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Abstract

Let P1, . . . , Pk be k vertex disjoint paths in a graph G where the ends of Pi are xi, and yi. Let H be

the subgraph induced by the vertex sets of the paths. We find edge bounds E1(n), E2(n) such that,

1. If e(H) ≥ E1(|V (H)|), then there exist disjoint paths P ′

1, . . . , P
′

k where the ends of P ′

i are xi and

yi such that |
S

i
V (Pi)| > |

S

i
V (P ′

i )|.

2. If e(H) ≥ E2(|V (H)|), then there exist disjoint paths P ′

1, . . . , P
′

k where the ends of P ′

i are x′

i

and y′

i such that |
S

i
V (Pi)| > |

S

i
V (P ′

i )| and {x1, · · · , xk} = {x′

1, · · · , x′

k} and {y1, · · · , yk} =

{y′

1, · · · , y′

k}.

The bounds are the best possible, in that there exist arbitrarily large graphs H ′ with e(H ′) = Ei(H
′)−1

without the properties stipulated in 1 and 2.

1 Introduction and Results

We consider the following problem. Given a graph G containing k vertex disjoint paths P1, . . . , Pk, we ask

how many edges can the subgraph induced by the union of the vertex sets of the paths have without ensuring

that it is possible to reroute the paths to shorten the sums of their lengths. We find the exact solution to

two variants of this problem. In the first case, we would like to ensure that the path ends are individually

fixed. We obtain the following bound:

Theorem 1.1 Let G be a graph and P1, . . . , Pk be k disjoint paths in G. Assume G has n vertices and

V (G) =
⋃

i V (Pi). Let the ends of Pi be xi and yi. Then if e(G) ≥ (2k − 1)n− 3
(

k
2

)

− k + 1, then there exist

paths P ′
1, . . . , P

′
k where the ends of P ′

i are xi and yi and
∑

i |V (Pi)| >
∑

i |V (P ′
i )|.

∗This paper was partially written while visiting at the Sezione di Bari dell’ Istituto per Applicazioni del Calcolo “M. Picone”

under the auspices of the Italian Research Council (C. N. R.)
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Alternatively, what if we do not maintain the specified path ends, but rather, we want to find shorter

paths with ends in the same sets. In other words, given P1, . . . , Pk are paths with ends in two disjoint sets

X and Y , we want to ensure that there exist disjoint paths comprising fewer total vertices, such that each

path still has an end in X and an end in Y . We prove the following lower bound.

Theorem 1.2 Let G be a graph and P1, . . . , Pk be k disjoint paths in G. Assume G has n vertices and

V (G) =
⋃

i V (Pi). Let the ends of Pi be xi and yi. Then if e(G) ≥ (3k−1)
2 n − 2

(

k
2

)

− k + 1, then there exist

paths P ′
1, . . . , P

′
k where the ends of P ′

i are x′
i and y′

i such that

1. {x1, · · · , xk} = {x′
1, · · · , x′

k} and {y1, · · · , yk} = {y′
1, · · · , y′

k}, and

2.
∑

i |V (Pi)| >
∑

i |V (P ′
i )|.

An application of Theorem 1.1 arises studying the problem of graph linkages. A graph G with at least 2k

vertices is k-linked if for any set of distinct vertices {s1, . . . , sk, t1, . . . , tk}, there exist vertex disjoint paths

P1, . . . , Pk where the ends of Pi are si and ti. In [5], it is shown that every 2k-connected graph G on n

vertices with 5kn edges is k-linked. In the same source, it is conjectured that every 2k-connected graph with

(2k − 1)|V (G)| − (3k + 1)k/2 + 1 edges is k-linked. A lower bound for this conjecture arises as follows. Let

P1, . . . , Pk−1 be k − 1 disjoint paths with the ends of Pi labeled si and ti. Add to these paths the maximal

number of edges such that there do not exist P ′
1, . . . , P

′
k−1 where the endpoints of P ′

i are si and ti ,and with

the property that the paths P ′
i use fewer vertices. Then by adding vertices sk and tk adjacent to every other

vertex in the graph except each other, we see that this graph cannot be k-linked. The most edges such a

graph could have is determined by the optimal bound obtained in Theorem 1.1.

The required number of edges for a 4-connected graph to be 2-linked was proven by Jung in [1], and

later a complete characterization of two linked graphs was independently found by several authors [2], [3],

[6]. Recently, the exact edge bound when k = 3 was proven in [4]. In both cases, the conjectured bound

is correct. Moreover, for k = 3, there exist tight examples consisting of 2 disjoint paths with the endpoints

labeled s1, s2, t1, t2 which cannot be rerouted to shorten their length, and an additional pair of terminals s3

and t3 adjacent every other vertex of the graph. This gives some hope that the conjectured bound may in

fact be true.

For the purposes of this paper, all graphs will be considered simple graphs. For a graph G and an edge

uv of G will be thought of as an unordered pair of vertice, and the graph G/uv will be the graph obtained by

identifying the two vertices u and v of G and deleting all parallel edges. If P = x1, . . . , xl is a path in G and

xi and xj are two vertices on P such that i ≤ j, then xiPxj will denote the subpath of P , xi, xi+1, . . . , xj .

For any subset X of the vertices of a graph, G[X ] will denote the subgraph induced by the vertices X .

To prove each Theorem, we first examine the case when k = 2 and we have exactly two paths. Then

Theorems 1.1 and 1.2 follow by counting how many edges a system of k disjoint paths must have before this

edge bound is violated for some pair of paths. We prove Theorem 1.1 in Section 2 and we prove Theorem
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1.2 in section 3. The theorems actually show that the edge bounds ensure that it is possible to reroute some

pair of paths to shorten their length. Perhaps fewer edges would suffice to make it possible to simultaneously

reroute some larger subset of the paths and decrease the sum of their lengths. However, we show in section 4

that the bounds obtained by Theorems 1.1 and 1.2 are the best bounds possible by constructing arbitrarily

large graphs that do not have the desired shorter paths, and yet have only one fewer edge than the bound

stipulated in Theorem 1.1 and 1.2.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 hinges upon the following lemma.

Lemma 2.1 Let G be a graph on n vertices and let P1 and P2 be disjoint paths in G with ends x1, y1 and

x2, y2, respectively. Further, assume V (G) = V (P1) ∪ V (P2). Then if e(G) ≥ 3n − 4, there exist disjoint

paths P ′
1 and P ′

2 with ends x1, y1 and x2, y2 respectively such that |V (P1) ∪ V (P2)| > |V (P ′
1) ∪ V (P ′

2)|.

Proof First observe that if n ≤ 5, then the statement is vacuously true. We proceed by induction on n.

The property is preserved under taking minors. If upon contracting an edge e ⊆ Pi, we are able to find

shorter paths, then in G as well, we could find shorter paths. Thus we may assume that upon contracting

each edge e ⊆ Pi, we no longer satisfy the edge bound. For that to happen, if e = uv, then u and v must

have at least 3 common neighbors on the other path.

Now pick some edge uv ⊆ P1 and let w1, w2, w3 be common neighbors on P2. Assume that one of the

pairs (w1, w2) and (w2, w3) is not an edge of P2, say (w2, w3). Then there exists some w4 ∈ V (P2) adjacent

to w2 with w4 between w2 and w3 on P2. Then w2 and w4 have three common neighbors on P1 implying w2

has some neighbor z ∈ V (P1), z '= u, v. If z ∈ V (vP1y1), then x1P1uw2zP1y1 and x2P2w1vw3P2y2 are two

paths with the desired ends. They are shorter in length than P1 and P2 since the new paths do not contain

the vertex w4. The case when z ∈ V (x1P1u) is symmetric. Thus we may assume every edge uv in P1 has

exactly three neighbors in common in P2 and more over, they are sequential on P2.

Let u1u2 and u2u3 be two edges on P1 such that the common neighbors of u1 and u2 are w1, w2, w3 and

the common neighbors of u2 and u3 are z1, z2, z3 and assume {w1, w2, w3} '= {z1, z2, z3}. Then there are two

very similar cases: w1 occurs before z1 on P2 and z1 occurs before w1. In the first case, x1P1u1w2P2z1u3P1y1

and x2P2w1u2z3P2y2 are two paths with the desired ends using fewer vertices. We know the sum of the

lengths is less because the paths do not include the vertex z2 since w2 ∼ w1, and w1 occurs before z1. In the

second case x1P1u1w3P2z3u3P1y1 and x2P2z1u2w3P2y2 are paths with the appropiate ends not utilizing the

vertex z2 in either path.

Thus we may assume that no two consecutive edges on P1 have a different set of 3 common neighbors. By

beginning with the first edge of P1, it follows that we may assume all edges of P1 have the same three common

neighbors in P2. Then P2 can have no other vertex with a neighbor on P1, and so in fact |V (P2)| = 3. But
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the argument symetrically shows |V (P1)| = 3. Given the edge bound, it is impossible that P1 and P2 are

induced paths, i.e. it must be the case that x1 ∼ y1 or x2 ∼ y2, and the statement of the Lemma holds. !

We use the above lemma to prove Theorem 1.1

Assume the theorem is false, and let G and P1, . . . , Pk be a counter example. Then clearly by Lemma

2.1 for all i and j, we have e(G[V (Pi) ∪ V (Pj)]) ≤ 3(|V (Pi)| + |V (Pj)|) − 5. Then there are at most

2(|V (Pi)| + |V (Pj)|) − 3 edges with one end in Pi and the other in Pj . Thus there are at most

∑

(i,j),i<j

(2 (|V (Pi)| + |V (Pj)|) − 3)

edges with ends on distinct paths. Adding the edges contained in the paths, we see that

e(G) ≤
∑

(i,j),i<j

(2 (|V (Pi)| + |V (Pj)|) − 3) +
k

∑

i=1

(|V (Pi)| − 1)

= (2k − 1)n − 3

(

k

2

)

− k

contradicting our choice of G and proving the theorem.

3 Proof of Theorem 1.2

As in the previous section, we first prove the bound when we have exactly two paths.

Lemma 3.1 Let G be a graph on n vertices and let P1 and P2 be disjoint paths in G with ends x1, y1 and

x2, y2 respectively. Further, assume V (G) = V (P1) ∪ V (P2). Then if e(G) ≥ 5
2n − 3, there exist disjoint

paths P ′
1 and P ′

2 with ends x′
1, y′

1 and x′
2, y′

2, respectively, such that |V (P1)∪ V (P2)| > |V (P ′
1) ∪ V (P ′

2)| and

{x1, x2} = {x′
1, x

′
2}, {y1, y2} = {y′

1, y
′
2} .

Proof We proceed by induction on the number of vertices. Notice that the edge bound ensures that both

P1 and P2 must have at least two vertices, so x1, x2, y1, and y2 are all distinct vertices. Also, the edge

bound implies that we may assume that n ≥ 5. The property is preserved under taking minors, so if we

could contract an edge e ⊆ V (Pi) and satisfy the edge bound, then by induction there would be shorter

paths in G/e with the desired property. These paths would extend to paths in G satisfying the claim. Thus

we may assume that upon contracting uv, the graph no longer satisfies the edge bound. This implies u and

v must have at least 2 common neighbors on the other path.

Define d∗(v) to be the number of neighbors the vertex v has on the other path. The edge bound implies

that there are at least 3
2n − 1 edges with one endpoint in one path and the other endpoint in the second

path. Thus,
∑

v∈V (G)

d∗(v) ≥ 3n − 2.
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First assume that there is no vertex on one path with four or more neighbors on the other path. Then

3(n − 4) + d∗(x1) + d∗(x2) + d∗(y1) + d∗(y2) ≥
∑

v∈V (G)

d∗(v) ≥ 3n − 2.

Thus we see either d∗(x1)+d∗(x2) ≥ 5 or d∗(y1)+d∗(y2) ≥ 5. Without loss of generality, assume the former.

Then we may assume that x1 has exactly 3 neighbors on P2, and x2 has at least 2 neighbors on P1. Let

w1, w2, w3 be the neighbors of x1 in P2 and let z be a neighbor of x2 distinct from x1. Then if w3 is the

neighbor of x1 closest to y2, the paths x1w3P2y2 and x2zP1y1 are two paths satisfying the claims of the

theorem, but utilizing fewer vertices that P1 and P2, since w2 is not included in the new paths.

Thus we may assume that some vertex has at least 4 neighbors on the other path. Let v be such a vertex

and assume that v is in P1. Then let w1, w2, w3, w4 be neighbors of v on P2, and without loss of generality,

assume they occur on P2 in numerical order with w1 the closest vertex to x2. The vertex w2 has some

neighbor w′
3 on w2P2w4 that is distinct from w4. Then as we have seen above, w2 and w′

3 have at least 2

common neighbors in P1, specifically, they have a common neighbor distinct from v. Let z be a common

neighbor of w2 and w′
3 distinct from v, and without loss of generality, assume z lies in x1P1v. Then the

paths x1zw′
3P2y2 and x2w1vP1y1 are two paths satisfying the claim of the Lemma, since they do not include

the vertex w2. This completes the proof of the Lemma. !

Now we prove Theorem 2.1.

Assume the theorem is false, and let G be a graph on n vertices with P1, . . . , Pk be disjoint paths

comprising the vertex set of G, and assume the ends of Pi be xi and yi. Then by Lemma 3.1, we see that

there are strictly less than 3
2 |V (Pi) ∪ V (Pj)| − 1 edges with one end in Pi and the other end in Pj for any

pair of indices i and j. This implies that

e(G) ≤
∑

(i,j),i<j

(

3

2
(|V (Pi)| + |V (Pj)|) − 1

)

+
k

∑

i=1

(|V (Pi)| − 1)

=
(3k − 1)

2
n −

(

k

2

)

− k

contradicting our assumptions on G.

4 Lower Bounds and Tight Examples

Notice that in both the proofs of the above theorems, the bounds we derive are the minimum edge bounds

to ensure that pair-wise, we are unable to reroute any two paths to shorten their length, either maintaining

the endpoints or swapping the endpoints. The following tight examples show that if we do not satisfy the

edge bounds given in the theorems, then there still may be no more complex rerouting of any number of the

paths that shortens the sum of the lengths.
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First we show the bound of Theorem 1.1 is optimal. Let V (G) consist of k paths. Let P1 have n−3(k−1)

vertices and let v1, v2, v3 be three fixed, sequential vertices of P1. In other words, the edges v1v2 and v2v3

are edges of the path P1. Let P2, . . . , Pk be paths on 3 vertices. Let the ends of Pi be xi and yi. Then

add all edges to
⋃

j,j %=1 V (Pj) except the edges xjyj . Now for all v ∈ V (P1), v '= v1, v2, v3, add the edges

vxj and vyj . For the vertices v1, v2, v3, connect them to all vertices of
⋃

j,j %=1 V (Pj). Then this graph has

e(G) = (2k − 1)n−
(

k
2

)

− k and it is impossible to reroute the paths to not use all the vertices of G and still

preserve the endpoints of the paths.

To see that the bound for Theorem 1.2 is optimal, let H1, . . . , Ht be t disjoint copies of Kk, the complete

graph on k vertices. Let every vertex in Hi be adjacent every vertex in Hi+1. Then this graph contains k

disjoint paths of length t − 1, each with one end in H1 and one end in Ht, but there clearly do not exist k

paths using fewer vertices where each path still has one end in H1 and the other end in Ht. This graph has

n = kt vertices and 3k−1
2 n −

(

k
2

)

− k edges, implying that the bound for Theorem 2.1 is the optimal bound.
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