A Weaker Version of Lovász' Path Removal Conjecture

Ken-ichi Kawarabayashi* ${ }^{* \dagger}$ Orlando Lee ${ }^{\ddagger \S}$ Bruce Reed ${ }^{〔}$ Paul Wollan ${ }^{\| * *}$

Abstract

We prove there exists a function $f(k)$ such that for every $f(k)$-connected graph G and for every edge $e \in E(G)$, there exists an induced cycle C containing e such that $G-E(C)$ is k-connected. This proves a weakening of a conjecture of Lovász due to Kriesell.

Key Words : graph connectivity, removable paths, non-separating cycles

1 Introduction

The following conjecture is due to Lovász (see [14]):
Conjecture 1.1 There exists a function $f=f(k)$ such that the following holds. For every $f(k)$ connected graph G and two vertices s and t in G, there exists a path P with endpoints s and t such that $G-V(P)$ is k-connected.

Conjecture 1.1 can alternately be phrased as following: there exists a function $f(k)$ such that for every $f(k)$-connected graph G and every edge e of G, there exists a cycle C containing e such that $G-V(C)$ is k-connected. Lovász also conjectured [9] that every $(k+3)$-connected graph contains a cycle C such that $G-V(C)$ is k-connected. This was proven by Thomassen [13].

Conjecture 1.1 is known to be true in several small cases. In the case $k=1$, a path P connecting two vertices s and t such that $G-V(P)$ is connected is called a non-separating path. It follows from a theorem of Tutte that any 3 -connected graph contains a non-separating path connecting any two vertices, and consequently, $f(1)=3$. When $k=2$, it was independently shown by Chen, Gould, and Yu [1] and Kriesell [6] that $f(2)=5$. In [1], the authors also show that in a $(22 k+2)$-connected graph, there exist k internally disjoint non-separating paths connecting any pair of vertices. In [5], Kawarabayashi, Lee, and Yu obtain a complete structural characterization of which 4-connected graphs do not have a path linking two given vertices whose deletion leaves the graph 2-connected.

[^0]In a variant of the problem, one can attempt to delete the edges of the path instead of deleting all the vertices. Mader proved [11] that every k-connected graph with minimum degree $k+2$ contains a cycle C such that deleting the edges of C leaves the graph k-connected. Jackson independently proved the same result when $k=2$ in [4]. As a corollary to a stronger result, Lemos and Oxley have shown [8] that in a 4-connected graph G, for any edge e there exists a cycle C containing e such that $G-E(C)$ is 2-connected.

Kriesell has postulated the following natural weakening of Conjecture 1.1
Conjecture 1.2 (Kriesell, [7]) There exists a function $f(k)$ such that for every $f(k)$-connected graph G and any two vertices s and t of G, there exists an induced path P with ends s and t such that $G-E(P)$ is k-connected.

We answer this question in the affirmative with the following theorem.
Theorem 1.3 There exists a function $f(k)=O\left(k^{4}\right)$ such that the following holds: for any two vertices s and t of an $f(k)$-connected graph G, there exists an induced $s-t$ path P such that $G-E(P)$ is k-connected.

Corollary 1.4 For every $(f(k)+1)$-connected graph G and for every edge e of G, there exists an induced cycle C containing e such that $G-E(C)$ is k-connected.

In the proof of Theorem 1.3, we will at several points need to force the existence of highly connected subgraphs using the fact that our graph will have large minimum degree. A theorem of Mader implies the following.

Theorem 1.5 (Mader, [10]) Every graph of minimum degree $4 k$ contains a k-connected subgraph.
In addition to simply requiring a highly connected subgraph, we will require the subgraph have small boundary. The boundary of a subgraph H of a graph G, denoted $\partial_{G}(H)$, is the set of vertices in $V(H)$ that have a neighbor in $V(G)-V(H)$. We use the following related result of Thomassen. By strengthening the minimum degree condition in Theorem 1.5, we can find a highly connected subgraph that further has a small boundary.

Theorem 1.6 (Thomassen, [15]) Let k be any natural number, and let G be any graph of minimum degree $>4 k^{2}$. Then G contains a k-connected subgraph with more than $4 k^{2}$ vertices whose boundary has at most $2 k^{2}$ vertices.

Given a path P in a graph, and two vertices x and y on P, we denote by $x P y$ the subpath of P starting at vertex x and ending at y. A separation of a graph G is a pair (A, B) of subsets of vertices of G such that $A \cup B$ is equal to $V(G)$, and for every edge $e=u v$ of G, either both u and v are contained in A or both are contained in B. The order of a separation (A, B) is $|A \cap B|$. Where not otherwise stated, we follow the notation of [2].

We will need the following results on systems of disjoint paths with pre-specified endpoints.
Definition A linkage is a graph where every connected component is a path.
A linkage problem in a graph G is a set of pairs of vertices in G. We will typically write the linkage problem \mathcal{L} as follows:

$$
\mathcal{L}=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\} .
$$

A solution to the linkage problem $\mathcal{L}=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ is a set of pair-wise internally disjoint paths P_{1}, \ldots, P_{k} such that the ends of P_{i} are s_{i} and t_{i}, and furthermore, if $x \in V\left(P_{i}\right) \cap V\left(P_{j}\right)$ for some distinct indices i and j, then $x=s_{i}$ or $x=t_{i}$. A graph G is strongly k-linked if every linkage problem $\mathcal{L}=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ consisting of k pairs in G has a solution. The graph G is k-linked if every linkage problem with k pair-wise disjoint pairs of vertices has a solution. We utilize the following theorem:

Theorem 1.7 ([12]) Every $10 k$-connected graph is k-linked.
Any k-linked graph on at least $2 k$ vertices is strongly k-linked. Thus the following statement follows trivially from Theorem 1.7.

Corollary 1.8 Every $10 k$-connected graph is strongly k-linked.

2 Proof of Theorem 1.3

We prove the theorem with the function $f(k)=1600 k^{4}+k+2$. Let \mathcal{S} be a $2 k$-connected subgraph of G such that $G-E(\mathcal{S})$ contains an induced s - t path. To see that such a subgraph \mathcal{S} exists, consider an s - t path P_{0} of minimum length. We note that P_{0} is an induced path, and, further, that $G-E\left(P_{0}\right)$ has minimum degree $f(k)-3>8 k$. By Theorem $1.5, G-E\left(P_{0}\right)$ contains the desired $2 k$-connected subgraph \mathcal{S}.

Our goal in the proof of Theorem 1.3 will be to pick an s - t path P which uses no edges of \mathcal{S} and has the following property. For every vertex x of G, in the graph $G-E(P)$ the vertex x has k internally disjoint paths to distinct vertices in \mathcal{S}. This will suffice to show that $G-E(P)$ is k connected. To find such a path, we pick P to maximize the number of vertices with k paths to \mathcal{S}, and subject to that, to maximize the number of vertices with $k-1$ paths to \mathcal{S}, and so on. This leads to the following definition. For any induced $s-t$ path P such that $E(P)$ is disjoint from $E(\mathcal{S})$, we define the set:
$S_{k}=S_{k}(P)=\{v \mid \exists k$ internally disjoint paths in $G-E(P)$ from v to $V(\mathcal{S})$ with distinct ends in $V(\mathcal{S})\}$.
For i between 0 and $k-1$ we define sets S_{i} where a vertex v is in S_{i} if v is joined to $V(\mathcal{S})$ by i paths in $G-E(P)$ disjoint except at v and not $i+1$ such paths.

We choose an induced $s-t$ path P disjoint from $E(\mathcal{S})$ so as to lexicographically maximize

$$
\left(S_{k}, S_{k-1}, \ldots, S_{0}\right)
$$

It now suffices to show that for this $P,\left|S_{k}\right|=|V(G)|$. We let $\min =\min \left\{i \mid S_{i} \neq \emptyset\right\}$. We will show that if $\min <k$, there exists an induced path P^{*} which avoids $E(\mathcal{S})$ and satisfies the following properties:
(a) for all v in $S_{j}(P), j>\min , v \in S_{j^{*}}\left(P^{*}\right)$ for some $j^{*} \geq j$,
(b) there exists a v in $S_{\text {min }}$ which is in $S_{j^{*}}\left(P^{*}\right)$ for some $j^{*}>\min$.

This contradicts our choice of P.
To find P^{*}, observe that there exists a separation (A, B) of $G-E(P)$ of order min with $V(\mathcal{S}) \subseteq A$ and $v \in B-A$. Assume we have chosen such a separation to minimize $|A|$. Let X denote the set $A \cap B$. It follows from our choice of \min that every vertex of $B-A$ is contained in $S_{\text {min }}$.

Consider the subgraph of G induced by $B-A$. We note that $G[B-A]$ has minimum degree at least $f(k)-k-2=1600 k^{4}$. By Theorem 1.6, there exists a $20 k^{2}$-connected subgraph F in $G[B-A]$ of size at least $1600 k^{4}$ which has a boundary of size at most $800 k^{4}$.

By our choice of \min, there exist $|X|$ disjoint paths from X to F in the graph $G-E(P)$ restricted to the set B. We choose $|X|$ such paths internally disjoint from F. Let X^{\prime} be the endpoints of the paths in F. Let \mathcal{L}_{1} be the linkage problem $\left\{\{x, y\} \mid x, y \in X^{\prime}, x \neq y\right\}$ consisting of every pair of vertices of X^{\prime}.

For every vertex $x \in X, x \in S_{t}$ for some value of $t=t(x)$. There exist paths $Q_{1}^{x}, \ldots, Q_{t(x)}^{x}$ in $G-E(P)$ disjoint except for the vertex x each having one endpoint in \mathcal{S} and the other endpoint equal to x. Let Q be a path in G with endpoints u and v. A vertex $x \in V(F) \cap V(Q)$ is Q-extremal if either $u Q x$ or $x Q v$ contains no vertex of $V(F)$ other than the vertex x. We let \mathcal{Q} be the set of paths $\left\{Q_{i}^{x} \mid x \in X, 1 \leq i \leq t(x)\right\}$. Note, two distinct $Q_{1}, Q_{2} \in \mathcal{Q}$ are not necessarily disjoint. A vertex $x \in V(F)$ is \mathcal{Q}-extremal if there exists a path $Q \in \mathcal{Q}$ such that x is Q-extremal. Let Y^{\prime} be the set of \mathcal{Q}-extremal vertices in $V(F)$), and let \mathcal{L}_{2} be the natural linkage problem induced by \mathcal{Q} :

$$
\mathcal{L}_{2}=\left\{\{x, y\} \mid x, y \in Y^{\prime} \text { and } \exists Q \in \mathcal{Q} \text { such that } x \text { and } y \text { are } Q \text {-extremal }\right\}
$$

Observe that while a vertex in X may have many neighbors in $V(F)-\partial_{G[B-A]}(F)$, the only edges of G with one end in $A-B$ and the other end in $V(F)-\partial_{G[B-A]}(F)$ are contained in P. It follows that either X^{\prime} or Y^{\prime} may contain vertices of $V(F)-\partial_{G[B-A]}(F)$. See Figure 1.

Edges of P

Figure 1: An example of the separation (A, B) with the subgraphs \mathcal{S} and F and possible sets X^{\prime} and Y^{\prime}.

Recall that the size of the boundary of F is at most $800 k^{4}$ in $G[B-A]$. It follows from the connectivity of G that there exists a matching of size three from $V(F)-X^{\prime}-Y^{\prime}-\partial_{G[B-A]}(F)$ to $A-X$ using only edges of P. Let $a a^{\prime}, b b^{\prime}$ and $c c^{\prime}$ be three edges forming such a matching where the vertices a, b, and c lay in $V(F)-X^{\prime}-Y^{\prime}-\partial_{G[B-A]}(F)$. By our choice of (A, B) to minimize $|A|$, there exist $|X|+1$ disjoint paths from $X \cup\left\{a^{\prime}\right\}$ to $V(\mathcal{S})$ in $G-E(P)$ (and similarly for $X \cup\left\{b^{\prime}\right\}$ and $\left.X \cup\left\{c^{\prime}\right\}\right)$.

By Theorem 1.7, the graph F is strongly $2 k^{2}$-linked. Fix vertices s^{*} and s^{\prime} as follows. Let s^{*} be a vertex in $V(F)-X^{\prime}-Y^{\prime}$ such that s^{*} has a neighbor s^{\prime} on P in G and furthermore, assume that s^{*} and s^{\prime} are chosen so that s^{\prime} is as close to s on P as possible. Similarly, we define t^{*} and t^{\prime} such that t^{*} is a vertex of $V(F)-X^{\prime}-Y^{\prime}$ with a neighbor t^{\prime} as close to t as possible. The vertices s^{*} and t^{*} are well defined since a, b, and c all have a neighbor on P in G. Without loss of generality, we may assume that $b \neq s^{*}, t^{*}$. Let v be a vertex of $V(F)-X^{\prime}-Y^{\prime}-\left\{s^{*}, t^{*}\right\}$. Now consider the linkage problem

$$
\mathcal{L}=\mathcal{L}_{1} \cup \mathcal{L}_{2} \cup\left\{\{v, x\} \mid x \in X^{\prime}\right\} \cup\left\{\{v, b\},\left\{s^{*}, t^{*}\right\}\right\} .
$$

The linkage problem \mathcal{L} has at most $\binom{k}{2}+k(k-1)+k+2 \leq 2 k^{2}$ pairs, and so there exists a solution \mathcal{R} in F. Let $R \in \mathcal{R}$ be the path with ends s^{*} and t^{*}. We now define P^{*} to be the shortest induced subpath of $s P s^{\prime} s^{*} R t^{*} t^{\prime} P t$. We claim that P^{*} is the desired path violating our choice of P. Let $S_{i}^{*}=S_{i}\left(P^{*}\right)$ for $i=0, \ldots, k$.

To complete the proof, it now suffices to verify the following claim.
Claim $1\left(S_{k}^{*}, \ldots, S_{0}^{*}\right)$ is lexicographically greater than $\left(S_{k}, \ldots, S_{0}\right)$
Proof. We begin with the observation that by construction and the choice of s^{*} and t^{*}, there exists a subpath \bar{R} of R with ends \bar{s} and \bar{t} such that $P^{*}=s P s^{\prime} \bar{s} \bar{R} \bar{t} t^{\prime} P t$. Furthermore, it follows that $E(P[A]) \supseteq E\left(P^{*}[A]\right)$ and $E\left(P^{*}\right)-E(P) \subseteq E(F) \cup\left\{s^{\prime} \bar{s}, t^{\prime} \bar{t}\right\}$. It follows that $E\left(P^{*}\right) \cap E(\mathcal{S})=\emptyset$ since the edges $s^{\prime} \bar{s}$ and $t^{\prime} t$ each have at least one endpoint in F and F and \mathcal{S} are disjoint. .

For any vertex $u \in V(G)$ such that $u \in S_{i}$ for some $i>\min$, it suffices now to show that u has i internally disjoint paths from u to distinct vertices in \mathcal{S} to imply that $u \in S_{j}^{*}$ for some $j \geq i$. To see this, first observe that the vertex u must be contained in A. Assume as a case that $u \in A-X$. In the graph $G-E(P)$, there exist i internally disjoint paths N_{1}, \ldots, N_{i} each with a distinct end in \mathcal{S} and the other endpoint equal to u. Then any path N_{l} with at most one vertex in X does not contain any edge of $(G-E(P))[B]$ and consequently does not use any edges of P^{*}. Any path N_{l} that does use at least two vertices of X has a first and last vertex in X. There exists a linkage from X to X^{\prime} avoiding the edges of P^{*}, and consequently a path in \mathcal{R} connecting the ends in X^{\prime} avoiding edges of P^{*}. It follows that $u \in S_{j}^{*}$ for some $j \geq i$.

We now assume $u \in X$. One path from u to \mathcal{S} can be found as above by following the linkage from X to X^{\prime} and using a path in the solution to the linkage problem \mathcal{L}_{1}. However, as many as i of the paths ensuring that $u \in S_{i}$ may have used edges contained in $B-A$. Thus the solution to the linkage problem \mathcal{L}_{2} will ensure that u has i internally disjoint paths to distinct vertices in \mathcal{S} in $G-E\left(P^{*}\right)$. Let $Q_{1}^{u}, \ldots, Q_{i}^{u}$ be the internally disjoint paths linking u to distinct vertices of \mathcal{S} contained in \mathcal{Q}. As in the previous paragraph, any path that uses at most one vertex of $V(F)$ will still exist in $G-E\left(P^{*}\right)$. If Q_{l}^{u} uses at least two vertices of $V(F)$, then by the fact that \mathcal{R} contains a solution to the linkage problem \mathcal{L}_{2}, there exists a path of \mathcal{R} rerouting Q_{l}^{u} to avoid any edge of P^{*}.

We now will see that the vertex $v \in V(F)$ lies in S_{j}^{*} for some $j>\min$. The vertex v has $|X|$ internally disjoint paths in F to X^{\prime} that avoid $E\left(P^{*}\right)$ and an additional path to the vertex b. Then X^{\prime} is linked to X avoiding $E(P)$, and as a consequence, avoiding $E\left(P^{*}\right)$. Furthermore, by construction, the edge $b b^{\prime}$ is not contained in $E\left(P^{*}\right)$. Finally, our choice of separation (A, B) ensures that $X \cup\left\{b^{\prime}\right\}$ sends $|X|+1$ disjoint paths to $V(\mathcal{S})$ avoiding edges of P^{*} to prove that $v \in S_{j}^{*}$ for some $j>\min$. This completes the proof of the claim.

This completes the proof of Theorem 1.3.

3 An Approach to Conjecture 1.1

We make the following conjecture:
Conjecture 3.1 There exists a function $f=f(k)$ such that the following holds. Let G be an $f(k)$ connected graph and let s, t and v be three distinct vertices of G. Then G contains an $s-t$ path P and a k-connected subgraph H such that $v \in V(H)$ and furthermore, H and P are disjoint.

We will see that Lovász' conjecture in fact follows from Conjecture 3.1
Theorem 3.2 If Conjecture 3.1 is true, then Conjecture 1.1 is true.
Proof. Let $f(k)$ be a function satisfying Conjecture 3.1. We show the existence of a function $g(k)$ satisfying Conjecture 1.1, where $g(k)$ will be any function sufficiently large to make the necessary inequalities of the proof true.

Let s and t be two fixed vertices of a $g(k)$-connected graph G, and let F be a maximal k connected subgraph that does not separate s and t. To see that such a subgraph F must exist, consider a shortest path P from s to t. Every vertex not contained in P can have at most three neighbors on P, and so the minimum degree of $G-V(P)$ must be strictly greater than $4 k$. Theorem 1.5 implies that there exists a k-connected subgraph that does not separate s and t.

A block is a maximal 2-connected subgraph. Every connected graph G has a block decomposition (T, \mathcal{B}) where T is a tree and $\mathcal{B}=\left\{B_{v} \mid v \in V(T)\right\}$ is a collection of subsets of vertices of G indexed by the vertices of T such that the following hold:
i. for every $v \in V(T), G\left[B_{v}\right]$ is either an edge or a block of G,
ii. for every edge $u v$ of $T,\left|B_{v} \cap B_{u}\right|=1$, and
iii. every edge of G is contained in B_{v} for some $v \in V(T)$.

Observe that for any edge $u v \in E(T)$, the vertex in $B_{u} \cap B_{v}$ is a cut vertex of the graph. See [2] for more details.

Consider a block decomposition (T, \mathcal{B}) of the component of $G-F$ containing s and t. Assume there exists a leaf v of T such that such that $B_{v}-u$ does not contain either s or t (where the vertex u separates $B_{v}-\{u\}$ from the rest of $\left.G-F\right)$. Then deleting any vertex of $B_{v}-\{u\}$ does not separate s and t. If any such vertex x in $B_{v}-\{u\}$ had k neighbors in F, then $F \cup x$ would be a k-connected graph that does not separate s and t, contradicting our choice of F. It follows that $G\left[B_{v}-\{u\}\right]$ has minimum degree at least $g(k)-k$. We assume $g(k)$ satisfies the following inequality:

$$
g(k)-k \geq 4 k^{2} .
$$

By Theorem 1.6, we conclude $G\left[B_{v}-u\right]$ has a k-connected subgraph H whose boundary has at most $2 k^{2}$ vertices. It follows that there exists a matching of size at least k from $V(H)-\partial_{G\left[B_{v}\right]}(H)$ to $V(F)$ in G. This is a contradiction, since then $H \cup F$ is a larger k-connected subgraph that does not separate s from t.

By the same argument as above, $G-F$ has exactly one component. It follows that the block decomposition (T, \mathcal{B}) of $G-F$ has T equal to a path. Let the blocks of the decomposition be B_{0}, \ldots, B_{l} with $B_{i} \cap B_{i+1}=v_{i}$. Then we may assume that $s \in B_{0}$ and $t \in B_{l}$. Moreover, for all $i=0, \ldots, l-1$, it follows that $v_{i} \neq v_{i+1}$, and $s \neq v_{0}$ and $t \neq v_{l-1}$.

Now assume there exists a block B_{i} which is non-trivial, i.e. not a single edge. Let $s^{\prime}=s$ if $i=0$, and $s^{\prime}=v_{i-1}$ otherwise. Similarly, let $t^{\prime}=t$ if $i=l$ and $t^{\prime}=v_{i}$ otherwise. Observe that any vertex v of $B_{i}-\left\{s^{\prime}, t^{\prime}\right\}$ does not separate s^{\prime} from t^{\prime}, and so, as above, v cannot have more than k neighbors in F, lest we contradict our choice of F. It follows that $G\left[B_{i}-\left\{s^{\prime}, t^{\prime}\right\}\right]$ has minimum degree at least $g(k)-k-1$. We assume that

$$
g(k)-k-1>4 f(k+1)^{2} .
$$

Then $G\left[B_{i}\right]-\left\{s^{\prime}, t^{\prime}\right\}$ contains an $f(k+1)$-connected subgraph F^{\prime} with boundary at most $2 f(k+$ $1)^{2}$. Moreover, by the connectivity of G, there exist $f(k+1)$ vertices $u_{1}, \ldots, u_{f(k+1)} \in V\left(F^{\prime}\right)-$ $\partial_{G\left[B_{i}-\left\{s^{\prime}, t^{\prime}\right\}\right]}\left(F^{\prime}\right)$ such that each has a distinct neighbor in F (in the graph G).

Attempt to find a path from s^{\prime} to t^{\prime} in $G\left[B_{i}-V\left(F^{\prime}\right)\right]$. If such a path exists, then F^{\prime} does not separate s^{\prime} from t^{\prime} in $G\left[B_{i}\right]$, and the subgraph induced by $V\left(F \cup F^{\prime}\right)$ contradicts our choice of F to be as large as possible. It follows that F^{\prime} does separate s from t in $G-F$. Let \bar{P} be a path in $G\left[B_{i}\right]$ with ends s^{\prime} and t^{\prime}. Let \bar{s} be the vertex of $V(\bar{P}) \cap V\left(F^{\prime}\right)$ closest to s^{\prime} on \bar{P}. Similarly, let \bar{t} be the vertex of $V(\bar{P}) \cap V\left(F^{\prime}\right)$ closest to t^{\prime} on \bar{P}. We define a new graph \bar{F} with vertex set $V(\bar{F})$ equal to $V\left(F^{\prime}\right) \cup \bar{v}$ where \bar{v} is a new vertex representing the subgraph F. The edge set of \bar{F} is given by $E(\bar{F})=E\left(F^{\prime}\right) \cup\left\{\bar{v} u_{i} \mid i=1, \ldots, f(k+1)\right\}$. Then \bar{F} is an $f(k+1)$-connected graph, so by our assumption that f is a function satisfying Conjecture 3.1, there exists a $(k+1)$-connected subgraph H of \bar{F} containing the vertex \bar{v}, and moreover, $F^{\prime}-H$ contains a path from \bar{s} to \bar{t}. By construction, $H-\bar{v}$ is a k-connected subgraph of $G\left[B_{i}\right]$ that does not separate s from t, and moreover, there exists a matching of size k from $H-\bar{v}$ into the vertices of F. It follows that $G[V(F) \cup V(H)-\{\bar{v}\}]$ is a subgraph violating our choice of F to be a maximum k-connected subgraph not separating s from t. This contradicts our assumption that the block decomposition of $G-F$ contained a non-trivial block. It follows that $G-F$ is an induced $s-t$ path, completing the proof.

Conjecture 3.1 is closely related to the following strengthening of Conjecture 1.1 due to Thomassen.
Conjecture 3.3 (Thomassen, [15]) For every $l, t \in \mathbb{N}$ there exists $k=k(l, t) \in \mathbb{N}$ such that for all k-connected graphs G and $X \subseteq V(G)$ with $|X| \leq t$, the vertex set of G can be partitioned into non-empty sets S and T such that $X \subseteq S$, each vertex in S has at least l neighbors in T and both $G[S]$ and $G[T]$ are l-connected subgraphs.

As the conjecture originally appeared, t was assumed to be equal to l. We have introduced the additional parameter to discuss partial progress on the conjecture.

Observation 3.4 If $\forall l \geq 0,0 \leq t \leq 2$ there exists a positive integer $k=k(l, t)$ satisfying Conjecture 3.3, then Conjecture 1.1 is true.

Proof. Let l be any positive integer, $k=k(l, 2)$ be as in Conjecture 3.3, and let G be a k-connected graph. Then there exists a partition (A, B) of the vertices of G such that $s, t \in A, G[A]$ and $G[B]$ are l-connected graphs, and, furthermore, every vertex of A has at least l neighbors in B. Then if P is a path in $G[A]$ connecting s and $t, G-V(P)$ is an l-connected graph. Thus $f(l)=k(l, 2)$ is a function satisfying Conjecture 1.1.

Kühn and Osthus [3] have proven Conjecture 3.3 is true when the integer t is restricted to 0 . A consequence of Theorem 3.2 is the following corollary.

Corollary 3.5 If $\forall l \geq 0,0 \leq t \leq 1$ there exists a positive integer $k=k(l, t)$ satisfying Conjecture 3.3, then Conjecture 1.1 is true.

Proof. Let l be a positive integer and let $k=k(l+2,1)$ be the value given by Conjecture 3.3. Then let G be a k-connected graph, and let v, s, and t be given as in Conjecture 3.1. Let (A, B) be a partition of $V(G)$ such that $G[A]$ and $G[B]$ are $(l+2)$-connected, and furthermore, that $v \in A$. Then $G[A-\{s, t\}]$ is an l-connected subgraph containing v that does not separate s and t, as desired.

References

[1] G. Chen, R. Gould, X. Yu, Graph Connectivity after path removal, Combinatorica, 23 (2003), 185-203.
[2] R. Diestel, Graph Theory, 3rd ed. Springer-Verlag, 2005.
[3] D. Kühn and D. Osthus, Partitions of graphs with high minimum degree or connectivity, J. of Comb. Theory, ser. B 88 (2003), 29-43.
[4] B. Jackson, Removable cycles in 2-connected graphs of minimum degree at least four, J. London Math. Soc. 21 (1980), no. 3, 385-392.
[5] K. Kawarabayashi, O. Lee, X. Yu, Non-separating paths in 4-connected graphs, Ann. Comb. 9 (2005), no. 1, 47-56.
[6] M. Kriesell, Induced paths in 5-connected graphs, J. of Graph Theory, 36 (2001), 52 - 58.
[7] M. Kriesell, Removable paths conjectures, http://www.fmf.uni-lj.si/~mohar/Problems/P0504Kriesell1.pdf
[8] M. Lemos and J. Oxley, On Removable Cycles Through Every Edge, J. Graph Theory 42 (2001), no. 2, 155-164.
[9] L. Lovász, Problems in Graph Theory, Recent Advances in Graph Theory, ed. M. Fielder, Acadamia Prague, 1975.
[10] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972), 86-97.
[11] W. Mader, Kreuzungsfreie a, b-Wege in endlichen Graphen, Abhandlungen Math. Sem. Univ. Hamburg, 42 (1974), 187-204.
[12] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, Europ. J. of Combinatorics, 26 (2005), 309-324.
[13] C. Thomassen, Non-separating cycles in k-connected graphs, J. of Graph Theory, 5, (1981), 351- 354.
[14] C. Thomassen, Graph decompositions with applications to subdivisions and path systems modulo k, J. of Graph Theory, 7, (1983), 261-271.
[15] C. Thomassen, The Erdős Pósa property for odd cycles in graphs of large connectivity, Combinatorica 21 (2001) 321-333.

[^0]: ${ }^{*}$ Graduate School of Information Sciences(GSIS), Tohoku University, Aramaki aza Aoba 09, Aoba-ku Sendai, Miyagi 980-8579, Japan.
 ${ }^{\dagger}$ Research partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research and by Inoue Research Award for Young Scientists.
 ${ }^{\ddagger}$ University of Campinas (UNICAMP), Brazil
 ${ }^{\S}$ Research partly supported by CNPq, Project PROSUL - Proc. no. 490333/04-4, ProNEx - FAPESP/CNPq Proc. No. 2003/09925-5, Edital Universal CNPq Proc. 2005: 471460/2004-4.
 ${ }^{\top}$ Canada Research Chair in Graph Theory, McGill University, Montreal Canada and Laboratoire I3S, CNRS, SophiaAntipolis, France
 ${ }^{\|}$University of Waterloo, Waterloo, Canada
 ${ }^{* *}$ Email address: pwollan@math.uwaterloo.ca

