Lemma 35. Denote by L the
sequence S1 and let H = Wflip[G,L]. Partition S2 into sequences S and L′ (with sets in an arbitrary
order) where X ∈ S if and only if z′ ∈ BG′(X). Let H ′ = Wflip[G′,L′]. Since S2 is non-crossing,
H ′ = Wflip[H,S]. Finally, Lemma 34 implies that S is a w-star of H.
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5 Row extensions and blocking pairs

5.1 Outline of the proof

The goal of this section is to prove Lemma 16. We will consider a number of results with a common
set of hypotheses that we state next.

Hypothesis 36. T = (H,v,α,H ′,v′,α ′,S) is a split template that is nova. G and G′ are graphs that
both contain an edge Ω where H = G/Ω, H ′ = G′/Ω. In addition, (G,α4α ′) and (G′,α4α ′) are
nova twins arising from T. Moreover,

(h1) no signed graph equivalent to (H,α4α ′), hence (H ′,α4α ′), has a blocking pair;

(h2) ecycle(H,α4α ′) = ecycle(H ′,α4α ′) is 3-connected;

(h3) ecycle(G,α4α ′) = ecycle(G′,α4α ′) is 3-connected.

Lemma 37. If Hypothesis 36 holds, then (G,α4α ′) has no intercepting pair.

Proof of Lemma 16. We may assume by Lemma 24 that F′ is the union of exactly two equivalence
classes F1 and F2. Let (G,Σ) ∈ F1 and (G′,Σ′) ∈ F2. Again by Lemma 24, (G,Σ) and (G′,Σ′) are Ω-
split siblings, i.e. they arise from a split template T= (H,α,v,H ′,α ′,v′,S) and H = G/Ω, H ′ = G′/Ω.
Because of Remark 20, we may assume that Σ = Σ′ = α4α ′.

Theorem 27 implies that, (G,α4α ′) and (G′,α4α ′) are either nova twins, or simple twins (af-
ter possibly replacing (G,α4α ′) and/or (G′,α4α ′) by equivalent signed graphs). Suppose that
(G,α4α ′) and (G′,α4α ′) are simple twins. Then Remark 28 implies that (G,α4α ′) has a blocking
pair. Hence, (H,α4α ′) = (G,α4α ′)/Ω ∈ F has a blocking pair, a contradiction since by hypothesis,
F has no blocking pairs. Thus, (G,α4α ′) and (G′,α4α ′) must be nova twins.

Since F has no blocking pair, no signed graph equivalent to (H,α4α ′)∈ F has a blocking pair, i.e.
(h1) of Hypothesis 36 holds. Since by hypothesis, N = ecycle(H,α4α ′) and M = ecycle(G,α4α ′)

are 3-connected, conditions (h2) and (h3) hold as well. Hence, by Lemma 37, (G,α4α ′) ∈ F1 has no
intercepting pair, i.e. F1 has no intercepting pair. Similarly, we show that F2 has no intercepting pair
either.

Thus it only remains to prove Lemma 37 which follows immediately from the next two results
(Lemma 38 and Lemma 39).

Lemma 38. Suppose Hypothesis 36 holds. If (G,α4α ′) has an intercepting pair, then some signed
graph equivalent to (G,α4α ′) has a handcuff-separation.

Proof. Suppose that, (G,α4α ′) has an intercepting pair (G1,v1) and (G2,v2). It follows from Re-
mark 14 that we can find β1 ⊆ δG1(v1)∪ loop(G) and β2 ⊆ δG2(v2)∪ loop(G) such that β14β2 is a
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signature of (G,α4α ′). As ecycle(G,α4α ′) is 3-connected by (h3) of Hypothesis 36, Proposition 25
implies that G1 and G2 are 2-connected (up to loops). Hence, G2 = Wflip[G1,R] for some w-sequence
R of G1. It follows that L := (G1,v1,β1,G2,v2,β2,R) is a split template as it satisfies hypotheses (a),
(b), (c) (see Section 3.2).

Lemma 30 implies that there exists a split-template L′ := (G′1,v
′
1,β

′
1,G

′
2,v
′
2,β

′
2,R′) compatible

with L which is simple or nova. Since L′ is compatible with L, both β14β ′1 and β24β ′2 are cuts of G1,
hence of G (as G and G1 are equivalent they have the same cuts). It follows that β ′14β ′2 is a signature
of (G,α4α ′). Hence, (G′1,β

′
14β ′2) is equivalent to (G,α4α ′). Suppose that L′ is simple. Then

Remark 28 implies that {v′1,v′2} is a blocking pair of (G′1,β
′
14β ′2). Then (G′1,β

′
14β ′2)/Ω has a blocking

pair. But then Remark 10 implies that this signed graph is equivalent to (H,α4α ′), contradicting (h1).
Hence, L′ is nova. It follows in particular that (G′1,β

′
14β ′2) must have a handcuff-separation.

Lemma 39. Suppose Hypothesis 36 holds. Then no signed graph equivalent to (G,α4α ′) has a
handcuff-separation.

Hence, it only remains to prove Lemma 39.
We first need preliminaries. For a graph H, we say that F = (B1, . . . ,Bt) is a flower if B1, . . . ,Bt is

a partition of E(H) and there exist distinct vertices u1, . . . ,ut such that

(a) t ≥ 2 and if t = 2 then |B1|> 1 and |B2|> 1,

(b) H[Bi] is connected, for every i ∈ [t], and

(c) BH(Bi) = {ui,ui+1}, for every i ∈ [t] (where t +1 denotes 1).

For i ∈ [t], Bi is a petal with attachments ui and ui+1.
The following technical result characterizes the possible 2-separations of graph G in Hypothesis 36.

Lemma 40. Suppose Hypothesis 36 holds. Assume that S = {X1, . . . ,Xk} is a w-star of H satisfying
properties (a)-(c) of Section 4.2.2, with vertices w1, . . . ,wk ∈ V (H)∩V (G). Let v+ and v− denote the
ends of Ω in G and let X0 := E(H)− (X1∪ . . .∪Xk). Then

(1) k = |S| ≥ 2;

(2) for all i ∈ [k], BG(Xi) = {v−,v+,wi};

(3) for all i ∈ [k],
(
G[Xi],(α4α ′)∩Xi

)
\δG(wi) is bipartite;

(4)
(
G[X0],(α4α ′)∩X0

)
\
[
δG(v−)∪δG(v+)

]
is bipartite.

Let Z be a 2-separation of G with BG(Z) = {z1,z2} and Ω /∈ Z. Then, after possibly exchanging the
labels of z1 and z2, one of the following holds:

(A) Z ⊆ X0, z1 ∈ {v−,v+} and z2 ∈VG(X0)−{v−,v+};
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(B) There exists i ∈ [k] such that Z ⊂ Xi, z1 = wi and z2 ∈VG(Xi);

(C) There exist i ∈ [k] and an edge e = (wi,z2) ∈ X0∩Z such that Z ⊂ Xi∪{e}.
Moreover, z1 is a cut vertex of G[Xi] separating {v−,v+} and wi;

(D) Z̄ = {Ω,Ω′}, where Ω′ = (v−,v+) and Ω /∈ α4α ′, Ω′ ∈ α4α ′.

Figure 2 (left) illustrates properties (1)-(4) of the previous lemma (with α = α1, α ′ = α2, v = v−1 ,
v+ = v+1 ).

Proof of Lemma 40. Since T given in Hypothesis 36, is a template, α ⊆ δH(v)∪ loop(H). Hence,

α ⊆ δG(v+)∪ loop(H). (?)

Since T is a template, α ′ ⊆ δH ′(v′). Edges of Xi incident to v′ in H ′ are incident to wi in G. Edges of
X0 incident to v′ in H ′ are incident to v− or v+ in G. Hence,

α
′ ⊆
[⋃

i∈[k]
Xi∩δG(wi)

]
∪
([

δG(v−)∪δG(v+)
]
∩X0

)
∪ loop(H). (†)

Note that, if f ∈ loop(H)∩α , then f has ends v− and v+ in G. It follows from (?), (†) that k ≥ 2, for
otherwise S= {X1} and BH(X1) = {v,w1}, and {v,w1} is a blocking pair of (H,α4α ′), contradicting
(h1). Hence (1) holds. (2) holds by the definition of w-star. (3) and (4) also follow from (?), (†). By
(h2) (resp. (h3)) and Proposition 25 we know that H (resp. G) is 2-connected, up to loops. We define
Σ := α4α ′.

Claim 1. If S is a 2-separation with BG(S) = {v−,v+}, then S or S̄ is equal to {Ω,Ω′} where Ω′ =

(v−,v+) and Ω′ ∈ Σ.

Proof. One of IG(S) or IG(S̄) is empty, for otherwise v is a cut vertex of H separating IG(S) from
IG(S̄), a contradiction as H is 2-connected, up to loops. After possibly replacing S by its complement,
we have that I (S) = /0. By the definition of 2-separations, |S| ≥ 2. Proposition 25 implies that no two
edges with endpoints v− and v+, respectively, have the same parity. 3

Claim 2. If {z1,z2}= {v−,v+} then Z is of Type (D).

Proof. It follows from Claim 1 and the fact that Ω ∈ Z̄. 3

Claim 3. For all i, j ∈ [k] (i 6= j) there exists a wi−w j path in G[E(G)\ (Xi∪X j)] avoiding v− and v+.

Proof. If this is not the case, then v−,v+ is a 2-separation of G separating wi and w j. Hence, v is a cut
vertex of H, a contradiction as H is 2-connected, up to loops. 3

Claim 4. For any i ∈ [k] and z ∈ {v+,v−,wi}, G[Xi]− z is connected.
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Proof. We consider the case where z = wi only as the other cases are similar. If G[Xi]−wi is not
connected, it must have components G[Z1] and G[Z2]. Since G is 2-connected, we may assume that
v+ ∈VG(Z1) and v− ∈VG(Z2). Let Z′1 := Z1∪{(wi,u) ∈ E(G) : u ∈VG(Z1)}. Note BH(Z′1) = {v,wi}.
Since z1 is a blocking vertex of (H[Z′1],Σ∩ Z′1), Z′1 is not a handcuff-separation of (H,Σ). But this
contradicts property (b) of nova templates (see Section 4.2.2). 3

Claim 5. Suppose for some i ∈ [k], Xi∩Z 6= /0 and z1,z2 ∈VG(Xi). Then Z is of Type (B) or (D).

Proof. Consider first the case where Z ⊆ Xi. If wi /∈ {z1,z2} then (3) implies that (G[Z),Σ∩ Z) is
bipartite. Proposition 25 then implies that |Z| = 1, a contradiction. Hence, z j = wi for some j ∈ [w]
and (B) holds. Thus we may assume that Z1,Z2 6= /0 where Z1 := Z∩Xi and Z2 := Z∩ X̄i.

Since z1,z2 ∈VG(Xi), BG(Z2)⊆VG(Xi). As G is 2-connected, up to loops, |BG(Z2)∩BG(Xi)| ≥ 2.
We may assume v−,v+ are not both included in BG(Z2), for otherwise, the edge Ω ∈ Z̄ implies that
{z1,z2} = {v−,v+}, and hence, by Claim 2 that Z is of Type (D). Hence, (i) BG(Z2) = {v−,wi} or
(ii) BG(Z2) = {v+,wi} and in particular, Z2 ⊆ X0. We assume that (ii) holds as the proof for (i) is the
same.

Since v+ is an end of Ω ∈ Z̄, and since v+ ∈BG(Z2), we may assume (after possibly exchanging
the labels of z1 and z2) that z1 = v+. Because of Claim 2 we may assume that z2 6= v−. Let j ∈ [k]
( j 6= i). Claim 4 implies that there exists a v−−w j path P of G[X j]− v+. Claim 3 implies that there
exists a w j−wi path P′ of G[E(G)\ (Xi∪X j)] avoiding v− and v+. Then Q := P∪P′ is a v−−wi path
of G. Note, that Q∩Z ⊆ Q∩ (Xi∪Z2) = /0. Since, wi ∈BG(Z2) and Q ⊆ Z̄, we have z2 = wi.Hence,
BG(Z2)= {v+,wi}. It follows that BG(Z1)= {v+,wi}. Since wi is a blocking vertex of (H[Z1],Σ∩Z1),
Z1 is not a handcuff-separation of (H,Σ). But this contradicts property (b) of nova templates. 3

Claim 6. If there exists i ∈ [k] such that Z ⊇ Xi then Z is of Type (D).

Proof. As Ω ∈ Z̄, Ω = (v−,v+) and {v−,v+} ∈VG(Xi). The result now follows from Claim 2. 3

Claim 7. Suppose that for some i ∈ [k], Z ∩Xi, Z̄ ∩Xi 6= /0 and suppose that z2 /∈ VG(Xi). Then z1 ∈
IG(Xi) and z1 is a cut vertex of G[Xi] separating {v−,v+} and wi.

Proof. Note that z1 ∈ VG(Xi) for otherwise, Xi ∪{Ω} ⊆ Z̄, a contradiction. Suppose that z1 ∈B(Xi).
Then Claim 4 implies that G[Xi]− z1 is connected. It follows that Xi− δG(z1) is included in Z or Z̄.
Hence, Xi is included in Z or Z̄, a contradiction. Thus we may assume that z1 ∈ IG(Xi). Suppose,
for a contradiction that z1 is not a cut vertex of G[Xi] separating wi and {v−,v+}. Then there exists
a wi−{v−,v+} path Q of G[Xi]− z1. Because of Q and Ω, {wi,v−,v+} ⊆ IG(Z̄). Hence, every
z1− z2 path of G[Z] intersects IG(Z̄). It follows that G[Z] is not connected, a contradiction as G is
2-connected, up to loops. 3
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Claim 8. There does not exists i, j ∈ [k] (i 6= j) such that

Z∩Xi 6= /0, Z̄∩Xi 6= /0 and Z∩X j 6= /0, Z̄∩X j 6= /0.

Proof. Suppose for a contradiction that the claim is not true. Consider first the case where z1,z2 ∈
V (Xi). Then Claim 5 implies that Z is of Type (B) or (D). In all cases this implies that Z ∩X j = /0,
a contradiction. Thus we may assume that z2 /∈ V (Xi). Because of Claim 7, z1 ∈ IG(Xi) and z1 is
a cut vertex of G[Xi] separating {v−,v+} and wi. In particular, z1 /∈ V (X j). Thus, again by Claim 7,
z2 ∈ IG(X j) and z2 is a cut vertex of G[X j] separating {v−,v+} and w j. Since Ω = (v+,v−) and
Ω /∈ Z, we have v+,v− ∈IG(Z̄) and {wi,w j} ∈IG(Z). Hence, there is no {v−,v+}−{wi,w j} path of
G−(Xi∪X j). Suppose that there exists B⊆ E(G)−(X1∪X2) such that VG(B)∩{v−,v+} 6= /0 and G[B]
is connected. Claim 1 implies that B consists of the edge Ω /∈ Σ and possibly another edge parallel to
Ω that is in Σ. It follows that, S= {X1,X2} and i = 1, j = 2. Finally, by Claim 3, there exists a w1−w2

path in G[E(G)\ (X1∪X2)] avoiding v− and v+. Hence, G has a flower,

F = (B∪ (X1∪X2)∩ Z̄,X1∩Z,X0−B,X2∩Z}).

Let L denote the w-sequence
(
(X1 ∩ Z)∪ (X0−B),X1 ∩ Z

)
of G and let Ĝ := Wflip(G,L). It can be

readily checked, see (?), (†), that (Ĝ,Σ) has a blocking pair. Hence, so does (Ĝ,Σ)/Ω. Remark 10
implies that this signed graph is equivalent to (H,Σ), contradicting (h1). 3

We may assume outcome (D) does not occur. It follows from Claim 6 that, for all i∈ [k], Xi∩ Z̄ 6= /0.
It follows now, from Claim 8, that one of the following holds,

(T1) Z ⊆ X0;

(T2) ∃i ∈ [k] such that Z ⊂ Xi;

(T3) ∃i ∈ [k] such that Z ⊂ Xi∪X0, Z̄∩Xi 6= /0, Z∩X0 6= /0.

Suppose (T1) holds. Then z1,z2 ∈VG(X0). If {z1,z2}∩{v−,v+}= /0 then (4) implies that (G[Z],Σ∩Z)
is bipartite. Proposition 25 then implies that |Z| = 1, a contradiction. Thus we may assume that
z1 ∈ {v−,v+} and by Claim 2 that z2 /∈ {v−,v+}. Hence, (A) holds. Suppose (T2) holds. Then
z1,z2 ∈ VG(Xi) and by Claim 5, Z is of Type (B), or (D). Suppose (T3) holds. If z1,z2 ∈ VG(Xi), then
Claim 5 implies that Z if of Type (B), or (D). Otherwise we may assume that z2 /∈VG(Xi). By Claim 7,
we may assume that z1 ∈IG(Xi) and z1 is a cut vertex of G[Xi] separating {v−,v+} and wi. It follows
that Z ∩X0 is a 2-separation with B(Z ∩X0) = {wi,z2}. Because of (4),

(
G[Z ∩X0],Σ∩ (Z ∩X0)

)
is bipartite. Proposition 25 then implies that Z ∩ X0 consists of a single edge e = (wi,z2) and (C)
holds.

Let (G,Σ) be a signed graph. We say that a 2-separation X of G is a bracelet separation if
(G[X ],Σ∩X) is not bipartite, and some v ∈ B(X) is a blocking vertex of (G[X ],X ∩ Σ). A flower
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is maximal if no petal has a cut-vertex separating its attachments. A petal of a flower that is an edge is
a petal edge.

We say that a flower F is a Type 1 flower of (G,Σ) if

(a) F is a maximal flower;

(b) F has exactly two petals;

(c) one petal is a bracelet separation of (G,Σ).

We say that a flower F is a Type 2 flower of (G,Σ) if

(a) F is a maximal flower;

(b) F has exactly three petals;

(c) one petal is a bracelet separation of (G,Σ) and one petal is a petal edge.

Lemma 41. Suppose Hypothesis 36 holds. Then every maximal flower of (G,α4α ′) is of Type 1 or
Type 2.

Proof. We say that a 2-separation Z of G, where Ω /∈ Z, is of Type (A), (B), (C), or (D), respectively, if
outcome (A), (B), (C), or (D), respectively, occurs when we apply Lemma 40 to the separation Z. The
following result is a direct consequence of part (3) and (4) of Lemma 40.

Claim. Let Z be a 2-separation of (G,α4α ′) where Ω 6∈ Z.

(1) If Z if of Type (A) or (B) then Z is a bracelet separation;

(2) If Z if of Type (C) then Z is obtained, by adding in a flower, a petal edge to a bracelet separation;

(3) If Z is of Type (D) then Z̄ is a bracelet separation.

Let F = (Z0, . . . ,Zt)be an arbitrary maximal flower of (G,α4α ′). We may assume that Ω ∈ Z0.
No two of Z1, . . . ,Zt are petal edges, for otherwise these petal edges are in series contradicting (h3)
of Hypothesis 36. Hence, at most one of Z1, . . . ,Zt is a petal edge. Suppose first that all but one of
Z1, . . . ,Zt is a petal edge. Then either t = 1 and Z1 is not a petal edge, or t = 2 and exactly one of Z1

and Z2 (say Z2) is a petal edge. In the case t = 1, either Z1 is of Type (D), and by the Claim, Z0 = Z̄1

is a bracelet separation, or Z1 is not of Type (D) and by the Claim, Z1 is a bracelet separation. Either
way, F is a flower of Type 1. In the case t = 2, Z1 is not of Type (D) (as IG(Z̄1) 6= /0) and by the Claim
Z1 is a bracelet separation. Then F is a flower of Type 2.

Thus we may assume that, for some i, j ∈ [t] where i< j, |Zi|> 1 and |Z j|> 1. Let Z := Z1∪ . . .∪Zi

and Z′ := Zi+1 ∪ . . .∪Zt . Since IG(Z̄),IG(Z̄′) 6= /0, Z,Z′ are not of Type (D). Hence, by the Claim,
Z,Z′ are bracelet separations. Observe that if Z∪Z′ is of Type (D), then some signed graph equivalent
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to (G,α4α ′) has a blocking pair, contradicting (h1). Thus we may assume that Z ∪ Z′ is not of
Type (D). It follows by the Claim that Z∪Z′ is a bracelet separation. However, it is not possible that
all of Z,Z′,Z∪Z′ are bracelet separations, a contradiction.

Lemma 41 implies that the signed graph (G,α4α ′) in Hypothesis 36 has no handcuff-separations.
To prove Lemma 39 however, we need to show that no signed graphs equivalent to (G,α4α ′) has a
handcuff-separation. In order to do this we need to be able to relate 2-separations and flowers between
equivalent graphs and signed graphs.

Lemma 42. Let Ĝ be a 2-connected graph and let X be a 2-separation of Ĝ. Let G be equivalent
to Ĝ. Then there exists a maximal flower F = (B1, . . . ,Bt) of G, such that X is equal to the union of
a subset of the petals of G. In particular, if every maximal flower of G has at most three petals, then
every 2-separation of Ĝ is a 2-separation of G.

Proof. Given a graph H, denote by c(H) the number of components of H. Let M := cycle(G) =

cycle(Ĝ). Then for any Y ⊆ E(Ĝ), the connectivity function λM(Y ) satisfies the relation,

λM(Y ) = |VG(Y )∩VG(Ȳ )|− c(G[Y ])− c(G[Ȳ ])+2.

Since X is a 2-separation of Ĝ, λM(X) = 2. Hence,

|VG(X)∩VG(X̄)|= c(G[X ])+ c(G[X̄ ]).

Construct an auxiliary graph H as follows: the vertices of H correspond to the components of G[X ]

and to the components of G[X̄ ]. Join two vertices of H by k parallel edges if the corresponding com-
ponents have k vertices in common. Then |V (H)| = |E(H)|. Moreover, since Ĝ (and therefore G) is
2-connected, degH(v)≥ 2 for every v∈V (H) and H is connected. It follows that H consists of a circuit
and the result follows.

The signed graph F7 is obtained by replacing every edge in a triangle by two parallel edges, one
odd, one even, and by adding an odd loop (see Figure 3). Note that ecycle(F7) is the matroid F7.

Figure 3: The signed graph F7.
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Lemma 43. Let (G,Σ) be a signed graph and suppose that no signed graph equivalent to (G,Σ) has
a blocking pair. Let F be a Type 1 or Type 2 flower of (G,Σ) and let Z be a petal of F. Let (Ĝ,Σ) be a
signed graph equivalent to (G,Σ). Then Z is is not a handcuff-separation of (Ĝ,Σ).

Proof. Suppose for a contradiction that Z is a handcuff-separation of (Ĝ,Σ). We will only prove the
case for the Type 1 flowers as the proof for Type 2 is similar. Then F = {Z,Z′} and one of Z,Z′ is a
bracelet separation. Observe that F is a flower of Ĝ. Since |F| ≤ 3, we may assume that there exists a
w-sequence S of G where Ĝ = Wflip[G,S] and, for all S ∈ S, we have S⊆ Z.

Consider first the case where Z′ is a bracelet separation of (G,Σ). Then Z′ remains a bracelet
separation of (Ĝ,Σ). But then, as Z is a handcuff-separation, B(Z) is a blocking pair, contradicting our
hypothesis. Consider now the case where Z is a bracelet separation of (G,Σ). Construct a signed graph
(H,Γ) from (G[Z],Σ∩Z) by adding two parallel edges, one odd, one even, between vertices of BG(Z)
and by adding an odd loop. Let Ĥ := Wflip[H,S]. Note that (H,Γ) and (Ĥ,Γ) are equivalent hence
they are representations of the same even cycle matroid. To obtain a contradiction we will show that
ecycle(H,Γ) is a graphic matroid but that ecycle(Ĥ,Γ) is not graphic. Since Z is a bracelet separation
of (G,Σ), (H,Γ) has a blocking vertex. It follows from Remark 6 that (H,Γ) is graphic. Since Z is a
handcuff-separation of (Ĝ,Σ), (Ĥ,Γ) contains the signed graph F7 as a minor. As ecycle(F7) is the
matroid F7, it follows in particular that ecycle(Ĥ,Γ) is not graphic.

We are now ready for the proof of the last remaining lemma.

Proof of Lemma 39. Let (Ĝ,α4α ′) be a signed graph equivalent to (G,α4α ′). Let Z be an arbi-
trary 2-separation of Ĝ. It follows from the fact that maximal flowers of G have at most three petals
(Lemma 41) and Lemma 42 that Z is a 2-separation of G. Lemma 41 implies that Z is a petal of a flower
of Type 1 or Type 2 of (G,α4α ′). It follows from Lemma 43 that Z is not a handcuff-separation of
(Ĝ,α4α ′).
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