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Abstract

We prove there exists a function f(k) such that for every f(k)-connected graph G and for every
edge e ∈ E(G), there exists an induced cycle C containing e such that G−E(C) is k-connected.
This proves a weakening of a conjecture of Lovász due to Kriesell.

Key Words : graph connectivity, removable paths, non-separating cycles

1 Introduction

The following conjecture is due to Lovász (see [14]):

Conjecture 1.1 There exists a function f = f(k) such that the following holds. For every f(k)-
connected graph G and two vertices s and t in G, there exists a path P with endpoints s and t such
that G− V (P ) is k-connected.

Conjecture 1.1 can alternately be phrased as following: there exists a function f(k) such that for
every f(k)-connected graph G and every edge e of G, there exists a cycle C containing e such that
G− V (C) is k-connected. Lovász also conjectured [9] that every (k + 3)-connected graph contains a
cycle C such that G− V (C) is k-connected. This was proven by Thomassen [13].

Conjecture 1.1 is known to be true in several small cases. In the case k = 1, a path P connecting
two vertices s and t such that G−V (P ) is connected is called a non-separating path. It follows from
a theorem of Tutte that any 3-connected graph contains a non-separating path connecting any two
vertices, and consequently, f(1) = 3. When k = 2, it was independently shown by Chen, Gould, and
Yu [1] and Kriesell [6] that f(2) = 5. In [1], the authors also show that in a (22k + 2)-connected
graph, there exist k internally disjoint non-separating paths connecting any pair of vertices. In [5],
Kawarabayashi, Lee, and Yu obtain a complete structural characterization of which 4-connected
graphs do not have a path linking two given vertices whose deletion leaves the graph 2-connected.
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In a variant of the problem, one can attempt to delete the edges of the path instead of deleting all
the vertices. Mader proved [11] that every k-connected graph with minimum degree k + 2 contains
a cycle C such that deleting the edges of C leaves the graph k-connected. Jackson independently
proved the same result when k = 2 in [4]. As a corollary to a stronger result, Lemos and Oxley have
shown [8] that in a 4-connected graph G, for any edge e there exists a cycle C containing e such that
G− E(C) is 2-connected.

Kriesell has postulated the following natural weakening of Conjecture 1.1

Conjecture 1.2 (Kriesell, [7]) There exists a function f(k) such that for every f(k)-connected
graph G and any two vertices s and t of G, there exists an induced path P with ends s and t such
that G− E(P ) is k-connected.

We answer this question in the affirmative with the following theorem.

Theorem 1.3 There exists a function f(k) = O(k4) such that the following holds: for any two
vertices s and t of an f(k)-connected graph G, there exists an induced s−t path P such that G−E(P )
is k-connected.

Corollary 1.4 For every (f(k) + 1)-connected graph G and for every edge e of G, there exists an
induced cycle C containing e such that G− E(C) is k-connected.

In the proof of Theorem 1.3, we will at several points need to force the existence of highly
connected subgraphs using the fact that our graph will have large minimum degree. A theorem of
Mader implies the following.

Theorem 1.5 (Mader, [10]) Every graph of minimum degree 4k contains a k-connected subgraph.

In addition to simply requiring a highly connected subgraph, we will require the subgraph have small
boundary. The boundary of a subgraph H of a graph G, denoted ∂G(H), is the set of vertices in
V (H) that have a neighbor in V (G) − V (H). We use the following related result of Thomassen.
By strengthening the minimum degree condition in Theorem 1.5, we can find a highly connected
subgraph that further has a small boundary.

Theorem 1.6 (Thomassen, [15]) Let k be any natural number, and let G be any graph of min-
imum degree > 4k2. Then G contains a k-connected subgraph with more than 4k2 vertices whose
boundary has at most 2k2 vertices.

Given a path P in a graph, and two vertices x and y on P , we denote by xPy the subpath of P
starting at vertex x and ending at y. A separation of a graph G is a pair (A,B) of subsets of vertices
of G such that A ∪ B is equal to V (G), and for every edge e = uv of G, either both u and v are
contained in A or both are contained in B. The order of a separation (A,B) is |A ∩B|. Where not
otherwise stated, we follow the notation of [2].

We will need the following results on systems of disjoint paths with pre-specified endpoints.

Definition A linkage is a graph where every connected component is a path.

A linkage problem in a graph G is a set of pairs of vertices in G. We will typically write the linkage
problem L as follows:

L = {{s1, t1}, . . . , {sk, tk}} .
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A solution to the linkage problem L = {{s1, t1}, . . . , {sk, tk}} is a set of pair-wise internally disjoint
paths P1, . . . , Pk such that the ends of Pi are si and ti, and furthermore, if x ∈ V (Pi)∩V (Pj) for some
distinct indices i and j, then x = si or x = ti. A graph G is strongly k-linked if every linkage problem
L = {{s1, t1}, . . . , {sk, tk}} consisting of k pairs in G has a solution. The graph G is k-linked if every
linkage problem with k pair-wise disjoint pairs of vertices has a solution. We utilize the following
theorem:

Theorem 1.7 ([12]) Every 10k-connected graph is k-linked.

Any k-linked graph on at least 2k vertices is strongly k-linked. Thus the following statement follows
trivially from Theorem 1.7.

Corollary 1.8 Every 10k-connected graph is strongly k-linked.

2 Proof of Theorem 1.3

We prove the theorem with the function f(k) = 1600k4 +k+2. Let S be a 2k-connected subgraph of
G such that G−E(S) contains an induced s-t path. To see that such a subgraph S exists, consider
an s-t path P0 of minimum length. We note that P0 is an induced path, and, further, that G−E(P0)
has minimum degree f(k)− 3 > 8k. By Theorem 1.5, G− E(P0) contains the desired 2k-connected
subgraph S.

Our goal in the proof of Theorem 1.3 will be to pick an s-t path P which uses no edges of S
and has the following property. For every vertex x of G, in the graph G − E(P ) the vertex x has
k internally disjoint paths to distinct vertices in S. This will suffice to show that G − E(P ) is k-
connected. To find such a path, we pick P to maximize the number of vertices with k paths to S,
and subject to that, to maximize the number of vertices with k−1 paths to S, and so on. This leads
to the following definition. For any induced s− t path P such that E(P ) is disjoint from E(S), we
define the set:

Sk = Sk(P ) = {v|∃k internally disjoint paths in G− E(P ) from v to V (S) with distinct ends in V (S)}.

For i between 0 and k− 1 we define sets Si where a vertex v is in Si if v is joined to V (S) by i paths
in G− E(P ) disjoint except at v and not i + 1 such paths.

We choose an induced s− t path P disjoint from E(S) so as to lexicographically maximize

(Sk, Sk−1, ..., S0).

It now suffices to show that for this P , |Sk| = |V (G)|. We let min = min{i|Si 6= ∅}. We will
show that if min < k, there exists an induced path P ∗ which avoids E(S) and satisfies the following
properties:

(a) for all v in Sj(P ), j > min, v ∈ Sj∗(P ∗) for some j∗ ≥ j,

(b) there exists a v in Smin which is in Sj∗(P ∗) for some j∗ > min.
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This contradicts our choice of P .
To find P ∗, observe that there exists a separation (A,B) of G−E(P ) of order min with V (S) ⊆ A

and v ∈ B − A. Assume we have chosen such a separation to minimize |A|. Let X denote the set
A ∩B. It follows from our choice of min that every vertex of B −A is contained in Smin.

Consider the subgraph of G induced by B −A. We note that G[B −A] has minimum degree at
least f(k)−k− 2 = 1600k4. By Theorem 1.6, there exists a 20k2-connected subgraph F in G[B−A]
of size at least 1600k4 which has a boundary of size at most 800k4.

By our choice of min, there exist |X| disjoint paths from X to F in the graph G−E(P ) restricted
to the set B. We choose |X| such paths internally disjoint from F . Let X ′ be the endpoints of the
paths in F . Let L1 be the linkage problem {{x, y}|x, y ∈ X ′, x 6= y} consisting of every pair of
vertices of X ′.

For every vertex x ∈ X, x ∈ St for some value of t = t(x). There exist paths Qx
1 , . . . , Qx

t(x) in
G − E(P ) disjoint except for the vertex x each having one endpoint in S and the other endpoint
equal to x. Let Q be a path in G with endpoints u and v. A vertex x ∈ V (F ) ∩ V (Q) is Q-extremal
if either uQx or xQv contains no vertex of V (F ) other than the vertex x. We let Q be the set of
paths {Qx

i |x ∈ X, 1 ≤ i ≤ t(x)}. Note, two distinct Q1, Q2 ∈ Q are not necessarily disjoint. A vertex
x ∈ V (F ) is Q-extremal if there exists a path Q ∈ Q such that x is Q-extremal. Let Y ′ be the set
of Q-extremal vertices in V (F )), and let L2 be the natural linkage problem induced by Q:

L2 = {{x, y}|x, y ∈ Y ′ and ∃Q ∈ Q such that x and y are Q-extremal}

Observe that while a vertex in X may have many neighbors in V (F ) − ∂G[B−A](F ), the only edges
of G with one end in A−B and the other end in V (F )− ∂G[B−A](F ) are contained in P . It follows
that either X ′ or Y ′ may contain vertices of V (F )− ∂G[B−A](F ). See Figure 1.

A B

F

X ′

Y ′

X

Edges of P

The subgraph S
∂G[B−A](F )

Figure 1: An example of the separation (A,B) with the subgraphs S and F and possible sets X ′ and
Y ′.

Recall that the size of the boundary of F is at most 800k4 in G[B − A]. It follows from the
connectivity of G that there exists a matching of size three from V (F ) −X ′ − Y ′ − ∂G[B−A](F ) to
A−X using only edges of P . Let aa′, bb′ and cc′ be three edges forming such a matching where the
vertices a, b, and c lay in V (F ) −X ′ − Y ′ − ∂G[B−A](F ). By our choice of (A,B) to minimize |A|,
there exist |X|+1 disjoint paths from X ∪{a′} to V (S) in G−E(P ) (and similarly for X ∪{b′} and
X ∪ {c′}).
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By Theorem 1.7, the graph F is strongly 2k2-linked. Fix vertices s∗ and s′ as follows. Let s∗ be
a vertex in V (F )−X ′ − Y ′ such that s∗ has a neighbor s′ on P in G and furthermore, assume that
s∗ and s′ are chosen so that s′ is as close to s on P as possible. Similarly, we define t∗ and t′ such
that t∗ is a vertex of V (F ) − X ′ − Y ′ with a neighbor t′ as close to t as possible. The vertices s∗

and t∗ are well defined since a, b, and c all have a neighbor on P in G. Without loss of generality,
we may assume that b 6= s∗, t∗. Let v be a vertex of V (F ) − X ′ − Y ′ − {s∗, t∗}. Now consider the
linkage problem

L = L1 ∪ L2 ∪ {{v, x}|x ∈ X ′} ∪ {{v, b}, {s∗, t∗}} .

The linkage problem L has at most
(
k
2

)
+ k(k− 1) + k + 2 ≤ 2k2 pairs, and so there exists a solution

R in F . Let R ∈ R be the path with ends s∗ and t∗. We now define P ∗ to be the shortest induced
subpath of sPs′s∗Rt∗t′Pt. We claim that P ∗ is the desired path violating our choice of P . Let
S∗

i = Si(P ∗) for i = 0, . . . , k.
To complete the proof, it now suffices to verify the following claim.

Claim 1 (S∗
k , . . . , S∗

0) is lexicographically greater than (Sk, . . . , S0)

Proof. We begin with the observation that by construction and the choice of s∗ and t∗, there
exists a subpath R of R with ends s and t such that P ∗ = sPs′sRtt′Pt. Furthermore, it follows that
E(P [A]) ⊇ E(P ∗[A]) and E(P ∗)−E(P ) ⊆ E(F )∪ {s′s, t′t}. It follows that E(P ∗)∩E(S) = ∅ since
the edges s′s and t′t each have at least one endpoint in F and F and S are disjoint. .

For any vertex u ∈ V (G) such that u ∈ Si for some i > min, it suffices now to show that u has i
internally disjoint paths from u to distinct vertices in S to imply that u ∈ S∗

j for some j ≥ i. To see
this, first observe that the vertex u must be contained in A. Assume as a case that u ∈ A −X. In
the graph G− E(P ), there exist i internally disjoint paths N1, . . . , Ni each with a distinct end in S
and the other endpoint equal to u. Then any path Nl with at most one vertex in X does not contain
any edge of (G− E(P ))[B] and consequently does not use any edges of P ∗. Any path Nl that does
use at least two vertices of X has a first and last vertex in X. There exists a linkage from X to X ′

avoiding the edges of P ∗, and consequently a path in R connecting the ends in X ′ avoiding edges of
P ∗. It follows that u ∈ S∗

j for some j ≥ i.
We now assume u ∈ X. One path from u to S can be found as above by following the linkage

from X to X ′ and using a path in the solution to the linkage problem L1. However, as many as
i of the paths ensuring that u ∈ Si may have used edges contained in B − A. Thus the solution
to the linkage problem L2 will ensure that u has i internally disjoint paths to distinct vertices in
S in G − E(P ∗). Let Qu

1 , . . . , Qu
i be the internally disjoint paths linking u to distinct vertices of S

contained in Q. As in the previous paragraph, any path that uses at most one vertex of V (F ) will
still exist in G−E(P ∗). If Qu

l uses at least two vertices of V (F ), then by the fact that R contains a
solution to the linkage problem L2, there exists a path of R rerouting Qu

l to avoid any edge of P ∗.
We now will see that the vertex v ∈ V (F ) lies in S∗

j for some j > min. The vertex v has |X|
internally disjoint paths in F to X ′ that avoid E(P ∗) and an additional path to the vertex b. Then X ′

is linked to X avoiding E(P ), and as a consequence, avoiding E(P ∗). Furthermore, by construction,
the edge bb′ is not contained in E(P ∗). Finally, our choice of separation (A,B) ensures that X ∪{b′}
sends |X| + 1 disjoint paths to V (S) avoiding edges of P ∗ to prove that v ∈ S∗

j for some j > min.
This completes the proof of the claim. �

This completes the proof of Theorem 1.3.
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3 An Approach to Conjecture 1.1

We make the following conjecture:

Conjecture 3.1 There exists a function f = f(k) such that the following holds. Let G be an f(k)-
connected graph and let s, t and v be three distinct vertices of G. Then G contains an s− t path P
and a k-connected subgraph H such that v ∈ V (H) and furthermore, H and P are disjoint.

We will see that Lovász’ conjecture in fact follows from Conjecture 3.1

Theorem 3.2 If Conjecture 3.1 is true, then Conjecture 1.1 is true.

Proof. Let f(k) be a function satisfying Conjecture 3.1. We show the existence of a function g(k)
satisfying Conjecture 1.1, where g(k) will be any function sufficiently large to make the necessary
inequalities of the proof true.

Let s and t be two fixed vertices of a g(k)-connected graph G, and let F be a maximal k-
connected subgraph that does not separate s and t. To see that such a subgraph F must exist,
consider a shortest path P from s to t. Every vertex not contained in P can have at most three
neighbors on P , and so the minimum degree of G−V (P ) must be strictly greater than 4k. Theorem
1.5 implies that there exists a k-connected subgraph that does not separate s and t.

A block is a maximal 2-connected subgraph. Every connected graph G has a block decomposition
(T,B) where T is a tree and B = {Bv|v ∈ V (T )} is a collection of subsets of vertices of G indexed
by the vertices of T such that the following hold:

i. for every v ∈ V (T ), G[Bv] is either an edge or a block of G,

ii. for every edge uv of T , |Bv ∩Bu| = 1, and

iii. every edge of G is contained in Bv for some v ∈ V (T ).

Observe that for any edge uv ∈ E(T ), the vertex in Bu ∩Bv is a cut vertex of the graph. See [2] for
more details.

Consider a block decomposition (T,B) of the component of G − F containing s and t. Assume
there exists a leaf v of T such that such that Bv−u does not contain either s or t (where the vertex u
separates Bv −{u} from the rest of G−F ). Then deleting any vertex of Bv −{u} does not separate
s and t. If any such vertex x in Bv − {u} had k neighbors in F , then F ∪ x would be a k-connected
graph that does not separate s and t, contradicting our choice of F . It follows that G[Bv − {u}] has
minimum degree at least g(k)− k. We assume g(k) satisfies the following inequality:

g(k)− k ≥ 4k2.

By Theorem 1.6, we conclude G[Bv−u] has a k-connected subgraph H whose boundary has at most
2k2 vertices. It follows that there exists a matching of size at least k from V (H) − ∂G[Bv ](H) to
V (F ) in G. This is a contradiction, since then H ∪F is a larger k-connected subgraph that does not
separate s from t.

By the same argument as above, G − F has exactly one component. It follows that the block
decomposition (T,B) of G − F has T equal to a path. Let the blocks of the decomposition be
B0, . . . , Bl with Bi ∩ Bi+1 = vi. Then we may assume that s ∈ B0 and t ∈ Bl. Moreover, for all
i = 0, . . . , l − 1, it follows that vi 6= vi+1, and s 6= v0 and t 6= vl−1.
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Now assume there exists a block Bi which is non-trivial, i.e. not a single edge. Let s′ = s if i = 0,
and s′ = vi−1 otherwise. Similarly, let t′ = t if i = l and t′ = vi otherwise. Observe that any vertex
v of Bi−{s′, t′} does not separate s′ from t′, and so, as above, v cannot have more than k neighbors
in F , lest we contradict our choice of F . It follows that G[Bi −{s′, t′}] has minimum degree at least
g(k)− k − 1. We assume that

g(k)− k − 1 > 4f(k + 1)2.

Then G[Bi] − {s′, t′} contains an f(k + 1)-connected subgraph F ′ with boundary at most 2f(k +
1)2. Moreover, by the connectivity of G, there exist f(k + 1) vertices u1, . . . , uf(k+1) ∈ V (F ′) −
∂G[Bi−{s′,t′}](F ′) such that each has a distinct neighbor in F (in the graph G).

Attempt to find a path from s′ to t′ in G[Bi − V (F ′)]. If such a path exists, then F ′ does not
separate s′ from t′ in G[Bi], and the subgraph induced by V (F ∪ F ′) contradicts our choice of F
to be as large as possible. It follows that F ′ does separate s from t in G − F . Let P be a path in
G[Bi] with ends s′ and t′. Let s be the vertex of V (P ) ∩ V (F ′) closest to s′ on P . Similarly, let t
be the vertex of V (P ) ∩ V (F ′) closest to t′ on P . We define a new graph F with vertex set V (F )
equal to V (F ′) ∪ v where v is a new vertex representing the subgraph F . The edge set of F is given
by E(F ) = E(F ′) ∪ {vui|i = 1, . . . , f(k + 1)}. Then F is an f(k + 1)-connected graph, so by our
assumption that f is a function satisfying Conjecture 3.1, there exists a (k + 1)-connected subgraph
H of F containing the vertex v, and moreover, F ′−H contains a path from s to t. By construction,
H−v is a k-connected subgraph of G[Bi] that does not separate s from t, and moreover, there exists
a matching of size k from H − v into the vertices of F . It follows that G[V (F ) ∪ V (H) − {v}] is a
subgraph violating our choice of F to be a maximum k-connected subgraph not separating s from
t. This contradicts our assumption that the block decomposition of G − F contained a non-trivial
block. It follows that G− F is an induced s− t path, completing the proof. �

Conjecture 3.1 is closely related to the following strengthening of Conjecture 1.1 due to Thomassen.

Conjecture 3.3 (Thomassen, [15]) For every l, t ∈ N there exists k = k(l, t) ∈ N such that for
all k-connected graphs G and X ⊆ V (G) with |X| ≤ t, the vertex set of G can be partitioned into
non-empty sets S and T such that X ⊆ S, each vertex in S has at least l neighbors in T and both
G[S] and G[T ] are l-connected subgraphs.

As the conjecture originally appeared, t was assumed to be equal to l. We have introduced the
additional parameter to discuss partial progress on the conjecture.

Observation 3.4 If ∀l ≥ 0, 0 ≤ t ≤ 2 there exists a positive integer k = k(l, t) satisfying Conjecture
3.3, then Conjecture 1.1 is true.

Proof. Let l be any positive integer, k = k(l, 2) be as in Conjecture 3.3, and let G be a k-connected
graph. Then there exists a partition (A,B) of the vertices of G such that s, t ∈ A, G[A] and G[B]
are l-connected graphs, and, furthermore, every vertex of A has at least l neighbors in B. Then if
P is a path in G[A] connecting s and t, G− V (P ) is an l-connected graph. Thus f(l) = k(l, 2) is a
function satisfying Conjecture 1.1. �

Kühn and Osthus [3] have proven Conjecture 3.3 is true when the integer t is restricted to 0. A
consequence of Theorem 3.2 is the following corollary.
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Corollary 3.5 If ∀l ≥ 0, 0 ≤ t ≤ 1 there exists a positive integer k = k(l, t) satisfying Conjecture
3.3, then Conjecture 1.1 is true.

Proof. Let l be a positive integer and let k = k(l+2, 1) be the value given by Conjecture 3.3. Then
let G be a k-connected graph, and let v, s, and t be given as in Conjecture 3.1. Let (A,B) be a
partition of V (G) such that G[A] and G[B] are (l+2)-connected, and furthermore, that v ∈ A. Then
G[A− {s, t}] is an l-connected subgraph containing v that does not separate s and t, as desired. �
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