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Abstract— We generalize the seminal Graph Minor algorithm
of Robertson and Seymour to the parity version. We give
polynomial time algorithms for the following problems:

1) the parity H-minor (Odd Kk-minor) containment prob-
lem, and

2) the disjoint paths problem with k terminals and the parity
condition for each path,

as well as several other related problems.

We present an O(mα(m,n)n) time algorithm for these prob-
lems for any fixed k, where n,m are the number of vertices
and the number of edges, respectively, and the function
α(m,n) is the inverse of the Ackermann function (see Tarjan
[69]).

Note that the first problem includes the problem of testing
whether or not a given graph contains k disjoint odd cycles
(which was recently solved in [24], [34]), if we fix H to be
equal to the graph of k disjoint triangles. The algorithm for the
second problem generalizes the Robertson Seymour algorithm
for the k-disjoint paths problem.

As with the Robertson-Seymour algorithm for the k-disjoint
paths problem for any fixed k, in each iteration, we would
like to either use the presence of a huge clique minor, or
alternatively exploit the structure of graphs in which we cannot
find such a minor. Here, however, we must maintain the parity
of the paths and can only use an “odd clique minor”. This
requires new techniques to describe the structure of the graph
when we cannot find such a minor.

We emphasize that our proof for the correctness of the above
algorithms does not depend on the full power of the Graph
Minor structure theorem [56]. Although the original Graph
Minor algorithm of Robertson and Seymour does depend on
it and our proof does have similarities to their arguments,
we can avoid the structure theorem by building on the shorter
proof for the correctness of the graph minor algorithm in [35].
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Scientific Research on Priority Areas ”New Horizons in Computing”

Research partly supported by Japan Society for the Promotion of
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Consequently, we are able to avoid the much of the heavy
machinery of the Graph Minor structure theory. Utilizing some
results of [35] and [62], [63], our proof is less than 50 pages.
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1. INTRODUCTION

1.1. Graph Minors Algorithm and Parity condition

One of the deepest and most important bodies of work
in graph theory is the Graph Minor Theory developed by
Robertson and Seymour. The main algorithmic result of
the Graph Minor Theory is a polynomial-time algorithm
for testing the existence of a fixed minor [55] which,
combined with the proof of Wagner’s Conjecture [57],
implies the existence of a polynomial-time algorithm
for deciding any minor-closed graph property. The ex-
istence of such a polynomial time algorithm has in turn
been used to show the existence of polynomial-time
algorithms for several graph problems, some of which
were not previously known to be decidable [14]. It also
leads to the framework of parameterized complexity de-
veloped by Downey and Fellows [13], which is perhaps
one of the most active areas in the study of algorithms.

In this paper, we find an efficient algorithm for the
parity k-disjoint paths problem. The parity k-disjoint
paths problem accepts in input a graph G and k triples
(si, ti, pi), 1 ≤ i ≤ k, where si and ti are vertices
of G, pi ∈ {1, 0}, and {si, ti} ∩ {sj , tj} = ∅. The
problem is to determine whether there exist disjoint
paths P1, . . . , Pk such that the ends of Pi are si and
ti and the length of Pi modulo 2 is equal to pi.

Theorem 1.1 There exists an O(nmα(m,n))-time al-
gorithm for the parity k-disjoint paths problem where



n is the number of vertices, m is the number of edges,
and α is the inverse of the Ackermann function.

We actually prove a the existence of an efficient algo-
rithm for a generalization of the parity k-disjoint paths
problem. An immediate consequence of this result is
efficient algorithms for the following problems (k is a
fixed integer).

1) The k disjoint odd cycles problem (i.e., finding k
disjoint odd cycles).

2) The parity minor (odd minor) containment prob-
lem (i.e., find a minor with parity conditions, see
below).

3) The parity H-subdivision problem (i.e., finding an
H-subdivision with parity conditions, see below).

For more detailed descriptions of the problems, we refer
the reader to the next section.

The k disjoint odd cycles problem was solved in [34].
Recently, Geelen, Gerards, Huynh and Whittle have
announced a completed project to extend much of the
theory of Graph Minors to a model of group labelled
graphs; they are currently writing up the project. Their
progress on the disjoint paths problem is reported in
Huynh’s thesis [24], and they have announced an O(n6)
bound on the runtime for the algorithm for the group
labeled k-disjoint paths problem. This implies polyno-
mial time algorithms for the problems above. The proof
heavily depends on the Graph Minor structure theorem
and its generalization obtained by Geelen, Gerards and
Whittle in their research program on matroid minors.
As a consequence, their proof is lengthy and highly
technical.

1.2. Odd cycles and disjoint paths

Our motivation is to combine and generalize two impor-
tant problems: the k disjoint odd cycles problem and the
k disjoint paths problem.

We begin with a look at the k disjoint odd cycles
problem. Finding a minimum vertex cover (or vertex
transversal) for the set of odd cycles in a given graph
G (which we call the Odd Cycle Cover Problem) is a
basic problem in both combinatorial optimization and
theoretical computer science. Determining a minimum
edge cover for the set of odd cycles is equivalent to
the maximum cut problem. On the positive side, the
maximum cut problem is solvable for planar graphs (by
Hadlock [23]). Reed et al. [49] presented an O(mn)
algorithm to determine whether or not a given graph
with m edges and n vertices has an odd cycle cover

of order at most k for any fixed k (recently, the time
complexity is improved to almost linear time by the first
two authors [33]). The k disjoint odd cycles problem
may be viewed as the “dual” problem of the odd cycle
cover problem (and hence it is also connected to the
maximum cut problem). This problem is known to be
NP-hard, even for planar graphs, if k is part of input,
see [15]. For more details in this context, we refer the
reader to the book by Schrijver [64]. It also has direct
applications in combinatorial biology (see for example,
[50]). We remark that packing disjoint cycles, i.e, find-
ing disjoint cycles as many as possible, has been also
studied extensively (see [3], [43]). Efficiently finding k
disjoint cycles for fixed k is easy. It follows from the
grid theorem [51] together with dynamic programming
for graphs of bounded tree-width [2], [5]. As remarked
before, the k disjoint odd cycles problem was solved
recently in [34]. However, the proof requires many of
the Graph Minors tools including the structure theorem.
Indeed, the proof hinges upon generalizing several of
the Graph Minors results to parity versions.

We now turn our attention to the k disjoint paths
problem which is a central problem in algorithmic graph
theory both in it’s vertex and edge disjoint versions. See
the surveys [17], [64] as well as the work of Chekuri
et al. [6], [7] and of Tardos and Kleiberg [40], [39]).

We now quickly look at previous results on the k
disjoint paths problem. If k is as a part of the input
of the problem, then this is one of Karp’s original NP-
complete problems [38], and it remains NP-complete
even if G is restricted to be planar (Lynch [44]). The
seminal work of Robertson and Seymour says that there
exists a polynomial time algorithm (the actual runtime
of the algorithm is O(|V (G)|3). The time complexity
is improved to O(|V (G)|2) in [37] (Reed also gave an
unpublished proof, see [47]).

As we see, the problem of finding k disjoint cycles
becomes much more difficult when we impose parity
conditions on the cycles. Our motivation here is to
extend the k disjoint paths problem to the parity version.
Let us observe that the k parity disjoint paths problem
clearly generalizes the k disjoint paths problem (i.e,
without the parity condition) because we can test every
possible parity conditions for each path (there are 2k

possibilities), which would give rise to the solution for
the k disjoint paths problem. Partial progress has previ-
ously been made on the k parity disjoint paths problem.
Building on the methods in [31], Kawarabayashi and
Reed [32] gave a polynomial time algorithm for the
half-integral parity disjoint paths problem where each
vertex is allowed to be in at most two of the desired k
paths.



1.3. Odd minors

For basic terminology in this paper, we refer the reader
to Appendix. Recall that a graph H is a minor of G if H
can be obtained by contracting and deleting edges in G.
Equivalently, H is a minor of G precisely if there are
|V (H)| vertex-disjoint trees in G, one tree Tv for each
vertex v of H , such that for every edge vw in H there is
an edge e(v, w) in G connecting the two corresponding
trees Tv and Tw. The graph H is an odd minor of G
if, in addition, all the vertices of the trees can be two-
colored in such a way that (1) the edges within each
tree Tv in G are bichromatic, while (2) the edge e(v, w)
connecting trees Tv and Tw in G corresponding to each
edge vw of H is monochromatic. In particular, the class
of odd-H-minor-free graphs (excluding a fixed graph
H as an odd minor) is more general than the class of
H-minor-free graphs (excluding a fixed graph H as a
minor).

Indeed, the class of odd-H-minor-free graphs is strictly
more general: the complete bipartite graph Kn/2,n/2

certainly contains a Kk-minor for k ≤ n/2, but on
the other hand, it does not contain Kk as an odd
minor for k ≥ 3. In fact, any Kk-minor-free graph G
is O(k

√
log k)-degenerate, i.e, every induced subgraph

has a vertex of degree at most O(k
√
log k); see [41],

[42], [71], [72]. Thus, any Kk-minor-free graph G has
O(k

√
log kn) edges. On the other hand, the example

shows that odd-Kk-minor-free graphs may have Θ(n2)
edges.

Odd minors play an important role in the field of
discrete optimization. A long-standing area of interest
in this field is finding conditions under which a given
polyhedron has integer vertices, so that integer opti-
mization problems can be solved as linear programs. In
the case of a particular set-covering formulation of the
maximum-cut problem, there is a structural characteri-
zation based on excluding odd minors due to Guenin.
See [21], [22], [65]. In general, odd-minor-free graphs
have been considered extensively in the graph theory
literature (see, e.g., [18], [19], [21], [22], [27], [29],
[65], [66]), and there are many recent references in
theoretical computer science as well[9], [24], [34], [30],
[70].

2. OUR MAIN RESULTS

We prove that for any fixed positive integer k, there are
polynomial time algorithms for the following problems.

The k Parity Disjoint (Rooted) Paths (or k-PDRP)

Input: A graph G, two sets of vertices S = {s1, ..., sk}
and T = {t1, ..., tk} with S∩T = ∅ and values j1, ..., jk
with ji ∈ {0, 1}.

Output: Are there k vertex disjoint paths P1, ..., Pk

from S to T in G such that Pi has endpoints si and
ti and the parity of |E(Pi)| is ji?

The k Parity (Rooted) Routing (or k-PRR)

Input: A graph G, and a set X of 2k vertices.

Output: Solve the k-PDRP for every instance
(G,S, T, {j1, ..., jk}) such that S ∪ T = X .

An easy construction allows us to generalize the algo-
rithm for the k-PDRP to the problem where we allow
the paths to share endpoints but insist that they are
otherwise disjoint (thus S and T may be multi-sets and
may intersect). One can simply make multiple copies
of any vertex which appears more than once in S ∪ T ,
and then solve the corresponding k-PDRP.

We can use these algorithms as subroutines to solve a
number of related problems, whose statements require
some definitions.

To subdivide an edge e in a graph H , we replace
it by a path of length two through a new vertex. A
subdivision of a graph H is a graph obtained from
H by repeatedly subdividing edges. That is, a graph
in which each edge of H has been replaced by a
path with the same endpoints such that these paths can
share endpoints but are otherwise disjoint. We say G
contains a subdivision of H if there is a subgraph of
G isomorphic to a subdivision of H . We refer to the
vertices of this subdivision which correspond to the
vertices of H as the branch vertices of the subdivision.

To test if G has a subdivision of H , where the path
corresponding to each edge has some given parity, we
only need to test, for each of the O(n|V (H)|) injections
of V (H) into V (G), whether G has such an subdivision
of H where the given injection specifies the branch
vertices corresponding to each vertex of H . To do this,
however, we need only solve (for k = |E(H)|) the
extension of the k-PDRP which allows non disjoint
multisets for S and T , and which we have just remarked
is no more difficult than k-PDRP. Thus, we also have a
polynomial time algorithm for the following problem.

The Parity H-Subdivision

Input: A graph G, for each edge e of H , an integer je
in {0, 1}.



Output: Is there an subdivision of H in G such that
for each edge e of H , the path corresponding to e has
parity je?

Consider a function im with domain E(H) ∪ V (H)
such that:

1) ∀v ∈ V (H), im(v) is a tree in G,
2) ∀e = uv ∈ E(H), im(e) is an edge of G with

one endpoint in im(u) and the other in im(v),
3) for all distinct v,v′ ∈ V (H), im(v) and im(v′) are

disjoint,
4) by the last two statements, ∀e, e′ ∈ E(H), v ∈

V (H) : im(e) is not an edge of im(v) and
im(e) )= im(e′).

We refer to a function im satisfying the above condi-
tions as a model of H in G. Note that G has H as a
minor if and only if it contains a model of H .

By the image of a vertex v we mean the tree im(v). By
the image of an edge e we mean the edge im(e). For
any cycle C of H there is a unique cycle contained in
the union of the images of E(C) and V (C). We call
this cycle the image of C.

For any fixed graph H , we also give a polynomial time
algorithm which solves the following decision problem
(again, an O(mα(m,n)n) time algorithm):

The Parity H-Minor Containment

Input: A graph G, for each cycle C of H , an integer
jC in {0, 1}.

Output: Is there a model of H in G such that for each
cycle C of H , the image of C has parity jC?

Remarks. One case of particular interest here is that
in which jC is the parity of C. Thus G has an odd
minor of H if it contains a model of H , where the
image of each cycle has the same parity as the cycle.
This is equivalent to requiring that we can two color
the vertices of G so that the edges within the vertex
images are bichromatic but the images of the edges are
monochromatic. Thus our algorithm implies that we can
test odd Kk-minor containment. We also note that if
we take H as k disjoint triangles, then this problem is
equivalent to finding k disjoint odd cycles. Thus our
algorithm implies that we can test the k disjoint odd
cycles problem.

The results are summarized in the following theorem,
generalizing Theorem 1.1.

Theorem 2.1 For a fixed integer k, there is an
O(mα(m,n)n) time algorithm for the k-PRDP, the
k-PRR and the parity H-minor containment problem
for H with |V (H)| = k (thus the odd Kk-minor
containment problem and the k disjoint odd cycles
problem), where n,m are the number of vertices and the
number of edges, respectively, and the function α(m,n)
is the inverse of the Ackermann function (see by Tarjan
[69]).

Also, there is an O(mα(m,n)nk+1) algorithm for the
parity H-subdivision problem.

In the proof of Theorem 2.1, we actually resolve “the
parity-folio relative to the terminal set S”, which in-
cludes all the problems k-PRDP, k-PRR and the parity
H-minor containment problem (thus the odd Kk-minor
containment problem and the k disjoint odd cycles
problem). This concept generalizes the idea of a “folio”
introduced by Robertson and Seymour in their Graph
Minor algorithm [55]. Thus, our results extend all the
concepts and main algorithmic results of [55] to the
analogous parity versions.

2.1. Our contribution

Theorem 2.1 improves the run-time for all the problems
above. Recall that Huynh’s thesis [24] gives a polyno-
mial time algorithm for the k disjoint paths problem
in group labeled graphs. They are primarily concerned
with obtaining a polynomial bound, and so at several
steps maintain more general structures than are strictly
necessary. They claim that the run-time can be bounded
by O(n6). This translates immediately to an O(n6)-
time algorithm for the k-parity disjoint paths problem.
Looking at the other problems, the result would imply
an O(nk+6)-time algorithm for the k disjoint odd cycles
problem, and O(n|H|+6)-time algorithm for parity H-
minor containment and parity H-minor subdivision. Our
algorithm improves the runtime and in addition gives the
first fixed parameter tractable algorithm for parity H-
minor containment as well. Perhaps, more importantly,
our proof is much simpler and avoids many of the
technical issues that arise in previous approaches to
these problems. We explain this in more detail below.

Our proof differs substantially from previous work on
these problems. The original proof of correctness of
the Robertson Seymour algorithm for the disjoint paths
problem requires the full power of the Graph Minor
Theory. More precisely, it is not terribly hard to reduce
the problem to the case when the input graph has no
large clique minor. However, the analysis of this case
requires the development of the structure theorem for



graphs with no clique minor. This structure theorem
[56, Theorem 1.3] describes the structure of graphs
excluding a fixed graph as a minor and lies at the
heart of the Robertson Seymour theory of minors. At
a high level, the theorem says that every such a graph
can be decomposed into a collection of graphs each of
which can “almost” be embedded into a bounded-genus
surface, combined in a tree structure. Much of the Graph
Minors series of articles is devoted to the proof of this
theorem (recently, a much shorter proof of this seminal
structure theorem is given in [36]).

Previous work on the parity problems above proceeded
by generalizing the Robertson Seymour techniques to
their corresponding parity versions. Instead, we are able
to prove our results without using many of the techni-
calities in the original proof of Robertson and Seymour.
Specifically, we avoid the use of the structure theorem
by building on the shorter proof for the correctness
of the graph minor algorithm in [35]. Utilizing some
results in [35], our proof is less than 50 pages.

3. HOW THE ALGORITHM WORKS

In this subsection, we sketch our algorithm. For sim-
plicities sake, we describe the algorithm in terms of the
k-PRDP, and we omit here the generalization to parity
folios.

At a very high level, we follow the approach of
Robertson and Seymour for the regular k-disjoint paths
problem. Robertson-Seymour’s algorithm is based on
the following two cases: either the input graph G has
bounded tree-width (bounded by some function of k) or
else it has large tree-width.

Case 1. Tree-width of G is bounded.

In this case, one can apply a dynamic programming
argument to a tree-decomposition of bounded tree-
width, see [2], [5], [55].

Case 2. Tree-width of G is large.

This second case again breaks into two cases depending
on whether G has a large clique minor or not.

Case 2.1. G has a large clique minor.

If there exist disjoint paths from the terminals to this
clique minor, then we can use this clique minor to link
up the terminals in any desired way. Otherwise, there is
a small cut set such that the large clique minor is cut off
from the terminals by this cut set. In this case, we can
prove that there is a vertex v in the clique minor which
is irrelevant, i.e., the given k disjoint paths problem is

feasible in G if and only if it is also feasible in G− v.
We then recursively apply the algorithm to G− v.

Case 2.2. G does not have a huge clique minor.

In this case, one can prove that, after deleting a bounded
number of vertices, there is a huge subgraph which is
essentially planar. Moreover, this huge planar subgraph
itself has very large tree-width. This makes it possible to
prove that the “middle” vertex v of this planar subgraph
is irrelevant. Again, we recursively apply the algorithm
to G− v.

The analysis of Cases 1 and 2.1 is relatively easy. It is
the analysis of Case 2.2 that gives rise to the majority of
the work. The analysis of this case requires the whole
series of Graph Minor papers and the structure theorem
of [56].

Let us now come back to our algorithm for the par-
ity disjoint paths problem. Let G be a graph and
{s1, . . . , sk}, {t1, . . . , tk}, pi, 1 ≤ i ≤ k be given.
If the graph G has bounded tree-width (bounded by
some function of k), then we can again apply a dynamic
programming approach to determine whether there exist
disjoint paths forming a solution to the problem. Thus
we may assume that Case 2 happens.

As with the Robertson-Seymour algorithm to solve the
k disjoint paths problem for any fixed k, as in Case 2
above, we would like to either use a huge clique minor,
or exploit the structure of graphs in which we cannot
find such a minor. Here, however, we must maintain
the parity of the paths and can only use an “odd clique
minor”. We must also describe the structure of those
graphs in which we cannot find such a minor and discuss
how to exploit it. To do so, we need to consider the
following three cases for the above case 2.

(i) The graph contains a huge clique minor and a
smaller, but still big odd clique minor.

(ii) The graph contains a huge clique minor, but no big
odd clique minor.

(iii) The graph contains a wall of huge height, but no
huge clique minor.

Let us first discuss the case (i). Robertson and Seymour
also excluded a huge clique minor for the k disjoint
paths problem, and that step is not hard. To maintain
path parities, we first need to exclude a big odd clique
minor. We will prove that if there is a big odd clique
minor, then either there are desired paths, or there is
an irrelevant vertex (as in Case 2.1) in the odd clique
minor. We present this argument in more detail in the
next subsection.



One question is: how do we find a big odd clique minor?
It turns out that we have a nice structure theorem which
tells us that if we have a huge clique minor, then either
we can get a big odd clique minor or else we can get
a vertex set X of bounded size (depending on k) such
that the component of G − X containing most of the
nodes of the huge clique minor is “essentially” bipartite.
This is proved below in Theorems 3.2 with help of the
recent result by Geelen et al. [19]. We discuss these
issues more thoroughly in the next subsection.

3.1. Using a huge clique minor

We first see the relationship between huge clique minors
and large even clique minors. Geelen et al. [19] proved
the following result.

Theorem 3.1 Suppose G has an even clique model of
order at least 16k. Then either G has an odd clique
model of order k or G has a vertex set X with |X| < 8k
such that the block F intersecting at least 8k disjoint
nodes (that consist of disjoint trees) of the even clique
model in G−X is bipartite.

The next result follows from Geelen et al. [19].

Theorem 3.2 Suppose G has a K32k
√
log k-model.

Then G has an even K16k-model. Consequently, either
G has an odd clique model of order k or G has a vertex
set X with |X| < 8k such that the block F intersecting
at least 8k disjoint nodes (that consist of disjoint trees)
of the even clique model in G−X is bipartite. Moreover,
these 8k nodes are also nodes of the clique model.

For the sake of brevity, we omit here the proof of
Theorem 3.2.

We now see how the existence of a large odd clique
model which is not separated by a small cut from a set
X of vertices allows us to solve every possible routing
on X . Recall that given a subset S ⊆ V (G), an S-cut is
a pair (A,B) of non-empty subsets A,B of V (G) such
that V (G) = A ∪ B, S ⊆ A, B − A )= ∅, and G has
no edge joining A−B to B − A. The order of the S-
cut is |A∩B|. The proof of the next lemma is inspired
by that of Robertson and Seymour [55], and we believe
this lemma itself is of independent interest. This proof
was also motivated by the proofs in [25], [26].

Lemma 3.3 Let G be a graph and S =
{s1, . . . , sk, t1, . . . , tk} be a set of 2k vertices.
Suppose G has an odd-K7k-model and no S-cut of

order less than 2k such that B − A contains at least
one node of the odd K7k-model. Then G has k vertex
disjoint paths P1, . . . , Pk such that Pi joins si and ti
for 1 ≤ i ≤ k, and we can specify any parity (i.e, even
or odd) for Pi.

Proof: We will prove the following slightly
stronger statement, which immediately implies
Lemma 3.3:

(*) Let G be a graph and S =
{s1, . . . , sk, t1, . . . , tk} be a set of 2k
vertices. Suppose G contains 7k vertex
disjoint non-empty subgraphs Di for
1 ≤ i ≤ 7k such that each Di is either
connected or each of its components meets
S. Moreover each Di is adjacent to all Dj

(i )= j) which do not meet S. Suppose G
has no S-cut (A,B) of order less than 2k
with at least one Di in B − A. Then G has
k vertex disjoint paths P1, . . . , Pk such that
Pi joins si and ti for 1 ≤ i ≤ k, and each Pi

goes through at least three Di’s that do not
intersect any Pj for i )= j nor S.

We note that any three nodes of the odd clique model
contains an odd cycle. Thus, if we prove the statement
(*), then assuming that each Di is a node of a given
odd clique model of order 7k, we can control the parity
of each path Pi via the odd cycle in three of Di’s that
do not intersect any Pj for i )= j nor S. Therefore, the
statement (*) implies Lemma 3.3.

We prove the statement (*) by induction on |V (G)|.
It is easy to check that the statement (*) is true for
|V (G)| = 7k. Let G be a minimal counterexample to
(*), that is, take G such that |V (G)| + |E(G)| is as
small as possible. If all Di’s contain no edges except
for E(S), then by Hall’s theorem, there is a perfect
matching between S and G − S, and the result easily
follows since |G − S| ≥ 5k and G − S consists of a
clique.

Thus it remains to show that there is no Di that contains
an edge in E(G) − E(S). For suppose e ∈ E(G) −
E(S) is such an edge contained in some Di. If we
contract e, then the resulting graph is either no longer a
counterexample or has a S-cut of order exactly 2k− 1.
In the former case, we are done. So, we may assume
that there exists an S-cut (A,B) in G of order exactly
2k with the endpoints of e contained in A ∩ B. Since
each Di is adjacent to all Dj’s (i )= j) which do not
meet S, Di is adjacent to at least 5k of Dj’s. Hence for
any i, Di cannot be contained in A−B. Let S′ = A∩B,



G′ = G[B], and let D′
i = Di∩G′ for 1 ≤ i ≤ 7k. Note

that S ⊆ A. If S′ = S, then G−e would form a smaller
counterexample. So A− B )= ∅. By the assumption of
the statement (*) and Menger’s theorem, there exist 2k
disjoint paths from S to S′. Thus, G′, S′ and D′

i for 1 ≤
i ≤ 7k satisfy the assumption of (*) and therefore G′

satisfies the conclusion of (*) by our choice of a minimal
counterexample. This would imply that G satisfies the
conclusion as well, a contradiction. We conclude that
there is no such an edge e.

This completes the proof of (*).

Lemma 3.3 allows us to find a an irrelevant vertex given
a sufficiently large odd clique minor. The next theorem
actually shows something slightly stronger.

Theorem 3.4 Let G be a graph and S = {s1, . . . , sk},
T = {t1, . . . , tk}, and j1, . . . , jk form an instance of
the k-PDRP. Suppose G has an odd-K7k-model. Then
either G has a solution to the problem instance, or else
we can get a minimal S ∪ T -cut (A,B) of order at
most 2k − 1 with at least one node of the odd-K7k-
model in B − A. If we replace B by K4k such that
this K4k contains all the vertices in A ∩ B, then the
resulting graph has a solution to the problem instance
if and only if the original graph does.

An immediate consequence is that given a model of
an odd K7k+1 in an instance of the k-PDRP, we can
find an irrelevant vertex. Thus we turn our attention to
graphs which have a large clique minor, but no large
odd minor. The next theorem allows us to handle the
case when the graph contains a huge clique minor but
no large odd clique minor.

Theorem 3.5 Let G be a graph and let X ⊆ V (G) with
|X| = 2k. If G has a Kl-model, where l ≥ 260k × 60k,
but does not have an odd clique model of order 7k+1,
then there is a vertex v in G satisfying the following. For
any partition of X into sets S and T , S = {s1, . . . , sk},
T = {t1, . . . , tk}, and choice of values j1, . . . , jk form
an instance of the k-PDRP, the vertex v is irrelevant to
the problem instance. Moreover, such a vertex v can be
found in g(l)m time for some function g of l.

3.2. When there is no big clique minor

We now come to the point where we are given an
instance of the k-PDRP which does not contain a huge
clique minor, as in (iii) above. By a result of Robertson
and Seymour [55], after deleting bounded number of
vertices, there is a huge almost planar graph W of large

treewidth. In this case, we follow the approach as in the
above Case 2.2 of the Robertson Seymour algorithm for
disjoint paths. Let us emphasis again that our proof in
this case does not depend on the full power of the Graph
Minor structure theorem [56]. We reduce the problem of
finding an irrelevant vertex in the graph to the following
theorem.

Theorem 3.6 Let G be a graph and let P1, . . . , Pk be
disjoint paths in G such that

⋃k
1 V (Pi) = V (G). There

exists a value w = w(k) such that if tw(G) ≥ w, then
there exists a vertex v such that G−v has disjoint paths
P ′
1, . . . , P

′
k such that for all 1 ≤ i ≤ k, Pi and P ′

i have
the same endpoints and furthermore, the length of Pi

and P ′
i are the same modulo 2.

Thus, the algorithmic problem of finding an irrelevant
vertex reduces to the theoretical problem of showing the
existence of a an irrelevant vertex to a given instance
of the parity disjoint paths problem.

Utilizing some results in [35], we are able to avoid
the much of the heavy machinery of the Graph Minor
structure theory and reduce the proof of Theorem 3.6
to the case when the graph G is embedded in a surface
of bounded genus (bounded by a function of k). The
remainder of the argument hinges upon showing The-
orem 3.6 in the case that the graph is embedded in a
fixed surface.

We assume for the rest of this discussion that the graph
G is embedded in a surface of genus bounded by a
function of k. We extend a result for graphs on a surface
in [52] to the parity version. These results may be of
independent interest. An odd face of the embedding is
a facial cycle of odd length. The analysis is split into
cases, depending on whether there exist many odd faces
which are pairwise “far apart” in the embedded graph.
Alternatively, there exist a bounded number of discs
of bounded size which cover all the odd faces in the
embedding of G.

In the first case, we use a deep result by Schrijver [62],
[63] to show that we can find a desired solution via odd
faces. In the second case, we delete each of the discs
covering all the odd faces. Deleting each disc will break
our paths up into a larger number of paths, but since
each disc has bounded size, the number of new paths
can grow only by a bounded number. After deleting
every disc, the remaining graph will be embedded in a
surface with a bounded number of cuffs. Thus, we see
we may restrict our attention to the following situation.

G is embedded into a surface of Euler genus
g with bounded number of cuffs, say l



cuffs, such that there are no odd faces. G
contains disjoint paths P ′

1, . . . , P
′
k′ for some

k′ bounded by a function of k such that⋃k′

1 V (P ′
i ) = V (G).

Although there are no odd faces in G, G may not be
bipartite because some noncontractible cycle may have
odd length. However, it is well-known that two paths
(with the same endpoints) of the same homotopic type
of the surface with Euler genus g and l cuffs have the
same parity. Thus a path with a specific homotopic type
of the surface determines the parity of the path, and
hence we do not have to worry about the parity of the
path but we just care for the homotopic type of the
path. This allows us to use the above mentioned result
by Schrijver [62], [63], with which we can control the
homotopic type of a path.
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APPENDIX

We now recall definitions for a Kp-model, an even Kp-
model and an odd Kp-model. A graph G contains a Kp-
model if there exists a function σ with domain V (Kp)∪
E(Kp) such that

1) for each vertex v ∈ V (Kp), σ(v) is a connected
subgraph of G, and the subgraphs σ(v) (v ∈
V (Kp)) are pairwise vertex-disjoint, and

2) for each edge e = uv ∈ E(Kp), σ(e) is an edge
f ∈ E(G), such that f is incident in G with a
vertex in σ(u) and with a vertex in σ(v).

Thus G contains a Kp-minor if and only if G contains
a Kp-model. The order of a complete graph model is
the order of the complete graph. We call the subgraph
σ(v) (v ∈ V (Kp)) a node of the Kp-model.

We say that a Kp-model is even if the union of the
nodes of the Kp-model forms of a bipartite graph. We
also say that a Kp-model is odd if for each cycle C in
the union of the nodes of the Kp-model, the number
of edges in C that belong to nodes of the Kp-model is
even. Equivalently, the model is odd if the nodes can
be properly two colored so that the edges σ(uv) are
monochromatic for all edges uv in Kp.

A separation of a graph G is a pair of subgraphs (A,B)
of G such that G = A ∪ B and E(A ∩ B) = ∅. The
order of the separation (A,B) is |V (A) ∩ V (B)|.

Tree-width and Brambles.: A bramble β is a set of trees
every two of which intersect or are joined by an edge
(thus a clique minor model is a bramble whose elements
are disjoint). The order of a bramble β, denoted ord(β),
is the minimum size of a hitting set of its elements (that
is, a set H of vertices intersecting the vertex set of each
tree of β). Clearly every clique model (minor) of order
l is a bramble of order l. Also for any set W of vertices,
the set βW of trees of G containing more than half the
vertices of W is a bramble since any two such trees

intersect. We now characterize graphs which have no
brambles of order l, using tree decompositions.

A tree decomposition of a graph G consists of a tree
T and a subtree Sv of T for each vertex v of G such
that if uv is an edge of G then Su and Sv intersect.
For each node t of the tree, we let Wt be the set of
vertices v of G such that t ∈ Sv . We let Ht be the graph
obtained from the subgraph of G induced by Wt by
adding an edge between x and y if there is some s such
that x, y ∈ Ws∩Wt. The width of a tree decomposition
is the maximum of |Wt| over the nodes t of T .

It is not hard to see that for every bramble β and every
tree decomposition there is a node t such that Wt is a
hitting set for β. This implies that the tree width of G is
at least the maximum order of a bramble. Seymour, and
Thomas [68] showed that this bound is tight, proving:

Theorem A.1 The maximum order of a bramble in G
is equal to its tree width.

One of the most important result concerning the tree-
width is the fact that large tree width guarantees exis-
tence of grid-minor or a wall.

Grid minors and Walls.: Let us recall that an r-wall
is a graph which is isomorphic to a subdivision of the
graph Wr with vertex set V (Wr) = {(i, j) | 1 ≤ i ≤
r, 1 ≤ j ≤ r} in which two vertices (i, j) and (i′, j′) are
adjacent if and only if one of the following possibilities
holds:

(1) i′ = i and j′ ∈ {j − 1, j + 1}.
(2) j′ = j and i′ = i+ (−1)i+j .

We can also define an (a× b)-wall in a natural way. It
is easy to see that if G has an (a/2 × b)-wall, then it
has an (a× b)-grid minor, and conversely, if G has an
(a× b)-grid minor, then it has an (a/2× b)-wall.

Let us recall that the (a×b)-grid is the Cartesian product
of paths Pa!Pb.

One of the most important results concerning the tree-
width is the main result in [51] which says the follow-
ing.

Theorem A.2 For any r, there exists a constant f(r)
such that if G has tree-width at least f(r) (equivalently
a bramble B of order at least f(r)), then G contains
an r-wall W .

The best known upper bound for f(r) is given in [12],
[47], [61]. It is 205r

5
. The best known lower bound is

Θ(r2 log r), see [61].


